host specificity
Dotaz
Zobrazit nápovědu
- MeSH
- Cryptosporidium parvum cytologie izolace a purifikace růst a vývoj MeSH
- interakce hostitele a parazita MeSH
- kryptosporidióza MeSH
- lidé MeSH
- mikrobiologie vody MeSH
- oportunní infekce parazitologie MeSH
- průjem parazitologie MeSH
- zoonózy parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
Generalist parasites have the capacity to infect multiple hosts. The temporal pattern of host specificity by generalist parasites is rarely studied, but is critical to understanding what variables underpin infection and thereby the impact of parasites on host species and the way they impose selection on hosts. Here, the temporal dynamics of infection of four species of freshwater mussel by European bitterling fish (Rhodeus amarus) was investigated over three spawning seasons. Bitterling lay their eggs in the gills of freshwater mussels, which suffer reduced growth, oxygen stress, gill damage and elevated mortality as a result of parasitism. The temporal pattern of infection of mussels by European bitterling in multiple populations was examined. Using a Bernoulli Generalized Additive Mixed Model with Bayesian inference it was demonstrated that one mussel species, Unio pictorum, was exploited over the entire bitterling spawning season. As the season progressed, bitterling showed a preference for other mussel species, which were inferior hosts. Temporal changes in host use reflected elevated density-dependent mortality in preferred hosts that were already infected. Plasticity in host specificity by bitterling conformed with the predictions of the host selection hypothesis. The relationship between bitterling and their host mussels differs qualitatively from that of avian brood parasites.
- MeSH
- Bayesova věta MeSH
- Cyprinidae MeSH
- hostitelská specificita * MeSH
- interakce hostitele a parazita * MeSH
- paraziti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Recent studies show that host switching is much more frequent than originally believed and constitutes an important driver in evolution of host-parasite associations. However, its frequency and ecological mechanisms at the population level have been rarely investigated. We address this issue by analyzing phylogeny and population genetics of an extensive sample, from a broad geographic area, for commonly occurring parasites of the genus Eimeria within the abundant rodent genera Apodemus, Microtus and Myodes, using two molecular markers. At the most basal level, we demonstrate polyphyletic arrangement, i.e. multiple origin, of the rodent-specific clusters within the Eimeria phylogeny, and strong genetic/phylogenetic structure within these lineages determined at least partially by specificities to different host groups. However, a novel and the most important observation is a repeated occurrence of host switches among closely related genetic lineages which may become rapidly fixed. Within the studied model, this phenomenon applies particularly to the switches between the eimerians from Apodemus flavicollis/Apodemus sylvaticus and Apodemus agrarius groups. We show that genetic differentiation and isolation between A. flavicollis/A. sylvaticus and A. agrarius faunas is a secondary recent event and does not reflect host-parasite coevolutionary history. Rather, it provides an example of rapid ecology-based differentiation in the parasite population.
- MeSH
- biodiverzita * MeSH
- časové faktory MeSH
- Coccidia klasifikace genetika fyziologie MeSH
- fylogeneze MeSH
- haplotypy genetika MeSH
- hostitelská specificita * MeSH
- interakce hostitele a parazita * genetika MeSH
- Murinae parazitologie MeSH
- populační genetika MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The patterns and processes linked to the host specificity of parasites represent one of the central themes in the study of host-parasite interactions. We investigated the evolution and determinants of host specificity in gill monogeneans of Cichlidogyrus and Scutogyrus species parasitizing African freshwater fish of Cichlidae. METHODS: We analyzed (1) the link between host specificity and parasite phylogeny, (2) potential morphometric correlates of host specificity (i.e. parasite body size and the morphometrics of the attachment apparatus), and (3) potential determinants of host specificity following the hypothesis of ecological specialization and the hypothesis of specialization on predictable resources (i.e. host body size and longevity were considered as measures of host predictability), and (4) the role of brooding behavior of cichlids in Cichlidogyrus and Scutogyrus diversification. RESULTS: No significant relationships were found between host specificity and phylogeny of Cichlidogyrus and Scutogyrus species. The mapping of host specificity onto the parasite phylogenetic tree revealed that an intermediate specialist parasitizing congeneric cichlid hosts represents the ancestral state for the Cichlidogyrus/Scutogyrus group. Only a weak relationship was found between the morphometry of the parasites' attachment apparatus and host specificity. Our study did not support the specialization on predictable resources or ecological specialization hypotheses. Nevertheless, host specificity was significantly related to fish phylogeny and form of parental care. CONCLUSIONS: Our results confirm that host specificity is not a derived condition for Cichlidogyrus/Scutogyrus parasites and may reflect other than historical constraints. Attachment apparatus morphometry reflects only partially (if at all) parasite adaptation to the host species, probably because of the morphological similarity of rapidly evolved cichlids (analyzed in our study). However, we showed that parental care behavior of cichlids may play an important role linked to host specificity of Cichlidogyrus/Scutogyrus parasites.
- MeSH
- biologická evoluce MeSH
- cichlidy parazitologie MeSH
- fylogeneze MeSH
- hostitelská specificita * MeSH
- infekce červy třídy Trematoda parazitologie veterinární MeSH
- interakce hostitele a parazita * MeSH
- nemoci ryb parazitologie MeSH
- ploštěnci genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Host specificity varies among parasite species. Some parasites are strictly host-specific, others show a specificity for congeneric or non-congeneric phylogenetically related host species, whilst some others are non-specific (generalists). Two cyprinids, Cyprinus carpio and Carassius gibelio, plus their respective hybrids were investigated for metazoan parasites. The aim of this study was to analyze whether interspecies hybridization affects host specificity. The different degrees of host specificity within a phylogenetic framework were taken into consideration (i.e. strict specialist, intermediate specialist, and intermediate generalist). METHODS: Fish were collected during harvesting the pond and identified using meristic traits and molecular markers. Metazoan parasite species were collected. Host specificity of parasites was determined using the following classification: strict specialist, intermediate specialist, intermediate generalist and generalist. Parasite species richness was compared between parental species and their hybrids. The effect of host species on abundance of parasites differing in host specificity was tested. RESULTS: Hybrids harbored more different parasite species but their total parasite abundance was lower in comparison with parental species. Interspecies hybridization affected the host specificity of ecto- and endoparasites. Parasite species exhibiting different degrees of host specificity for C. carpio and C. gibelio were also present in hybrids. The abundance of strict specialists of C. carpio was significantly higher in parental species than in hybrids. Intermediate generalists parasitizing C. carpio and C. gibelio as two phylogenetically closely related host species preferentially infected C. gibelio when compared to C. carpio, based on prevalence and maximum intensity of infection. Hybrids were less infected by intermediate generalists when compared to C. gibelio. CONCLUSIONS: This finding does not support strict co-adaptation between host and parasite genotypes resulting in narrow host specificity, and showed that hybrid genotypes are susceptible to parasites exhibiting host specificity. The immune mechanisms specific to parental species might represent potential mechanisms explaining the low abundance of parasites in C. gibelio x C. carpio hybrids.
Current knowledge about polysphinctine parasite wasps' interactions with their spider hosts is very fragmented and incomplete. This study presents the host specificity of Zatypota percontatoria (Müller) (Hymenoptera: Ichneumonidae) and its adaptation to varying host availability. Two years of field observations show that Z. percontatoria is a stenophagous parasitoid that parasitizes only five closely related web-building spiders of the family Theridiidae (Araneae). Within the Theridiidae it attacks only species belonging to a small group of species, here called the "Theridion" group. These hosts have a similar biology, but are available at different levels of abundance and at different sizes over the season. Laboratory experiments showed that this wasp species ignores linyphiid, araneid or dictynid spiders and accepts only theridiid spiders of the "Theridion" group. In the field study, wasp females preferred older juvenile and sub-adult female spider instars with intermediate body size. Only 5% of the parasitized spiders were males. Parasitism in the natural population of theridiid spiders was on average 1.3%. Parasitism was most frequent on two species, Theridion varians Hahn in 2007 and Neottiura bimaculata Linnaeus in 2008. The parasitization rate was positively correlated with spider abundance. The wasp responded adaptively to seasonal changes in host abundance and host body size and shifted host preference according to the availability of suitable hosts during, as well as between, seasons. In spring and summer the highest percentage of parasitism was on T. varians and in autumn it was on N. bimaculata.
... -- 9:05 - 9:30am Ahmad Jawid - Bordetella pertussis adenylate cyclase toxin modulates functions of host ... ... Institute, Brno, CZ) -- 12:00- 12.25am Plzakova Lenka - Early cellular responses of germ free and specific ... ... infection (FoMHS, Hradec Králové, CZ) -- 12:30-2:00pm Lunch - A RKADA hotel -- 2:00-2.40pm Joshi Lokesh - Host-Microbial ... ... CZ) -- 9:55 - 10:30am Coffee break - Congress foyer -- 10:30- 10:55am Prokšová Magdaléna - Seeking host ...
54 nečíslovaných stran : barevné ilustrace ; 22 cm
- MeSH
- interakce hostitele a parazita MeSH
- Publikační typ
- abstrakty MeSH
- kongresy MeSH
- programy MeSH
- souborné dílo MeSH
- zprávy MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- infekční lékařství
Interplay between conserved host specificity and occasional host switches is an important process determining the evolution of host-parasite systems. Here, we address the dynamics of host switches at the population level in rodent-associated Eimeria. Focusing mainly on two ecologically similar host groups, Murinae and Arvicolinae, we show that the Eimeria infecting those hosts form a complex system of many genetic lineages with different host specificities. The broad geographic distribution of lineages indicates that they are well-established genetic forms which retained their host specificities while spreading across large geographic areas. We also demonstrate that genetic structure is only partially reflected by morphological traits.
- MeSH
- Arvicolinae MeSH
- Eimeria * MeSH
- fylogeneze MeSH
- hostitelská specificita MeSH
- interakce hostitele a parazita MeSH
- lidé MeSH
- Murinae MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Myxobolus pseudodispar Gorbunova, 1936 (Myxozoa) is capable of infecting and developing mature myxospores in several cyprinid species. However, M. pseudodispar isolates from different fish show up to 5% differences in the SSU rDNA sequences. This is an unusually large intraspecific difference for myxozoans and only some of the muscle-dwelling myxozoan species possess such a high genetic variability. We intended to study the correlation between the host specificity and the phylogenetic relationship of the parasite isolates, and to find experimental proof for the putatively wide host range of M. pseudodispar with cross-infection experiments and phylogenetic analyses based on SSU rDNA. The experimental findings distinguished 'primary' and less-susceptible 'secondary' hosts. With some exceptions, M. pseudodispar isolates showed a tendency to cluster according to the fish host on the phylogenetic tree. Experimental and phylogenetic findings suggest the cryptic nature of the species. It is likely that host-shift occurred for M. pseudodispar and the parasite speciation in progress might explain the high genetic diversity among isolates which are morphologically indistinguishable.
The isolated ecosystem of Rubondo Island National Park, Tanzania is an interesting model site, inhabited by an assembly of primate species with various histories: two introduced primate species, Pantroglodytes (chimpanzee) and Colobus guereza (colobus), and a single indigenous species Chlorocebus aethiops pygerythrus (vervet monkey). Apart from important lessons for future introduction/re-introduction projects, Rubondo National Park offers a unique place to study the patterns of transmission of primate parasites and their host specificity. Blastocystis was detected using standard microscopy, together with PCR-based determination and the prevalence and subtype identification of Blastocystis was determined in each primate species. Subtype (ST) 1 was detected in all three Rubondo primate populations; ST2, ST3 and ST5 were found in colobus and vervet monkeys. All chimpanzee isolates of Blastocystis belonged exclusively to ST1, which formed a discrete group, suggesting that Rubondo chimpanzees are colonized by a single, host-specific Blastocystis strain that circulates among the members of the group. Phylogenetic analysis indicated that transmission of Blastocystis did not occur between Rubondo primate populations. Observed host specificity of Blastocystis provides a new understanding of the transmission and distribution of Blastocystis among sympatric hosts under natural conditions.
- MeSH
- biodiverzita MeSH
- Blastocystis klasifikace genetika izolace a purifikace fyziologie MeSH
- blastocystóza parazitologie přenos veterinární MeSH
- feces parazitologie MeSH
- fylogeneze MeSH
- hostitelská specificita MeSH
- molekulární sekvence - údaje MeSH
- nemoci primátů parazitologie přenos MeSH
- primáti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH