Plant phylogeny drives arboreal caterpillar assemblages across the Holarctic
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
669609
European Research Council - International
PubMed
33732431
PubMed Central
PMC7771119
DOI
10.1002/ece3.7005
PII: ECE37005
Knihovny.cz E-zdroje
- Klíčová slova
- Lepidoptera, deciduous forests, feeding guilds, insect herbivores, phylogenetic isolation, shelter builders, specialization, species richness,
- Publikační typ
- časopisecké články MeSH
Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co-occurring plant species.Using a Holarctic dataset of exposed-feeding and shelter-building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.Our plant-caterpillar network data derived from plot-based samplings at three different continents included >28,000 individual caterpillar-plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed-feeding and shelter-building caterpillars.Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host-specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large-scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
Faculty of Science Chiba University Chiba Japan
Faculty of Science University of Ostrava Ostrava Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
ForestGEO Smithsonian Tropical Research Institute Balboa Ancon Panama
National Museum of Natural History Smithsonian Institution Washington DC USA
Zobrazit více v PubMed
Agrawal, A. A. (2007). Macroevolution of plant defense strategies. Trends in Ecology & Evolution, 22, 103–109. 10.1016/j.tree.2006.10.012 PubMed DOI
Agrawal, A. A. , & Hastings, A. P. (2019). Plant defense by latex: Ecological genetics of inducibility in the milkweeds and a general review of mechanisms, evolution, and implications for agriculture. Journal of Chemical Ecology, 45(11‐12), 1004–1018. 10.1007/s10886-019-01119-8 PubMed DOI
Awmack, C. S. , & Leather, S. R. (2002). Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817–844. 10.1146/annurev.ento.47.091201.145300 PubMed DOI
Bates, D. , Mächler, M. , Bolker, B. M. , & Walker, S. C. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 1–48. 10.18637/jss.v067.i01 DOI
Bell, C. D. , Soltis, D. E. , & Soltis, P. S. (2010). The age and diversification of the angiosperms re‐revisited. American Journal of Botany, 97, 1296–1303. 10.3732/ajb.0900346 PubMed DOI
Bock, C. E. , Jones, Z. F. , & Bock, J. H. (2007). Relationships between species richness, evenness, and abundance in a southwestern savanna. Ecology, 88, 1322–1327. 10.1890/06-0654 PubMed DOI
Braby, M. F. , & Trueman, J. W. H. (2006). Evolution of larval host plant associations and adaptive radiation in pierid butterflies. Journal of Evolutionary Biology, 19, 1677–1690. 10.1111/j.1420-9101.2006.01109.x PubMed DOI
Brändle, M. , & Brandl, R. (2001). Species richness of insects and mites on trees: Expanding Southwood. Journal of Animal Ecology, 70, 491–504. 10.1046/j.1365-2656.2001.00506.x DOI
Brändle, M. , & Brandl, R. (2006). Is the composition of phytophagous insects and parasitic fungi among trees predictable? Oikos, 2, 296–304. 10.1111/j.2006.0030-1299.14418.x DOI
Burnham, K. P. , & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information‐theoretic approach, 2nd ed. Springer.
Carmona, D. , Lajeunesse, M. J. , & Johnson, M. T. J. (2011). Plant traits that predict resistance to herbivores. Functional Ecology, 25, 358–367. 10.1111/j.1365-2435.2010.01794.x DOI
Castagneyrol, B. , Jactel, H. , Vacher, C. , Brockerhoff, E. G. , & Koricheva, J. (2014). Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. Journal of Applied Ecology, 51, 134–141. 10.1111/1365-2664.12175 DOI
Cirtwill, A. R. , Dalla Riva, G. V. , Baker, N. J. , Ohlsson, M. , Norström, I. , Wohlfarth, I.‐M. , Thia, J. A. , & Stouffer, D. B. (2020). Related plants tend to share pollinators and herbivores, but strength of phylogenetic signal varies among plant families. New Phytologist, 226(3), 909–920. 10.1111/nph.16420 PubMed DOI
Clissold, F. J. , Sanson, G. D. , Read, J. , & Simpson, S. J. (2009). Gross vs. net income: How plant toughness affects performance of an insect herbivore. Ecology, 90, 3393–3405. 10.1890/09-0130.1 PubMed DOI
Connor, E. F. , Feath, S. H. , Simberloff, D. , & Opler, P. A. (1980). Taxonomic isolation and the accumulation of herbivorous insects: A comparison of introduced and native trees. Ecological Entomology, 5, 205–211. 10.1111/j.1365-2311.1980.tb01143.x DOI
Darriba, D. , Taboada, G. L. , Doallo, R. , & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772. 10.1038/nmeth.2109 PubMed DOI PMC
Davies, T. J. , Wolkovich, E. M. , Kraft, N. J. B. , Salamin, N. , Allen, J. M. , Ault, T. R. , Betancourt, J. L. , Bolmgren, K. , Cleland, E. E. , Cook, B. I. , Crimmins, T. M. , Mazer, S. J. , McCabe, G. J. , Pau, S. , Regetz, J. , Schwartz, M. D. , & Travers, S. E. (2013). Phylogenetic conservatism in plant phenology. Journal of Ecology, 101, 1520–1530. 10.1111/1365-2745.12154 DOI
Denk, T. , Grimm, G. W. , Manos, P. S. , Deng, M. , & Hipp, A. L. (2017). An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns. In Gil‐Pelegrín E., Peguero‐Pina J. J., & Sancho‐Knapik D. (Eds.), Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. J.J. (pp. 13–38). Springer.
Diniz, I. R. , Hay, J. D. , Rico‐Gray, V. , Greeney, H. F. , & Morais, H. C. (2012). Shelter‐building caterpillars in the Cerrado: Seasonal variation in relative abundance, parasitism, and the influence of extra‐floral nectaries. Arthropod‐Plant Interactions, 6, 583–589. 10.1007/s11829-012-9207-2 DOI
Dinnage, R. , Cadotte, M. W. , Haddad, N. M. , Crutsinger, G. M. , & Tilman, D. (2012). Diversity of plant evolutionary lineages promotes arthropod diversity. Ecology Letters, 15, 1308–1317. 10.1111/j.1461-0248.2012.01854.x PubMed DOI
Drès, M. , & Mallet, J. (2002). Host races in plant‐feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 471–492. 10.1098/rstb.2002.1059 PubMed DOI PMC
Drummond, A. J. , Ashton, B. , Buxton, S. , Cheung, M. , Cooper, A. , Duran, C. , Wilson, A. (2011). Geneious v5.4. http://www.geneious.com/
Drummond, A. J. , Suchard, M. A. , Xie, D. , & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. 10.1093/molbev/mss075 PubMed DOI PMC
Endara, M.‐J. , Coley, P. D. , Ghabash, G. , Nicholls, J. A. , Dexter, K. G. , Donoso, D. A. , Stone, G. N. , Pennington, R. T. , & Kursar, T. A. (2017). Co‐evolutionary arms race versus host defense chase in a tropical herbivore – plant system. Proceedings of the National Academy of Sciences of USA, 114, E7499–E7505. 10.1073/pnas.1707727114 PubMed DOI PMC
Forbes, A. A. , Devine, S. N. , Hippee, A. C. , Tvedte, E. S. , Ward, A. K. G. , Widmayer, H. A. , & Wilson, C. J. (2017). Revisiting the particular role of host shifts in initiating insect speciation. Evolution, 71, 1126–1137. 10.1111/evo.13164 PubMed DOI
Fordyce, J. A. (2010). Host shifts and evolutionary radiations of butterflies. Proceedings of the Royal Society B, 277, 3735–3743. 10.1098/rspb.2010.0211 PubMed DOI PMC
Forister, M. L. , Novotny, V. , Panorska, A. K. , Baje, L. , Basset, Y. , Butterill, P. T. , Cizek, L. , Coley, P. D. , Dem, F. , Diniz, I. R. , Drozd, P. , Fox, M. , Glassmire, A. E. , Hazen, R. , Hrcek, J. , Jahner, J. P. , Kaman, O. , Kozubowski, T. J. , Kursar, T. A. , … Dyer, L. A. (2015). The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of USA, 112, 442–447. 10.1073/pnas.1423042112 PubMed DOI PMC
Forkner, R. E. , Marquis, R. J. , Lill, J. T. , & Le Corff, J. (2008). Timing is everything? Phenological synchrony and population variability in leaf‐chewing herbivores of Quercus . Ecological Entomology, 33, 276–285. 10.1111/j.1365-2311.2007.00976.x DOI
Gaston, K. J. , Reavey, D. , & Valladares, G. R. (1992). Intimacy and fidelity: Internal and external feeding by the British microlepidoptera. Ecological Entomology, 17, 86–88. 10.1111/j.1365-2311.1992.tb01044.x DOI
Grandez‐Rios, J. M. , Bergamini, L. L. , de Araújo, W. S. , Villalobos, F. , & Almeida‐Neto, M. (2015). The effect of host‐plant phylogenetic isolation on species richness, composition and specialization of insect herbivores: A comparison between native and exotic hosts. PLoS One, 10, e0138031. 10.1371/journal.pone.0138031 PubMed DOI PMC
Grimm, G. W. , & Renner, S. S. (2013). Harvesting Betulaceae sequences from GenBank to generate a new chronogram for the family. Botanical Journal of the Linnean Society, 172, 465–477. 10.1111/boj.12065 DOI
Herms, D. A. , & Mattson, W. J. (1992). The dilemma of plants: To grow or defend. Quarterly Review of Biology, 67, 283–335. 10.1086/417659 DOI
Hernández‐Vera, G. , Toševski, I. , Caldara, R. , & Emerson, B. C. (2019). Evolution of host plant use and diversification in a species complex of parasitic weevils (Coleoptera: Curculionidae). PeerJ, 7, e6625. 10.7717/peerj.6625 PubMed DOI PMC
Hrcek, J. , Miller, S. E. , Whitfield, J. B. , Shima, H. , & Novotny, V. (2013). Parasitism rate, parasitoid community composition and host specificity on exposed and semi‐concealed caterpillars from a tropical rainforest. Oecologia, 173, 521–532. 10.1007/s00442-013-2619-6 PubMed DOI
Isaac, N. J. B. , Turvey, S. T. , Collen, B. , Waterman, C. , & Baillie, J. E. M. (2007). Mammals on the EDGE: Conservation priorities based on threat and phylogeny. PLoS One, 2, e296. 10.1371/journal.pone.0000296 PubMed DOI PMC
Jactel, H. , & Brockerhoff, E. G. (2007). Tree diversity reduces herbivory by forest insects. Ecology Letters, 10, 835–848. 10.1111/j.1461-0248.2007.01073.x PubMed DOI
Janz, N. , & Nylin, S. (1998). Butterflies and plants: A phylogenetic study. Evolution, 52, 486–502. 10.1111/j.1558-5646.1998.tb01648.x PubMed DOI
Jombart, T. , Balloux, F. , & Dray, S. (2010). Adephylo: New tools for investigating the phylogenetic signal in biological traits. Bioinformatics, 26, 1907–1909. 10.1093/bioinformatics/btq292 PubMed DOI
Jorge, L. R. , Novotny, V. , Segar, S. T. , Weiblen, G. D. , Miller, S. E. , Basset, Y. , & Lewinsohn, T. M. (2017). Phylogenetic trophic specialization: A robust comparison of herbivorous guilds. Oecologia, 185, 551–559. 10.1007/s00442-017-3980-7 PubMed DOI
Jorge, L. R. , Prado, P. I. , Almeida‐Neto, M. , & Lewinsohn, T. M. (2014). An integrated framework to improve the concept of resource specialisation. Ecology Letters, 17, 1341–1350. 10.1111/ele.12347 PubMed DOI
Joy, J. B. , & Crespi, B. J. (2012). Island phytophagy: Explaining the remarkable diversity of plant‐feeding insects. Proceedings of the Royal Society B, 279, 3250–3255. 10.1098/rspb.2012.0397 PubMed DOI PMC
Kelly, C. K. , & Southwood, T. R. E. (1999). Species richness and resource availability: A phylogenetic analysis of insects associated with trees. Proceedings of the National Academy of Sciences of the United States of America, 96, 8013–8016. 10.1073/pnas.96.14.8013 PubMed DOI PMC
Kembel, S. W. , Cowan, P. D. , Helmus, M. R. , Cornwell, W. K. , Morlon, H. , Ackerly, D. D. , Blomberg, S. P. , & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463–1464. 10.1093/bioinformatics/btq166 PubMed DOI
Kennedy, C. E. , & Southwood, T. R. E. (1984). The number of species of insects associated with British trees: A re‐analysis. Journal of Animal Ecology, 53, 455–478. 10.2307/4528 DOI
Lämke, J. S. , & Unsicker, S. B. (2018). Phytochemical variation in treetops: Causes and consequences for tree‐insect herbivore interactions. Oecologia, 187, 377–388. 10.1007/s00442-018-4087-5 PubMed DOI PMC
Larose, C. , Rasmann, S. , & Schwander, T. (2019). Evolutionary dynamics of specialisation in herbivorous stick insects. Ecology Letters, 22, 354–364. 10.1111/ele.13197 PubMed DOI
Lavandero, B. , Labra, A. , Ramírez, C. C. , Niemeyer, H. M. , & Fuentes‐Contreras, E. (2009). Species richness of herbivorous insects on Nothofagus trees in South America and New Zealand: The importance of chemical attributes of the host. Basic and Applied Ecology, 10, 10–18. 10.1016/j.baae.2007.11.009 DOI
Le Corff, J. , & Marquis, R. J. (1999). Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecological Entomology, 24, 46–58. 10.1046/j.1365-2311.1999.00174.x DOI
Legendre, P. , & Fortin, M. J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources, 10, 831–844. 10.1111/j.1755-0998.2010.02866.x PubMed DOI
Lin, Y.‐P. , Cook, D. H. , Gulan, P. J. , & Cook, L. G. (2015). Does host‐plant diversity explain species richness in insects? A test using Coccidae (Hemiptera). Ecological Entomology, 40, 299–306. 10.1111/een.12191 DOI
Menken, S. B. J. , Boomsma, J. J. , & van Nieukerken, E. J. (2010). Large‐scale evolutionary patterns of host plant associations in the Lepidoptera. Evolution, 64, 1098–1119. 10.1111/j.1558-5646.2009.00889.x PubMed DOI
Mitter, C. , Davies, R. D. , & Cummings, M. P. (2017). Phylogeny and evolution of Lepidoptera. Annual Review of Entomology, 62, 265–283. 10.1146/annurev-ento-031616-035125 PubMed DOI
Morais, H. C. , Sujii, E. R. , Almeida‐Neto, M. , De‐Carvalho, P. S. , Hay, J. D. , & Diniz, I. R. (2011). Host plant specialization and species turnover of caterpillars among hosts in the Brazilian Cerrado. Biotropica, 43, 467–472. 10.1111/j.1744-7429.2010.00736.x DOI
Myers, J. H. , & Cory, J. S. (2013). Population cycles in forest Lepidoptera revisited. Annual Review of Ecology, Evolution, and Systematics, 44, 565–592. 10.1146/annurev-ecolsys-110512-135858 DOI
Neuvonen, S. , & Niemelä, P. (1981). Species richness of Macrolepidoptera on finnish deciduous trees and shrubs. Ecology, 51, 364–370. 10.1007/BF00540907 PubMed DOI
Nipperess, D. A. , Beattie, A. J. , Faith, D. P. , Ginn, S. G. , Kitching, R. L. , Reid, C. A. M. , Russell, T. , & Hughes, L. (2012). Plant phylogeny as a surrogate for turnover in beetle assemblages. Biodiversity and Conservation, 21, 323–342. 10.1007/s10531-011-0185-y DOI
Nylin, S. , Slove, J. , & Janz, N. (2014). Host plant utilization, host range oscillations and diversification in nymphalid butterflies: A phylogenetic investigation. Evolution, 68, 105–124. 10.1111/evo.12227 PubMed DOI PMC
Nyman, T. , Farrell, B. D. , Zinovjev, A. G. , & Vikberg, V. (2006). Larval habits, host‐plant associations, and speciation in nematine sawflies (Hymenoptera: Tenthredinidae). Evolution, 60, 1622–1637. 10.1111/j.0014-3820.2006.tb00507.x PubMed DOI
Ødegaard, F. , Diserud, O. H. , & Østbye, K. (2005). The importance of plant relatedness for host utilization among phytophagous insects. Ecology Letters, 8, 612–617. 10.1111/j.1461-0248.2005.00758.x DOI
Oksanen, J. , Blanchet, F. G. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. , Wagner, H. (2018) vegan: community ecology package. R package version 2.4‐6. https://CRAN.R‐project.org/package=vegan
Pearse, I. S. , & Altermatt, F. (2013). Predicting novel trophic interactions in a non‐native world. Ecology Letters, 16, 1088–1094. 10.1111/ele.12143 PubMed DOI
Pearse, I. S. , Harris, D. J. , Karban, R. , & Sih, A. (2013). Predicting novel herbivore‐plant interactions. Oikos, 122, 1554–1564. 10.1111/j.1600-0706.2013.00527.x DOI
Pearse, I. S. , & Hipp, A. L. (2009). Phylogenetic and trait similarity to a native species predict herbivory on non‐native oaks. Proceedings of the National Academy of Sciences of USA, 106, 18097–18102. 10.1073/pnas.0904867106 PubMed DOI PMC
Pearse, I. S. , & Karban, R. (2013). Leaf drop affects herbivory in oaks. Oecologia, 173, 925–932. 10.1007/s00442-013-2689-5 PubMed DOI
Pellissier, L. , Ndiribe, C. , Dubuis, A. , Pradervand, J.‐N. , Salamin, N. , Guisan, A. , & Rasmann, S. (2013). Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients. Ecology Letters, 16, 600–608. 10.1111/ele.12083 PubMed DOI
R Development Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R‐project.org
Ratnasingham, S. , & Hebert, P. D. N. (2013). A DNA‐based registry for all animal species: The barcode index number (BIN) system. PLoS One, 8, e66213. 10.1371/journal.pone.0066213 PubMed DOI PMC
Reynolds, L. V. , Ayres, M. P. , Siccama, T. G. , & Holmes, R. T. (2007). Climatic effects on caterpillar fluctuations in northern hardwood forests. Canadian Journal of Forest Research, 37, 481–491. 10.1139/x06-211 DOI
Rønsted, N. , Symonds, M. R. E. , Birkholm, T. , Christensen, S. , Meerow, A. W. , Molander, M. , Mølgaard, P. , Petersen, G. , Rasmussen, N. , van Staden, J. , Stafford, G. I. , & Jäger, A. K. (2012). Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of amaryllidaceae. BMC Evolutionary Biology, 12, 182. 10.1186/1471-2148-12-182 PubMed DOI PMC
Root, R. B. (1973). Organization of a plant‐arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecological Monographs, 43, 95–124. 10.2307/1942161 DOI
Sagers, C. L. (1992). Manipulation of host plant quality: Herbivores keep leaves in the dark. Functional Ecology, 6, 741–743. 10.2307/2389971 DOI
Scherrer, S. , Diniz, I. , & Morais, H. (2010). Climate and host plant characteristics effects on lepidopteran caterpillar abundance on Miconia ferruginata DC. and Miconia pohliana Cogn (Melastomataceae). Brazilian Journal of Biology, 70, 103–109. 10.1590/s1519-69842010000100014 PubMed DOI
Segarra‐Carmona, A. , & Barbosa, P. (1983). Nutrient content of four rosaceous hosts and their effects on development and fecundity of the eastern tent caterpillar, Malacosoma americanum (Fab.) (Lepidoptera: Lasiocampidae). Canadian Journal of Zoology, 61, 2868–2872. 10.1139/z83-374 DOI
Seifert, C. L. , Lamarre, G. P. A. , Volf, M. , Jorge, L. R. , Miller, S. E. , Wagner, D. L. , Anderson‐Teixeira, K. J. , & Novotný, V. (2020). Vertical stratification of a temperate forest caterpillar community in eastern North America. Oecologia, 192, 501–514. 10.1007/s00442-019-04584-w PubMed DOI
Šigut, M. , Šigutová, H. , Šipoš, J. , Pyszko, P. , Kotásková, N. , & Drozd, P. (2018). Vertical canopy gradient shaping the stratification of leaf‐chewer – parasitoid interactions in a temperate forest. Ecology and Evolution, 8, 7297–7311. 10.1002/ece3.4194 PubMed DOI PMC
Staab, M. , & Schuldt, A. (2020). The influence of tree diversity on natural enemies—a review of the “enemies” hypothesis in forests. Current Forestry Reports. 10.1007/s40725-020-00123-6 DOI
van Asch, M. , & Visser, M. E. (2007). Phenology of forest caterpillars and their host trees: The importance of synchrony. Annual Review of Entomology, 52, 37–55. 10.1146/annurev.ento.52.110405.091418 PubMed DOI
van Nieukerken, E. J. , Kaila, L. , Kitching, I. J. , Kristensen, N. P. , Lees, D. C. , Minet, J. , Zwick, A. (2011). Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.‐Q. (Ed.) Animal biodiversity: An outline of higher‐level classification and survey of taxonomic richness. Zootaxa, 3148(1), 212–221. 10.11646/zootaxa.3148.1.41 PubMed DOI
Vialatte, A. , Bailey, R. I. , Vasseur, C. , Matocq, A. , Gossner, M. M. , Everhart, D. , Vitrac, X. , Belhadj, A. , Ernoult, A. , & Prinzing, A. (2010). Phylogenetic isolation of host trees affects assembly of local Heteroptera communities. Proceedings of the Royal Society B., 277, 2227–2236. 10.1098/rspb.2010.0365 PubMed DOI PMC
Volf, M. , Klimeš, P. , Lamarre, G. P. A. , Redmond, C. M. , Seifert, C. L. , Abe, T. , Auga, J. , Anderson‐Teixeira, K. , Basset, Y. , Beckett, S. , Butterill, P. T. , Drozd, P. , Gonzalez‐Akre, E. , Kaman, O. , Kamata, N. , Laird‐Hopkins, B. , Libra, M. , Manumbor, M. , Miller, S. E. , … Novotny, V. (2019). Quantitative assessment of plant‐arthropod interactions in forest canopies: A plot‐based approach. PLoS One, 14, e0222119. 10.1371/journal.pone.0222119 PubMed DOI PMC
Volf, M. , Pyszko, P. , Abe, T. , Libra, M. , Kotásková, N. , Šigut, M. , Kumar, R. , Kaman, O. , Butterill, P. T. , Šipoš, J. , Abe, H. , Fukushima, H. , Drozd, P. , Kamata, N. , Murakami, M. , & Novotny, V. (2017). Phylogenetic composition of host plant communities drives plant‐herbivore food web structure. Journal of Animal Ecology, 86, 556–565. 10.1111/1365-2656.12646 PubMed DOI
Wang, M.‐Q. , Li, Y. I. , Chesters, D. , Bruelheide, H. , Ma, K. , Guo, P.‐F. , Zhou, Q.‐S. , Staab, M. , Zhu, C.‐D. , & Schuldt, A. (2020). Host functional and phylogenetic composition rather than host diversity structure plant–herbivore networks. Molecular Ecology, 29, 2747–2762. 10.1111/mec.15518 PubMed DOI
War, A. R. , Taggar, G. K. , Hussain, B. , Taggar, M. S. , Nair, R. M. , & Sharma, H. C. (2018). Plant defence against herbivory and insect adaptations. AoB Plants, 10, 1–19. 10.1093/aobpla/ply037 DOI
Wardhaugh, C. W. (2014). The spatial and temporal distributions of arthropods in forest canopies: Uniting disparate patterns with hypotheses for specialisation. Biological Reviews, 89, 1021–1041. 10.1111/brv.12094 PubMed DOI
Webb, C. O. , & Donoghue, M. J. (2005). Phylomatic: Tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181–183. 10.1111/j.1471-8286.2004.00829.x DOI
Weiblen, G. D. , Webb, C. O. , Novotny, V. , Basset, Y. , & Miller, S. E. (2006). Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology, 87, S62–75. 10.1890/0012-9658(2006)87[62:PDOHUI]2.0.CO;2 PubMed DOI
Wetzel, W. C. , Kharouba, H. M. , Robinson, M. , Holyoak, M. , & Karban, R. (2016). Variability in plant nutrients reduces insect herbivore performance. Nature, 539, 425–427. 10.1038/nature20140 PubMed DOI
Whitfeld, T. J. S. , Novotny, V. , Miller, S. E. , Hrcek, J. , Klimes, P. , & Weiblen, G. D. (2012). Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology, 93, S211–S222. 10.1890/11-0503.1 DOI
Winkler, I. , & Mitter, C. (2008). The phylogenetic dimension of insect‐plant interactions: a review of recent evidence. In Tilmon K. (Ed.), Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (pp. 240–264). University of California Press. Retrieved from http://www.jstor.org/stable/10.1525/j.ctt1pnq3k.22 DOI
Yang, X.‐Y. , Wang, Z.‐F. , Luo, W.‐C. , Guo, X.‐Y. , Zhang, C.‐H. , Liu, J.‐Q. , & Ren, G.‐P. (2019). Plastomes of Betulaceae and phylogenetic implications. Journal of Systematics and Evolution, 57, 508–518. 10.1111/jse.12479 DOI
Yguel, B. , Bailey, R. , Tosh, N. D. , Vialatte, A. , Vasseur, C. , Vitrac, X. , Jean, F. , & Prinzing, A. (2011). Phytophagy on phylogenetically isolated trees: Why hosts should escape their relatives. Ecology Letters, 14, 1117–1124. 10.1111/j.1461-0248.2011.01680.x PubMed DOI
Zanuncio, J. C. , Guedes, R. N. C. , Zanuncio, T. V. , & Fabres, A. S. (2001). Species richness and abundance of defoliating Lepidoptera associated with Eucalyptus grandis in Brazil and their response to plant age. Austral Ecology, 26, 582–589. 10.1046/j.1442-9993.2001.01126.x DOI
Dryad
10.5061/dryad.dv41ns1w6