Vertical canopy gradient shaping the stratification of leaf-chewer-parasitoid interactions in a temperate forest
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30151150
PubMed Central
PMC6106176
DOI
10.1002/ece3.4194
PII: ECE34194
Knihovny.cz E-zdroje
- Klíčová slova
- herbivore–parasitoid interactions, host specificity, parasitism rate, quantitative food webs, temperate forest canopy, vertical stratification,
- Publikační typ
- časopisecké články MeSH
Knowledge about herbivores and their parasitoids in forest canopies remains limited, despite their diversity and ecological importance. Thus, it is important to understand the factors that shape the herbivore-parasitoid community structure, particularly the effect of vertical gradient. We investigated a quantitative community dataset of exposed and semiconcealed leaf-chewing larvae and their parasitoids along a vertical canopy gradient in a temperate forest. We sampled target insects using an elevated work platform in a 0.2 ha broadleaf deciduous forest plot in the Czech Republic. We analyzed the effect of vertical position among three canopy levels (first [lowest], second [middle], and third [highest]) and tree species on community descriptors (density, diversity, and parasitism rate) and food web structure. We also analyzed vertical patterns in density and parasitism rate between exposed and semiconcealed hosts, and the vertical preference of the most abundant parasitoid taxa in relation to their host specificity. Tree species was an important determinant of all community descriptors and food web structure. Insect density and diversity varied with the vertical gradient, but was only significant for hosts. Both host guilds were most abundant in the second level, but only the density of exposed hosts declined in the third level. Parasitism rate decreased from the first to third level. The overall parasitism rate did not differ between guilds, but semiconcealed hosts suffered lower parasitism in the third level. Less host-specific taxa (Ichneumonidae, Braconidae) operated more frequently lower in the canopy, whereas more host-specific Tachinidae followed their host distribution. The most host-specific Chalcidoidea preferred the third level. Vertical stratification of insect density, diversity, and parasitism rate was most pronounced in the tallest tree species. Therefore, our study contradicts the general paradigm of weak arthropod stratification in temperate forest canopies. However, in the network structure, vertical variation might be superseded by variation among tree species.
Department of Biology and Ecology University of Ostrava Ostrava Czech Republic
Department of Vegetation Ecology Institute of Botany CAS Brno Czech Republic
Institute of Environmental Technologies University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Almeida‐Neto, M. , & Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software, 26, 173–178. 10.1016/j.envsoft.2010.08.003 DOI
Basset, Y. , Corbara, B. , Barrios, H. , Cuénoud, P. , Leponce, M. , Aberlenc, H.‐P. , … Winchester, N. N. (2007). BISCA‐Panama, a large‐scale study of arthropod beta‐diversity and vertical stratification in a lowland rainforest: Rationale, study sites and field protocols. Bulletin de l’ Institut Royal des Sciences Naturelles de Belgique: Entomologie, 77, 39–69.
Basset, Y. , Hammond, P. M. , Barrios, H. , Holloway, J. D. , & Miller, S. E. (2003). Vertical stratification of arthropod assemblages In Basset Y., Novotny V., Miller S. E., & Kitching R. L. (Eds.), Arthropods of tropical forests: Spatio‐temporal dynamics and resource use in the canopy (pp. 17–27). Cambridge, UK: Cambridge University Press.
Basset, Y. , Horlyck, V. , & Wright, J. (eds). (2003) Studying forest canopies from above: The International Canopy Crane Network. Balboa, Panama: Smithsonian Tropical Research Institute, Ancon.
Basset, Y. , Novotny, V. , Miller, S. E. , & Pyle, R. (2000). Quantifying biodiversity: Experience with parataxonomists and digital photography in Papua New Guinea and Guyana. BioScience, 50, 899–908. 10.1641/0006-3568(2000)050[0899:QBEWPA]2.0.CO;2 DOI
Bates, D. , Maechler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 1–48.
Bray, J. R. , & Curtis, J. T. (1957). An ordination of upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325–349. 10.2307/1942268 DOI
Chaij, J. , Devoto, M. , Oleiro, M. , Chaneton, E. J. , & Mazía, N. (2016). Complexity of leaf miner‐parasitoid food webs declines with canopy height in Patagonian beech forests. Ecological Entomology, 41, 599–610. 10.1111/een.12332 DOI
Chao, A. , Gotelli, N. J. , Hsieh, T. C. , Sander, E. L. , Ma, K. H. , Colwell, R. K. , & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45–67. 10.1890/13-0133.1 DOI
Compton, S. G. , Ellwood, M. D. , Davis, A. J. , & Welch, K. (2000). The flight heights of chalcid wasps (Hymenoptera, Chalcidoidea) in a Lowland Bornean rain forest: Fig wasps are the high fliers. Biotropica, 32, 515–522. 10.1111/j.1744-7429.2000.tb00497.x DOI
deWaard, J. R. , Ivanova, N. V. , Hajibabaei, M. , & Hebert, P. (2008). Assembling DNA barcodes: Analytical protocols In Martin C. (Ed.), Methods in molecular biology: Environmental genetics (pp. 275–293). Totowa, NJ: Humana Press Inc.. PubMed
Dormann, C. F. , Fründ, J. , Blüthgen, N. , & Gruber, B. (2009). Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7–24. 10.2174/1874213000902010007 DOI
Dormann, C. F. , & Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5, 90–98. 10.1111/2041-210X.12139 DOI
Dunne, J. A. (2006). The network structure of food webs In Pascual M. & Dunne J. A. (Eds.), Ecological networks: Linking structure to dynamics in food webs (pp. 27–86). Oxford, UK: Oxford University Press.
Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10. 10.1016/0006-3207(92)91201-3 DOI
Fernandes, G. W. , & Price, P. W. (1992). The adaptive significance of insect gall distribution: Survivorship of species in xeric and mesic habitats. Oecologia, 90, 14–20. 10.1007/BF00317803 PubMed DOI
Forsse, E. , Smith, S. M. , & Bourchier, R. S. (1992). Flight initiation in the egg parasitoid Trichogramma minutum: Effects of ambient temperature, mates, food, and host eggs. Entomologia Experimentalis et Applicata, 62, 147–154. 10.1111/j.1570-7458.1992.tb00654.x DOI
Fowler, S. V. (1985). Differences in insect species richness and faunal composition of birch seedlings, saplings and trees: The importance of plant architecture. Ecological Entomology, 10, 159–169. 10.1111/j.1365-2311.1985.tb00545.x DOI
Gentry, G. L. , & Dyer, L. A. (2002). On the conditional nature of neotropical caterpillar defenses against their natural enemies. Ecology, 83, 3108–3119. 10.1890/0012-9658(2002)083[3108:OTCNON]2.0.CO;2 DOI
Godfray, H. C. J. (1994). Parasitoids: Behavioral and evolutionary ecology. Oxford, UK: Princeton University Press.
Heimpel, G. E. , Mangel, M. , & Rosenheim, J. A. (1998). Effects of time limitation and egg limitation on lifetime reproductive success of a parasitoid in the field. The American Naturalist, 152, 273–289. 10.1086/286167 PubMed DOI
Hirao, T. , Murakami, M. , & Kashizaki, A. (2009). Importance of the understory stratum to entomofaunal diversity in a temperate deciduous forest. Ecological Research, 24, 263–272. 10.1007/s11284-008-0502-4 DOI
Hollander, M. , & Wolfe, D. A. (1973). Nonparametric statistical methods. New York, NY: Wiley.
Hrcek, J. , Miller, S. E. , Quicke, D. L. J. , & Smith, M. A. (2011). Molecular detection of trophic links in a complex insect host‐parasitoid food web. Molecular Ecology Resources, 11, 786–794. 10.1111/j.1755-0998.2011.03016.x PubMed DOI
Hrcek, J. , Miller, S. E. , Whitfield, J. B. , Shima, H. , & Novotny, V. (2013). Parasitism rate, parasitoid community composition and host specificity on exposed and semi‐concealed caterpillars from a tropical rainforest. Oecologia, 173, 521–532. 10.1007/s00442-013-2619-6 PubMed DOI
Hsieh, T. C. , Ma, K. H. , & Chao, A. (2016). iNEXT: iNterpolation and EXTrapolation for species diversity. R Package Version 2.0.12. Retrieved from http://chao.stat.nthu.edu.tw/blog/software-download/
Ivanova, N. V. , deWaard, J. R. , & Hebert, P. D. N. (2006). An inexpensive, automation‐friendly protocol for recovering high‐quality DNA. Molecular Ecology Notes, 6, 998–1002. 10.1111/j.1471-8286.2006.01428.x DOI
Katoh, K. , & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kembel, S. W. , Cowan, P. D. , Helmus, M. R. , Cornwell, W. K. , Morlon, H. , Ackerly, D. D. , … Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463–1464. 10.1093/bioinformatics/btq166 PubMed DOI
Le Corff, J. , & Marquis, R. J. (1999). Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecological Entomology, 24, 46–48. 10.1046/j.1365-2311.1999.00174.x DOI
Le Corff, J. , Marquis, R. J. , & Whitfield, J. B. (2000). Temporal and spatial variation in a parasitoid community associated with the herbivores that feed on Missouri Quercus. Environmental Entomology, 29, 181–194. 10.1093/ee/29.2.181 DOI
Leppänen, S. A. , Altenhofer, E. , Liston, A. D. , & Nyman, T. (2012). Ecological versus phylogenetic determinants of trophic associations in a plant–leafminer–parasitoid food web. Evolution, 67, 1493–1502. PubMed
Lewinsohn, T. M. , & Roslin, T. (2008). Four ways towards tropical herbivore megadiversity. Ecology Letters, 11, 398–416. 10.1111/j.1461-0248.2008.01155.x PubMed DOI
Lill, J. T. , Marquis, R. J. , & Ricklefs, R. E. (2002). Host plants influence parasitism of forest caterpillars. Nature, 417, 170–173. 10.1038/417170a PubMed DOI
Lowman, M. , Taylor, P. , & Block, N. (1993). Vertical stratification of small mammals and insects in the canopy of a temperate deciduous forest: A reversal of tropical forest distribution? Selbyana, 14, 25.
Memmott, J. , & Godfray, H. C. J. (1994). The use and construction of parasitoid webs In Hawkins B. A. & Sheenan W. (Eds.), Parasitoid community ecology (pp. 300–318). Oxford, UK: Oxford University Press.
Moran, V. C. , & Southwood, T. R. E. (1982). The guild composition of arthropod communities in trees. The Journal of Animal Ecology, 51, 289 10.2307/4325 DOI
Morris, R. J. , Gripenberg, S. , Lewis, O. T. , & Roslin, T. (2014). Antagonistic interaction networks are structured independently of latitude and host guild. Ecology Letters, 17, 340–349. 10.1111/ele.12235 PubMed DOI PMC
Morris, R. J. , Sinclair, F. H. , & Burwell, C. J. (2015). Food web structure changes with elevation but not rainforest stratum. Ecography, 38, 792–802. 10.1111/ecog.01078 DOI
Murakami, M. , Hirao, T. , & Ichie, T. (2007). Comparison of lepidopteran larval communities among tree species in a temperate deciduous forest, Japan. Ecological Entomology, 32, 613–620. 10.1111/j.1365-2311.2007.00917.x DOI
Murdoch, W. W. , & Stewart‐Oaten, A. (1989). Aggregation by parasitoids and predators: Effects on equilibrium and stability. The American Naturalist, 134, 288–310. 10.1086/284981 DOI
Newcombe, R. G. (1998). Interval estimation for the difference between independent proportions: Comparison of eleven methods. Statistics in Medicine, 17, 873–890. 10.1002/(ISSN)1097-0258 PubMed DOI
Novotny, V. , & Basset, Y. (2005). Host specificity of insect herbivores in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 272, 1083–1090. 10.1098/rspb.2004.3023 PubMed DOI PMC
Novotny, V. , Drozd, P. , Miller, S. E. , Kulfan, M. , Janda, M. , Basset, Y. , & Weiblen, G. D. (2006). Why are there so many species of herbivorous insects in tropical rainforests? Science, 313, 1115–1118. 10.1126/science.1129237 PubMed DOI
Oksanen, J. , Blanchet, F. G. , & Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. , … Wagner, H. (2016). Vegan: Community ecology package. R package version 2.4‐1. Retrieved from https://CRAN.R-project.org/package=vegan
Olson, D. M. (1992). Rates of predation by ants (Hymenoptera: Formicidae) in the canopy, understory, leaf litter, and edge habitats of a lowland rainforest in Southwestern Cameroon In Hallé F. & Pascal O. (Eds.), Biologie d'une canopée de forêt équatoriale. 11. Rapport de Mission: radeau des cimes octobre novembre 1991, Réserve de Campo, Cameroun (pp. 101–109). Paris, France: Foundation Elf.
Paniagua, M. R. , Medianero, E. , & Lewis, O. T. (2009). Structure and vertical stratification of plant galler‐parasitoid food webs in two tropical forests. Ecological Entomology, 34, 310–320. 10.1111/j.1365-2311.2008.01079.x DOI
Parker, G. G. (1995). Structure and microclimate of forest canopies In Lowman M. D., & Nadkarni N. M. (Eds.), Forest canopies: A review of research on a biological frontier (pp. 73–106). San Diego, CA: Academic Press.
Pillai, P. , Gonzalez, A. , & Loreau, M. (2011). Metacommunity theory explains the emergence of food web complexity. Proceedings of the National Academy of Sciences, 108, 19293–19298. 10.1073/pnas.1106235108 PubMed DOI PMC
Pinheiro, J. , Bates, D. , DebRoy, S. , Sarkar, D. , & R Core Team (2017). nlme: Linear and nonlinear mixed effects models. R package version 3.1–131. https://CRAN.R-project.org/package=nlme
Poulin, R. , Krasnov, B. R. , & Mouillot, D. (2011). Host specificity in phylogenetic and geographic space. Trends in Parasitology, 27, 355–361. 10.1016/j.pt.2011.05.003 PubMed DOI
Price, P. W. (2002). Resource‐driven terrestrial interaction webs. Ecological Research, 17, 241–247. 10.1046/j.1440-1703.2002.00483.x DOI
Pucci, T. (2008). A comparison of the parasitic wasps (Hymenoptera) at elevated versus ground yellow pan traps in a beech‐maple forest. Journal of Hymenoptera Research, 17, 116–123.
R Development Core Team . (2017). R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing; Retrieved from https://www.r-project.org/
Rambaut, A. (2014). FigTree v1.4.2. Tree figure drawing tool. Retrieved from http://tree.bio.ed.ac.uk/software/figtree/
Rasband, W. S. (2014). ImageJ, version 1.48. Retrieved from http://imagej.nih.gov/ij
Ratnasingham, S. , & Hebert, P. D. N. (2013). A DNA‐based registry for all animal species: The barcode index number (BIN) system. PLoS One, 8, e66213 10.1371/journal.pone.0066213 PubMed DOI PMC
Ribeiro, P. S. , & Basset, Y. (2007). Gall‐forming and free‐feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography, 30, 663–672. 10.1111/j.2007.0906-7590.05083.x DOI
Rodriguez‐Girones, M. A. , & Santamaria, L. (2006). A new algorithm to calculate the nestedness temperature of presence–absence matrices. Journal of Biogeography, 33, 924–935. 10.1111/j.1365-2699.2006.01444.x DOI
Rosenheim, J. A. , Kaya, H. K. , Ehler, L. E. , Marois, J. J. , & Jaffee, B. A. (1995). Intraguild predation among biological‐control agents: Theory and evidence. Biological Control, 5, 303–335. 10.1006/bcon.1995.1038 DOI
Schulze, C. H. , Linsenmair, K. E. , & Fiedler, K. (2001). Understorey versus canopy: Patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant Ecology, 153, 133–152. 10.1023/A:1017589711553 DOI
Shaw, M. R. (2006). Habitat considerations for parasitic wasps (Hymenoptera). Journal of Insect Conservation, 10, 117–127. 10.1007/s10841-006-6288-1 DOI
Shaw, M. R. , & Hochberg, M. E. (2001). The neglect of parasitic Hymenoptera in insect conservation strategies: The British fauna as a prime example. Journal of Insect Conservation, 10, 253–263. 10.1023/A:1013393229923 DOI
Šipoš, J. , Drozdová, M. , & Drozd, P. (2013). Assessment of trends in predation pressure on insects across temperate forest microhabitats: Effects of forest habitat and weather on predation. Agricultural and Forest Entomology, 15, 255–261.
Smith, M. A. , Wood, D. M. , Janzen, D. H. , Hallwachs, W. , & Hebert, P. D. (2007). DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences, 104, 4967–4972. 10.1073/pnas.0700050104 PubMed DOI PMC
Sobek, S. , Tscharntke, T. , Scherber, C. , Schiele, S. , & Steffan‐Dewenter, I. (2009). Canopy vs. understory: Does tree diversity affect bee and wasp communities and their natural enemies across forest strata? Forest Ecology and Management, 258, 609–615. 10.1016/j.foreco.2009.04.026 DOI
Stamatakis, A. (2006). RAxML‐VI‐HPC: Maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI
Stireman, J. O. , Cerretti, P. , Whitmore, D. , Hardersen, S. , & Gianelle, D. (2012). Composition and stratification of a tachinid (Diptera: Tachinidae) parasitoid community in a European temperate plain forest: Tachinid parasitoid community stratification. Insect Conservation and Diversity, 5, 346–357. 10.1111/j.1752-4598.2011.00168.x DOI
Stireman, J. O. , & Singer, M. S. (2003). Determinants of parasitoid–host associations: Insights from a natural tachinid–lepidopteran community. Ecology, 84, 296–310. 10.1890/0012-9658(2003)084[0296:DOPHAI]2.0.CO;2 DOI
Stork, N. E. (1988). Insect diversity: Facts, fiction and speculation. Biological Journal of the Linnean Society, 35, 321–337. 10.1111/j.1095-8312.1988.tb00474.x DOI
Stork N. E., Adis J., & Didham R. (Eds.) (1997). Canopy arthropods. London, UK: Chapman & Hall.
Symons, F. B. , & Beccaloni, G. W. (1999). Phylogenetic indices for measuring the diet breadths of phytophagous insects. Oecologia, 119, 427–434. 10.1007/s004420050804 PubMed DOI
Thébault, E. , & Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853–856. 10.1126/science.1188321 PubMed DOI
Tylianakis, J. M. , Tscharntke, T. , & Klein, A.‐M. (2006). Diversity, ecosystem function, and stability of parasitoid–host interactions across a tropical habitat gradient. Ecology, 87, 3047–3057. 10.1890/0012-9658(2006)87[3047:DEFASO]2.0.CO;2 PubMed DOI
Tylianakis, J. M. , Tscharntke, T. , & Lewis, O. T. (2007). Habitat modification alters the structure of tropical host–parasitoid food webs. Nature, 445, 202–205. 10.1038/nature05429 PubMed DOI
Ulyshen, M. D. (2011). Arthropod vertical stratification in temperate deciduous forests: Implications for conservation‐oriented management. Forest Ecology and Management, 261, 1479–1489. 10.1016/j.foreco.2011.01.033 DOI
van Veen, F. J. , Morris, R. J. , & Godfray, H. C. J. (2006). Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annual Review of Entomology, 51, 187–208. 10.1146/annurev.ento.51.110104.151120 PubMed DOI
Vance, C. C. , Smith, S. M. , Malcolm, J. R. , Huber, J. , & Bellocq, M. I. (2007). Differences between forest type and vertical strata in the diversity and composition of Hymenpteran families and Mymarid Genera in Northeastern Temperate Forests. Environmental Entomology, 36, 1073–1083. 10.1603/0046-225X(2007)36[1073:DBFTAV]2.0.CO;2 PubMed DOI
Volf, M. , Pyszko, P. , Abe, T. , Libra, M. , Kotásková, N. , Šigut, M. , … Novotny, V. (2017). Phylogenetic composition of host plant communities drives plant‐herbivore food web structure. Journal of Animal Ecology, 86, 556–565. 10.1111/1365-2656.12646 PubMed DOI
Plant phylogeny drives arboreal caterpillar assemblages across the Holarctic
Vertical stratification of a temperate forest caterpillar community in eastern North America
Dryad
10.5061/dryad.hk4948n