Vertical stratification and defensive traits of caterpillars against parasitoids in a lowland tropical forest in Cameroon
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
669609
European Research Council - International
PubMed
38613574
PubMed Central
PMC11062930
DOI
10.1007/s00442-024-05542-x
PII: 10.1007/s00442-024-05542-x
Knihovny.cz E-zdroje
- Klíčová slova
- Diversity, Lepidoptera, Parasitoid, Specialisation, Vertical forest gradient,
- MeSH
- býložravci MeSH
- interakce hostitele a parazita MeSH
- larva * MeSH
- lesy * MeSH
- tropické klima MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Kamerun MeSH
Insect herbivores and their parasitoids play a crucial role in terrestrial trophic interactions in tropical forests. These interactions occur across the entire vertical gradient of the forest. This study compares how caterpillar communities, and their parasitism rates, vary across vertical strata and between caterpillar defensive strategies in a semi deciduous tropical forest in Nditam, Cameroon. Within a 0.1 ha plot, all trees with a diameter at breast height (DBH) ≥ 5 cm were felled and systematically searched for caterpillars. We divided the entire vertical gradient of the forest into eight, five-metre strata. All caterpillars were assigned to a stratum based on their collection height, reared, identified, and classified into one of three defensive traits: aposematic, cryptic and shelter-building. Caterpillar species richness and diversity showed a midstory peak, whereas density followed the opposite pattern, decreasing in the midstory and then increasing towards the highest strata. This trend was driven by some highly dense shelter-building caterpillars in the upper canopy. Specialisation indices indicated decreasing levels of caterpillar generality with increasing height, a midstory peak in vulnerability, and increasing connectance towards the upper canopy, although the latter was likely driven by decreasing network size. Both aposematic and shelter-building caterpillars had significantly higher parasitism rates than cryptic caterpillars. Our results highlight nuanced changes in caterpillar communities across forest strata and provide evidence that defences strategies are important indicators of parasitism rates in caterpillars and that both aposematic and shelter-building caterpillars could be considered a "safe haven" for parasitoids.
Department of Biology Faculty of Science Chiba University Chiba 263 8522 Japan
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Smithsonian Tropical Research Institute Apartado Balboa 0843 03092 Ancon Panama
Zobrazit více v PubMed
Abarca M, Boege K. Fitness costs and benefits of shelter building and leaf trenching behaviour in a pyralid caterpillar. Ecol Entomol. 2011;36:564–573. doi: 10.1111/j.1365-2311.2011.01299.x. DOI
Ashton LA, Nakamura A, Basset Y, et al. Vertical stratification of moths across elevation and latitude. J Biogeogr. 2016;43:59–69. doi: 10.1111/jbi.12616. DOI
Aslam M, Nedvěd O, Sam K. Attacks by predators on artificial cryptic and aposematic insect larvae. Entomol Exp Appl. 2020;168:184–190. doi: 10.1111/eea.12877. DOI
Baer CS, Marquis RJ. Between predators and parasitoids: complex interactions among shelter traits, predation and parasitism in a shelter-building caterpillar community. Funct Ecol. 2020;34:2186–2198. doi: 10.1111/1365-2435.13641. DOI
Banašek-Richter C, Cattin M-F, Bersier L-F. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J Theor Biol. 2004;226:23–32. doi: 10.1016/S0022-5193(03)00305-9. PubMed DOI
Basset Y. Invertebrates in the canopy of tropical rain forests How much do we really know? In: Linsenmair KE, Davis AJ, Fiala B, Speight MR, editors. Tropical forest canopies: ecology and management. Dordrecht: Springer; 2001. pp. 87–107.
Basset Y, Hammond PM, Barrios H, et al. Vertical stratification of arthropod assemblages. Arthropods of tropical forests. Cambridge: Cambridge University Press; 2003.
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2014 doi: 10.18637/jss.v067.i01. DOI
Beck J, Holloway JD, Schwanghart W. Undersampling and the measurement of beta diversity. Methods Ecol Evol. 2013;4:370–382. doi: 10.1111/2041-210x.12023. DOI
Blüthgen N, Menzel F, Blüthgen N. Measuring specialization in species interaction networks. BMC Ecol. 2006;6:9. doi: 10.1186/1472-6785-6-9. PubMed DOI PMC
Bolker B (2017) Package ‘bbmle’. Tools for general maximum likelihood estimation. Tools for general maximum likelihood estimation. p 641
Brehm G. Contrasting patterns of vertical stratification in two moth families in a Costa Rican lowland rain forest. Basic Appl Ecol. 2007;8:44–54. doi: 10.1016/j.baae.2006.02.002. DOI
Caro T, Ruxton G. Aposematism: unpacking the defences. Trends Ecol Evol. 2019;34:595–604. doi: 10.1016/j.tree.2019.02.015. PubMed DOI
Chaij J, Devoto M, Oleiro M, et al. Complexity of leaf miner–parasitoid food webs declines with canopy height in P atagonian beech forests. Ecol Entomol. 2016;41:599–610. doi: 10.1111/een.12332. DOI
Chao A, Jost L. Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol Evol. 2015;6:873–882. doi: 10.1111/2041-210X.12349. DOI
Chen JM, Menges CH, Leblanc SG. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens Environ. 2005;97:447–457. doi: 10.1016/j.rse.2005.05.003. DOI
Chen W, Vasseur L, You M, et al. Parasitised caterpillars suffer reduced predation: potential implications for intra-guild predation. Sci Rep. 2017;7:42636. doi: 10.1038/srep42636. PubMed DOI PMC
Chmel K, Riegert J, Paul L, Novotný V. Vertical stratification of an avian community in New Guinean tropical rainforest. Popul Ecol. 2016;58:535–547. doi: 10.1007/s10144-016-0561-2. DOI
Coelho MS, Carneiro MAA, Branco CA, et al. Species turnover drives β-diversity patterns across multiple spatial scales of plant-galling interactions in mountaintop grasslands. PLoS ONE. 2018;13:e0195565. doi: 10.1371/journal.pone.0195565. PubMed DOI PMC
Coley PD, Barone JA. Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst. 1996;27:305–335. doi: 10.1146/annurev.ecolsys.27.1.305. DOI
Colwell R, Mao CX, Chang J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology. 2004;85:2717–2727. doi: 10.1890/03-0557. DOI
Corff JL, Marquis RJ. Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecol Entomol. 1999;24:46–58. doi: 10.1046/j.1365-2311.1999.00174.x. DOI
Covarrubias-Camarillo T, Osorio-Beristain M, Legal L, Contreras-Garduño J. Baronia brevicornis caterpillars build shelters to avoid predation. J Nat Hist. 2016;50:2299–2310. doi: 10.1080/00222933.2016.1193640. DOI
de Smedt P, Vangansbeke P, Bracke R, et al. Vertical stratification of moth communities in a deciduous forest in Belgium. Insect Conserv Divers. 2019;12:121–130. doi: 10.1111/icad.12320. DOI
de Souza Amorim AD, Brown BV, Boscolo D, et al. Vertical stratification of insect abundance and species richness in an Amazonian tropical forest. Sci Rep. 2022;12:1734. doi: 10.1038/s41598-022-05677-y. PubMed DOI PMC
Delabye S, Rougerie R, Bayendi S, et al. Characterization and comparison of poorly known moth communities through DNA barcoding in two Afrotropical environments in Gabon. Genome. 2019;62:96–107. doi: 10.1139/gen-2018-0063. PubMed DOI
Dormann CF, Fründ J, Blüthgen N, Gruber B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J. 2009;2:7. doi: 10.2174/1874213000902010007. DOI
Dyer LA, Gentry G. Predicting natural-enemy responses to herbivores in natural and managed systems. Ecol Appl. 1999;9:402–408. doi: 10.1890/1051-0761(1999)009[0402:PNERTH]2.0.CO;2. DOI
Exnerová A, Ježová D, Štys P, et al. Different reactions to aposematic prey in 2 geographically distant populations of great tits. Behav Ecol. 2015;26:1361–1370. doi: 10.1093/beheco/arv086. DOI
Frago E. Interactions between parasitoids and higher order natural enemies: intraguild predation and hyperparasitoids. Curr Opin Insect Sci. 2016;14:81–86. doi: 10.1016/j.cois.2016.02.005. PubMed DOI
Gentry GL, Dyer LA. On the conditional nature of neotropical caterpillar defenses against their natural enemies. Ecology. 2002;83:3108–3119. doi: 10.1890/0012-9658(2002)083[3108:OTCNON]2.0.CO;2. DOI
Godfray HCJ. Parasitoids: behavioral and evolutionary ecology. Princeton: Princeton University Press; 1994.
Greeney HF, Dyer LA, Smilanich AM. Feeding by lepidopteran larvae is dangerous: a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebr Surviv J. 2012;9:7–34.
Hausmann A, Diller J, Moriniere J, et al. DNA barcoding of fogged caterpillars in Peru: a novel approach for unveiling host-plant relationships of tropical moths (Insecta, Lepidoptera) PLoS ONE. 2020;15:e0224188. doi: 10.1371/journal.pone.0224188. PubMed DOI PMC
Hawkins BA. Pattern and process in host-parasitoid interactions. Cambridge: Cambridge University Press; 1994.
Hirao T, Murakami M, Kashizaki A. Importance of the understory stratum to entomofaunal diversity in a temperate deciduous forest. Ecol Res. 2009;24:263–272. doi: 10.1007/s11284-008-0502-4. DOI
Horn HS. Measurement of “overlap” in comparative ecological studies. Am Nat. 1966;100:419–424. doi: 10.1086/282436. DOI
Houska Tahadlova M, Mottl O, Jorge LR, et al. Trophic cascades in tropical rainforests: effects of vertebrate predator exclusion on arthropods and plants in Papua New Guinea. Biotropica. 2023;55:70–80. doi: 10.1111/btp.13160. DOI
Hrcek J, Miller SE, Whitfield JB, et al. Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest. Oecologia. 2013;173:521–532. doi: 10.1007/s00442-013-2619-6. PubMed DOI
Hsieh TC, Ma KH, Chao A, Hsieh MT (2016) Package ‘iNEXT’. interpolation and extrapolation for species diversity. https://www.chao/stat/nthu/edu/tw/blog/software-download/. Accessed 28 Feb 2017.
Intachat J, Holloway JD. Is there stratification in diversity or preferred flight height of geometroid moths in Malaysian lowland tropical forest? Biodivers Conserv. 2000;9:1417–1439. doi: 10.1023/A:1008926814229. DOI
Interian-Aguiñaga J, Parra-Tabla V, Abdala-Roberts L. Effects of topical tree diversity and prey spatial distribution on predation by birds and arthropods. Arthropod Plant Interact. 2022;16:449–457. doi: 10.1007/s11829-022-09908-x. DOI
Kuznetsova A, Brockhoff PB, Christensen RH. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI
Lampert EC, Dyer LA, Bowers MD. Caterpillar chemical defense and parasitoid success: cotesia congregata parasitism of ceratomia catalpae. J Chem Ecol. 2010;36:992–998. doi: 10.1007/s10886-010-9840-0. PubMed DOI
Leles B, Xiao X, Pasion BO, et al. Does plant diversity increase top–down control of herbivorous insects in tropical forest? Oikos. 2017;126:1142–1149. doi: 10.1111/oik.03562. DOI
Lenth RV (2023) emmeans: estimated marginal means, aka least-squares means
Lill JT, Marquis RJ, Ricklefs RE. Host plants influence parasitism of forest caterpillars. Nature. 2002;417:170–173. doi: 10.1038/417170a. PubMed DOI
Lim GS, Balke M, Meier R. Determining species boundaries in a world full of rarity: singletons, species delimitation methods. Syst Biol. 2012;61:165–169. doi: 10.1093/sysbio/syr030. PubMed DOI
Mäntylä E, Klemola T, Laaksonen T. Birds help plants: a meta-analysis of top-down trophic cascades caused by avian predators. Oecologia. 2011;165:143–151. doi: 10.1007/s00442-010-1774-2. PubMed DOI
Menken SB, Boomsma JJ, Van Nieukerken EJ. Large-scale evolutionary patterns of host plant associations in the Lepidoptera. Evolution. 2010;64:1098–1119. doi: 10.1111/j.1558-5646.2009.00889.x. PubMed DOI
Mitter C, Davis DR, Cummings MP. Phylogeny and evolution of lepidoptera. Annu Rev Entomol. 2017;62:265–283. doi: 10.1146/annurev-ento-031616-035125. PubMed DOI
Moffett MW. Comparative canopy biology and the structure of ecosystems. In: Lowman M, Devy S, Ganesh T, editors. Treetops at risk. New York: Springer; 2013. pp. 13–54.
Molleman F, Walczak U, Melosik I, et al. What drives caterpillar guilds on a tree: enemy pressure, leaf or tree growth, genetic traits, or phylogenetic neighbourhood? InSects. 2022;13:367. doi: 10.3390/insects13040367. PubMed DOI PMC
Morisita M. Measuring of interspecific association and similarity between assemblages. Mem Fac Sci Kyushu Univ Ser E Biol. 1959;3:65–80.
Murakami M, Yoshida K, Hara H, Toda MJ. Spatio-temporal variation in Lepidopteran larval assemblages associated with oak, Quercus crispula: the importance of leaf quality. Ecol Entomol. 2005;30:521–531. doi: 10.1111/j.0307-6946.2005.00724.x. DOI
Murdoch WW, Stewart-Oaten A. Aggregation by parasitoids and predators: effects on equilibrium and stability. Am Nat. 1989;134:288–310. doi: 10.1086/284981. DOI
Nakamura A, Kitching RL, Cao M, et al. Forests and their canopies: achievements and horizons in canopy science. Trends Ecol Evol. 2017;32:438–451. doi: 10.1016/j.tree.2017.02.020. PubMed DOI
Oksanen J (2010) Vegan: community ecology package. https://www.vegan/r-forge/r-project.org/. Accessed 6 Nov 2023
Parker GG, Brown MJ. Forest canopy stratification—is it useful? Am Nat. 2000;155:473–484. doi: 10.1086/303340. PubMed DOI
Pellissier L, Albouy C, Bascompte J, et al. Comparing species interaction networks along environmental gradients. Biol Rev. 2018;93:785–800. doi: 10.1111/brv.12366. PubMed DOI
Pontes Ribeiro S, Basset Y. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophylly. Ecography. 2007;30:663–672. doi: 10.1111/j.2007.0906-7590.05083.x. DOI
Posa MRC, Sodhi NS, Koh LP. Predation on artificial nests and caterpillar models across a disturbance gradient in Subic Bay, Philippines. J Trop Ecol. 2007;23:27–33. doi: 10.1017/S0266467406003671. DOI
R Development Core Team . R: a language and environment for statistical computing. Vienna: Austria; 2022.
Rasband WS (2011) Imagej, us national institutes of health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/
Ratnasingham S, Hebert PD. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE. 2013;8:e66213. doi: 10.1371/journal.pone.0066213. PubMed DOI PMC
Sam K, Koane B, Sam L, et al. Insect herbivory and herbivores of Ficus species along a rain forest elevational gradient in Papua New Guinea. Biotropica. 2020;52:263–276. doi: 10.1111/btp.12741. DOI
Schowalter T, Chao J-T. Canopy insect sampling. In: Santos JC, Fernandes GW, editors. Measuring Arthropod Biodiversity. Cham: Springer International Publishing; 2021. pp. 467–493.
Schulze CH, Linsenmair KE, Fiedler K. Understorey versus canopy: patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. In: Linsenmair KE, Davis AJ, Fiala B, Speight MR, editors. Tropical forest canopies: ecology and management. Netherlands: Springer; 2001. pp. 133–152.
Seifert CL, Lamarre GPA, Volf M, et al. Vertical stratification of a temperate forest caterpillar community in eastern North America. Oecologia. 2020;192:501–514. doi: 10.1007/s00442-019-04584-w. PubMed DOI
Seifert CL, Volf M, Jorge LR, et al. Plant phylogeny drives arboreal caterpillar assemblages across the Holarctic. Ecol Evol. 2020;10:14137–14151. doi: 10.1002/ece3.7005. PubMed DOI PMC
Šigut M, Šigutová H, Šipoš J, et al. Vertical canopy gradient shaping the stratification of leaf-chewer–parasitoid interactions in a temperate forest. Ecol Evol. 2018;8:7297–7311. doi: 10.1002/ece3.4194. PubMed DOI PMC
Singer MS, Clark RE, Lichter-Marck IH, et al. Predatory birds and ants partition caterpillar prey by body size and diet breadth. J Anim Ecol. 2017;86:1363–1371. doi: 10.1111/1365-2656.12727. PubMed DOI
Slinn HL, Richards LA, Dyer LA, et al. Across multiple species, phytochemical diversity and herbivore diet breadth have cascading effects on herbivore immunity and parasitism in a tropical model system. Front Plant Sci. 2018;9:357904. doi: 10.3389/fpls.2018.00656. PubMed DOI PMC
Smilanich AM, Dyer LA, Chambers JQ, Bowers MD. Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol Lett. 2009;12:612–621. doi: 10.1111/j.1461-0248.2009.01309.x. PubMed DOI
Stork NE, Grimbacher PS. Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proc R Soc B. 2006;273:1969–1975. doi: 10.1098/rspb.2006.3521. PubMed DOI PMC
Tvardikova K, Novotny V. Predation on exposed and leaf-rolling artificial caterpillars in tropical forests of Papua New Guinea. J Trop Ecol. 2012;28:331–341. doi: 10.1017/S0266467412000235. DOI
Ulyshen M. Arthropod vertical stratification in temperate deciduous forests: implications for conservation-oriented management. Fuel Energy Abstr. 2011;261:1479–1489. doi: 10.1016/j.foreco.2011.01.033. DOI
Vázquez DP, Melián CJ, Williams NM, et al. Species abundance and asymmetric interaction strength in ecological networks. Oikos. 2007;116:1120–1127. doi: 10.1111/j.0030-1299.2007.15828.x. DOI
Volf M, Klimeš P, Lamarre GP, et al. Quantitative assessment of plant-arthropod interactions in forest canopies: a plot-based approach. PLoS ONE. 2019;14:e0222119. doi: 10.1371/journal.pone.0222119. PubMed DOI PMC
Vosteen I, Bianchi FJJA, Poelman EH. Adverse weather conditions impede odor-guided foraging of parasitoids and reduce their host-finding success. Agr Ecosyst Environ. 2020;301:107066. doi: 10.1016/j.agee.2020.107066. DOI
Walcroft AS, Brown KJ, Schuster WSF, et al. Radiative transfer and carbon assimilation in relation to canopy architecture, foliage area distribution and clumping in a mature temperate rainforest canopy in New Zealand. Agric for Meteorol. 2005;135:326–339. doi: 10.1016/j.agrformet.2005.12.010. DOI
Wardhaugh CW. The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation: drivers of insect distribution patterns. Biol Rev. 2014;89:1021–1041. doi: 10.1111/brv.12094. PubMed DOI
Wilson JJ. DNA Barcodes for Insects. In: Kress WJ, Erickson DL, editors. DNA barcodes. Totowa: Humana Press; 2012. pp. 17–46.
Yamazaki K. Leaf mines as visual defensive signals to herbivores. Oikos. 2010 doi: 10.1111/j.1600-0706.2010.18300.x. DOI