Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28788095
PubMed Central
PMC6152224
DOI
10.3390/molecules22081265
PII: molecules22081265
Knihovny.cz E-zdroje
- Klíčová slova
- 2-methoxyhuprine, 7-MEOTA, Alzheimer’s disease, acetylcholinesterase, butyrylcholinesterase, huprine Y, tacrine,
- MeSH
- acetylcholinesterasa MeSH
- aktivace enzymů účinky léků MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- aminochinoliny chemická syntéza chemie farmakologie MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- hematoencefalická bariéra metabolismus MeSH
- heterocyklické sloučeniny tetra- a více cyklické chemie farmakologie MeSH
- hydrolýza MeSH
- inhibiční koncentrace 50 MeSH
- katalytická doména MeSH
- lidé MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- objevování léků * MeSH
- permeabilita MeSH
- racionální návrh léčiv MeSH
- takrin analogy a deriváty chemie farmakologie MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 7-methoxytacrine MeSH Prohlížeč
- acetylcholinesterasa MeSH
- aminochinoliny MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- heterocyklické sloučeniny tetra- a více cyklické MeSH
- huprine Y MeSH Prohlížeč
- takrin MeSH
Tacrine (THA), the first clinically effective acetylcholinesterase (AChE) inhibitor and the first approved drug for the treatment of Alzheimer's disease (AD), was withdrawn from the market due to its side effects, particularly its hepatotoxicity. Nowadays, THA serves as a valuable scaffold for the design of novel agents potentially applicable for AD treatment. One such compound, namely 7-methoxytacrine (7-MEOTA), exhibits an intriguing profile, having suppressed hepatotoxicity and concomitantly retaining AChE inhibition properties. Another interesting class of AChE inhibitors represents Huprines, designed by merging two fragments of the known AChE inhibitors-THA and (-)-huperzine A. Several members of this compound family are more potent human AChE inhibitors than the parent compounds. The most promising are so-called huprines X and Y. Here, we report the design, synthesis, biological evaluation, and in silico studies of 2-methoxyhuprine that amalgamates structural features of 7-MEOTA and huprine Y in one molecule.
Zobrazit více v PubMed
Barage S.H., Sonawane K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides. 2015;52:1–18. doi: 10.1016/j.npep.2015.06.008. PubMed DOI
Maresova P., Klimova B., Novotny M., Kuca K. Alzheimer’s and Parkinson’s Diseases: Expected Economic Impact on Europe-A Call for a Uniform European Strategy. J. Alzheimers Dis. JAD. 2016;54:1123–1133. doi: 10.3233/JAD-160484. PubMed DOI
Marešová P., Mohelská H., Dolejš J., Kuča K. Socio-economic Aspects of Alzheimer’s Disease. Curr. Alzheimer Res. 2015;12:903–911. doi: 10.2174/156720501209151019111448. PubMed DOI
Zemek F., Drtinova L., Nepovimova E., Sepsova V., Korabecny J., Klimes J., Kuca K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014;13:759–774. doi: 10.1517/14740338.2014.914168. PubMed DOI
Spilovska K., Zemek F., Korabecny J., Nepovimova E., Soukup O., Windisch M., Kuca K. Adamantane-A Lead Structure for Drugs in Clinical Practice. Curr. Med. Chem. 2016;23:3245–3266. doi: 10.2174/0929867323666160525114026. PubMed DOI
Horak M., Holubova K., Nepovimova E., Krusek J., Kaniakova M., Korabecny J., Vyklicky L., Kuca K., Stuchlik A., Ricny J., et al. The pharmacology of tacrine at N-methyl-d-aspartate receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017;75:54–62. doi: 10.1016/j.pnpbp.2017.01.003. PubMed DOI
Zhu Y., Xiao K., Ma L., Xiong B., Fu Y., Yu H., Wang W., Wang X., Hu D., Peng H., et al. Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and beta-secretase. Bioorg. Med. Chem. 2009;17:1600–1613. doi: 10.1016/j.bmc.2008.12.067. PubMed DOI
Rampa A., Mancini F., De Simone A., Falchi F., Belluti F., Di Martino R.M.C., Gobbi S., Andrisano V., Tarozzi A., Bartolini M., et al. From AChE to BACE1 inhibitors: The role of the amine on the indanone scaffold. Bioorg. Med. Chem. Lett. 2015;25:2804–2808. doi: 10.1016/j.bmcl.2015.05.002. PubMed DOI
Costanzo P., Cariati L., Desiderio D., Sgammato R., Lamberti A., Arcone R., Salerno R., Nardi M., Masullo M., Oliverio M. Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors. ACS Med. Chem. Lett. 2016;7:470–475. doi: 10.1021/acsmedchemlett.5b00483. PubMed DOI PMC
Viayna E., Sabate R., Muñoz-Torrero D. Dual inhibitors of β-amyloid aggregation and acetylcholinesterase as multi-target anti-Alzheimer drug candidates. Curr. Top. Med. Chem. 2013;13:1820–1842. doi: 10.2174/15680266113139990139. PubMed DOI
Ortega A., Rincón Á., Jiménez-Aliaga K.L., Bermejo-Bescós P., Martín-Aragón S., Molina M.T., Csákÿ A.G. Synthesis and evaluation of arylquinones as BACE1 inhibitors, β-amyloid peptide aggregation inhibitors, and destabilizers of preformed β-amyloid fibrils. Bioorg. Med. Chem. Lett. 2011;21:2183–2187. doi: 10.1016/j.bmcl.2011.03.023. PubMed DOI
Panek D., Więckowska A., Wichur T., Bajda M., Godyń J., Jończyk J., Mika K., Janockova J., Soukup O., Knez D., et al. Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur. J. Med. Chem. 2016;125:676–695. doi: 10.1016/j.ejmech.2016.09.078. PubMed DOI
Mohandas E., Rajmohan V., Raghunath B. Neurobiology of Alzheimer’s disease. Indian J. Psychiatry. 2009;51:55–61. doi: 10.4103/0019-5545.44908. PubMed DOI PMC
Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016;8:595–608. doi: 10.15252/emmm.201606210. PubMed DOI PMC
Babkova K., Korabecny J., Soukup O., Nepovimova E., Jun D., Kuca K. Prolyl oligopeptidase and its role in the organism: Attention to the most promising and clinically relevant inhibitors. Future Med. Chem. 2017;9:1015–1038. doi: 10.4155/fmc-2017-0030. PubMed DOI
Kuca K., Soukup O., Maresova P., Korabecny J., Nepovimova E., Klimova B., Honegr J., Ramalho T.C., França T.C.C. Current Approaches Against Alzheimer’s Disease in Clinical Trials. J. Braz. Chem. Soc. 2016;27:641–649. doi: 10.5935/0103-5053.20160048. DOI
Soukup O., Jun D., Zdarova-Karasova J., Patocka J., Musilek K., Korabecny J., Krusek J., Kaniakova M., Sepsova V., Mandikova J., et al. A resurrection of 7-MEOTA: A comparison with tacrine. Curr. Alzheimer Res. 2013;10:893–906. doi: 10.2174/1567205011310080011. PubMed DOI
Korabecny J., Musilek K., Zemek F., Horova A., Holas O., Nepovimova E., Opletalova V., Hroudova J., Fisar Z., Jung Y.-S., et al. Synthesis and in vitro evaluation of 7-methoxy-N-(pent-4-enyl)-1,2,3,4-tetrahydroacridin-9-amine-new tacrine derivate with cholinergic properties. Bioorg. Med. Chem. Lett. 2011;21:6563–6566. doi: 10.1016/j.bmcl.2011.08.042. PubMed DOI
Korabecny J., Musilek K., Holas O., Binder J., Zemek F., Marek J., Pohanka M., Opletalova V., Dohnal V., Kuca K. Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer disease. Bioorg. Med. Chem. Lett. 2010;20:6093–6095. doi: 10.1016/j.bmcl.2010.08.044. PubMed DOI
Patocka J., Jun D., Kuca K. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer’s disease. Curr. Drug Metab. 2008;9:332–335. doi: 10.2174/138920008784220619. PubMed DOI
Muñoz-Torrero D., Camps P. Huprines for Alzheimer’s disease drug development. Expert Opin. Drug Discov. 2008;3:65–81. doi: 10.1517/17460441.3.1.65. PubMed DOI
Harel M., Schalk I., Ehret-Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P.H., Silman I., Sussman J.L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 1993;90:9031–9035. doi: 10.1073/pnas.90.19.9031. PubMed DOI PMC
Raves M.L., Harel M., Pang Y.P., Silman I., Kozikowski A.P., Sussman J.L. Structure of acetylcholinesterase complexed with the nootropic alkaloid, (-)-huperzine A. Nat. Struct. Biol. 1997;4:57–63. doi: 10.1038/nsb0197-57. PubMed DOI
Dvir H., Wong D.M., Harel M., Barril X., Orozco M., Luque F.J., Muñoz-Torrero D., Camps P., Rosenberry T.L., Silman I., et al. 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution: Kinetic and molecular dynamic correlates. Biochemistry (Mosc.) 2002;41:2970–2981. doi: 10.1021/bi011652i. PubMed DOI
Gabrielson K.L., Hogue B.A., Bohr V.A., Cardounel A.J., Nakajima W., Kofler J., Zweier J.L., Rodriguez E.R., Martin L.J., de Souza-Pinto N.C., et al. Mitochondrial toxin 3-nitropropionic acid induces cardiac and neurotoxicity differentially in mice. Am. J. Pathol. 2001;159:1507–1520. doi: 10.1016/S0002-9440(10)62536-9. PubMed DOI PMC
Canudas A.M., Pubill D., Sureda F.X., Verdaguer E., Camps P., Muñoz-Torrero D., Jiménez A., Camins A., Pallàs M. Neuroprotective effects of (±)-huprine Y on in vitro and in vivo models of excitoxicity damage. Exp. Neurol. 2003;180:123–130. doi: 10.1016/S0014-4886(02)00029-8. PubMed DOI
Yu J., Jin Y., Lu M. 3-Methyl-4-oxa-5-azahomoadamantane as an Organocatalyst for the Aerobic Oxidation of Primary Amines to Oximes in Water. Adv. Synth. Catal. 2015;357:1175–1180. doi: 10.1002/adsc.201400601. DOI
Denmark S.E., Henke B.R. Investigations on transition-state geometry in the aldol condensation. J. Am. Chem. Soc. 1989;111:8032–8034. doi: 10.1021/ja00202a064. DOI
Camps P., Contreras J., Font-Bardia M., Morral J., Muñoz-Torrero D., Solans X. Enantioselective synthesis of tacrine–huperzine A hybrids. Preparative chiral MPLC separation of their racemic mixtures and absolute configuration assignments by X-ray diffraction analysis. Tetrahedron Asymmetry. 1998;9:835–849. doi: 10.1016/S0957-4166(98)00029-9. DOI
Lynch T.J., Mattes C.E., Singh A., Bradley R.M., Brady R.O., Dretchen K.L. Cocaine detoxification by human plasma butyrylcholinesterase. Toxicol. Appl. Pharmacol. 1997;145:363–371. doi: 10.1006/taap.1997.8187. PubMed DOI
Long J.Z., Cravatt B.F. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev. 2011;111:6022–6063. doi: 10.1021/cr200075y. PubMed DOI PMC
Komloova M., Musilek K., Dolezal M., Gunn-Moore F., Kuca K. Structure-activity relationship of quaternary acetylcholinesterase inhibitors-outlook for early myasthenia gravis treatment. Curr. Med. Chem. 2010;17:1810–1824. doi: 10.2174/092986710791111198. PubMed DOI
Čolović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC
Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Pohanka M., Karasova J.Z., Kuca K., Pikula J., Holas O., Korabecny J., Cabal J. Colorimetric dipstick for assay of organophosphate pesticides and nerve agents represented by paraoxon, sarin and VX. Talanta. 2010;81:621–624. doi: 10.1016/j.talanta.2009.12.052. PubMed DOI
Sepsova V., Karasova J.Z., Korabecny J., Dolezal R., Zemek F., Bennion B.J., Kuca K. Oximes: Inhibitors of human recombinant acetylcholinesterase. A structure-activity relationship (SAR) study. Int. J. Mol. Sci. 2013;14:16882–16900. doi: 10.3390/ijms140816882. PubMed DOI PMC
Pohanka M., Jun D., Kuca K. Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators. Talanta. 2008;77:451–454. doi: 10.1016/j.talanta.2008.06.007. PubMed DOI
Recanatini M., Cavalli A., Belluti F., Piazzi L., Rampa A., Bisi A., Gobbi S., Valenti P., Andrisano V., Bartolini M., et al. SAR of 9-amino-1,2,3,4-tetrahydroacridine-based acetylcholinesterase inhibitors: Synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. J. Med. Chem. 2000;43:2007–2018. doi: 10.1021/jm990971t. PubMed DOI
Camps P., El Achab R., Morral J., Muñoz-Torrero D., Badia A., Baños J.E., Vivas N.M., Barril X., Orozco M., Luque F.J. New Tacrine-Huperzine A Hybrids (Huprines): Highly Potent Tight-Binding Acetylcholinesterase Inhibitors of Interest for the Treatment of Alzheimer’s Disease. J. Med. Chem. 2000;43:4657–4666. doi: 10.1021/jm000980y. PubMed DOI
Giacobini E. Selective inhibitors of butyrylcholinesterase: A valid alternative for therapy of Alzheimer’s disease? Drugs Aging. 2001;18:891–898. doi: 10.2165/00002512-200118120-00001. PubMed DOI
Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord. 2013;15 doi: 10.4088/PCC.12r01412. PubMed DOI PMC
Lahiri D.K., Farlow M.R., Hintz N., Utsuki T., Greig N.H. Cholinesterase inhibitors, beta-amyloid precursor protein and amyloid beta-peptides in Alzheimer’s disease. Acta Neurol. Scand. Suppl. 2000;176:60–67. doi: 10.1034/j.1600-0404.2000.00309.x. PubMed DOI
Inestrosa N.C., Alvarez A., Pérez C.A., Moreno R.D., Vicente M., Linker C., Casanueva O.I., Soto C., Garrido J. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron. 1996;16:881–891. doi: 10.1016/S0896-6273(00)80108-7. PubMed DOI
Pang Y.P., Quiram P., Jelacic T., Hong F., Brimijoin S. Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase. Steps toward novel drugs for treating Alzheimer’s disease. J. Biol. Chem. 1996;271:23646–23649. doi: 10.1074/jbc.271.39.23646. PubMed DOI
Nepovimova E., Korabecny J., Dolezal R., Babkova K., Ondrejicek A., Jun D., Sepsova V., Horova A., Hrabinova M., Soukup O., et al. Tacrine-Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low In Vivo Toxicity. J. Med. Chem. 2015;58:8985–9003. doi: 10.1021/acs.jmedchem.5b01325. PubMed DOI
Nepovimova E., Uliassi E., Korabecny J., Peña-Altamira L.E., Samez S., Pesaresi A., Garcia G.E., Bartolini M., Andrisano V., Bergamini C., et al. Multitarget drug design strategy: Quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem. 2014;57:8576–8589. doi: 10.1021/jm5010804. PubMed DOI
Spilovska K., Korabecny J., Horova A., Musilek K., Nepovimova E., Drtinova L., Gazova Z., Siposova K., Dolezal R., Jun D., et al. Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: A novel cholinesterase inhibitors for the treatment of Alzheimer’s disease. Med. Chem. Res. 2015:1–11. doi: 10.1007/s00044-015-1316-x. DOI
Spilovska K., Korabecny J., Kral J., Horova A., Musilek K., Soukup O., Drtinova L., Gazova Z., Siposova K., Kuca K. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment—Synthesis, biological evaluation and molecular modeling studies. Molecules. 2013;18:2397–2418. doi: 10.3390/molecules18022397. PubMed DOI PMC
Alcalá M. del M.; Vivas, N.M.; Hospital, S.; Camps, P.; Muñoz-Torrero, D.; Badia, A. Characterisation of the anticholinesterase activity of two new tacrine-huperzine A hybrids. Neuropharmacology. 2003;44:749–755. doi: 10.1016/S0028-3908(03)00071-6. PubMed DOI
Di L., Kerns E.H., Fan K., McConnell O.J., Carter G.T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003;38:223–232. doi: 10.1016/S0223-5234(03)00012-6. PubMed DOI
Lemes L.F.N., de Andrade Ramos G., de Oliveira A.S., da Silva F.M.R., de Castro Couto G., da Silva Boni M., Guimarães M.J.R., Souza I.N.O., Bartolini M., Andrisano V., et al. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer’s disease. Eur. J. Med. Chem. 2016;108:687–700. doi: 10.1016/j.ejmech.2015.12.024. PubMed DOI
Spilovska K., Korabecny J., Sepsova V., Jun D., Hrabinova M., Jost P., Muckova L., Soukup O., Janockova J., Kucera T., et al. Novel Tacrine-Scutellarin Hybrids as Multipotent Anti-Alzheimer’s Agents: Design, Synthesis and Biological Evaluation. Molecules. 2017;22:1006. doi: 10.3390/molecules22061006. PubMed DOI PMC
Gazova Z., Soukup O., Sepsova V., Siposova K., Drtinova L., Jost P., Spilovska K., Korabecny J., Nepovimova E., Fedunova D., et al. Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer’s disease treatment. Biochim. Biophys. Acta. 2017;1863:607–619. doi: 10.1016/j.bbadis.2016.11.020. PubMed DOI
Wager T.T., Hou X., Verhoest P.R., Villalobos A. Moving beyond rules: The development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci. 2010;1:435–449. doi: 10.1021/cn100008c. PubMed DOI PMC
Wager T.T., Hou X., Verhoest P.R., Villalobos A. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery. ACS Chem. Neurosci. 2016;7:767–775. doi: 10.1021/acschemneuro.6b00029. PubMed DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Spaldin V., Madden S., Pool W.F., Woolf T.F., Park B.K. The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes. Br. J. Clin. Pharmacol. 1994;38:15–22. doi: 10.1111/j.1365-2125.1994.tb04316.x. PubMed DOI PMC
Monteith D.K., Theiss J.C. Comparison of tacrine-induced cytotoxicity in primary cultures of rat, mouse, monkey, dog, rabbit, and human hepatocytes. Drug Chem. Toxicol. 1996;19:59–70. doi: 10.3109/01480549609002196. PubMed DOI
Galisteo M., Rissel M., Sergent O., Chevanne M., Cillard J., Guillouzo A., Lagadic-Gossmann D. Hepatotoxicity of tacrine: Occurrence of membrane fluidity alterations without involvement of lipid peroxidation. J. Pharmacol. Exp. Ther. 2000;294:160–167. PubMed
Terrell P.S., Bredenkamp V.L., Lammers J.E. Null Late-onset alanine aminotransferase increase with tacrine. Ann. Pharmacother. 1996;30:301. doi: 10.1177/106002809603000322. PubMed DOI
Roberts C.J., Ford J.M., Truman C.A., Scott M., Mäkelä P.M., Wilcock G.K. Assessment of the value of therapeutic monitoring of tacrine in Alzheimer’s disease. Eur. J. Clin. Pharmacol. 1998;54:721–724. doi: 10.1007/s002280050541. PubMed DOI
Jeřábek J., Uliassi E., Guidotti L., Korábečný J., Soukup O., Sepsova V., Hrabinova M., Kuča K., Bartolini M., Peña-Altamira L.E., et al. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem. 2017;127:250–262. doi: 10.1016/j.ejmech.2016.12.048. PubMed DOI
Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI
Nachon F., Carletti E., Ronco C., Trovaslet M., Nicolet Y., Jean L., Renard P.-Y. Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. Biochem. J. 2013;453:393–399. doi: 10.1042/BJ20130013. PubMed DOI
Sugano K., Hamada H., Machida M., Ushio H. High throughput prediction of oral absorption: Improvement of the composition of the lipid solution used in parallel artificial membrane permeation assay. J. Biomol. Screen. 2001;6:189–196. doi: 10.1177/108705710100600309. PubMed DOI
Wohnsland F., Faller B. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J. Med. Chem. 2001;44:923–930. doi: 10.1021/jm001020e. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Lee Kwang S., Park Kyun M., Yi J., Won Cho D., Sup Ra C., Musilek K., Horova A., Korabecny J., Dolezal R., Jun D., Kuca K. Preparation of 7-methoxy tacrine dimer analogs and their in vitro/in silico evaluation as potential choliensterase inhibitors. Bull. Korean Chem. Soc. 2015 doi: 10.1002/bkcs.10317. DOI
Dolezal R., Korabecny J., Malinak D., Honegr J., Musilek K., Kuca K. Ligand-based 3D QSAR analysis of reactivation potency of mono- and bis-pyridinium aldoximes toward VX-inhibited rat acetylcholinesterase. J. Mol. Graph. Model. 2015;56:113–129. doi: 10.1016/j.jmgm.2014.11.010. PubMed DOI
Korabecny J., Dolezal R., Cabelova P., Horova A., Hruba E., Ricny J., Sedlacek L., Nepovimova E., Spilovska K., Andrs M., et al. 7-MEOTA-donepezil like compounds as cholinesterase inhibitors: Synthesis, pharmacological evaluation, molecular modeling and QSAR studies. Eur. J. Med. Chem. 2014;82:426–438. doi: 10.1016/j.ejmech.2014.05.066. PubMed DOI
Korabecny J., Musilek K., Holas O., Nepovimova E., Jun D., Zemek F., Opletalova V., Patocka J., Dohnal V., Nachon F., et al. Synthesis and in vitro evaluation of N-(Bromobut-3-en-2-yl)-7-methoxy-1,2,3,4-tetrahydroacridin-9-amine as a cholinesterase inhibitor with regard to Alzheimer’s disease treatment. Molecules. 2010;15:8804–8812. doi: 10.3390/molecules15128804. PubMed DOI PMC
Korabecny J., Andrs M., Nepovimova E., Dolezal R., Babkova K., Horova A., Malinak D., Mezeiova E., Gorecki L., Sepsova V., et al. 7-Methoxytacrine-p-Anisidine Hybrids as Novel Dual Binding Site Acetylcholinesterase Inhibitors for Alzheimer’s Disease Treatment. Molecules. 2015;20:22084–22101. doi: 10.3390/molecules201219836. PubMed DOI PMC
Korabecny J., Holas O., Musilek K., Pohanka M., Opletalova V., Dohnal V., Kuca K. Synthesis and In Vitro Evaluation of New Tacrine Derivates-Bis-Alkylene Linked 7-MEOTA. Lett. Org. Chem. 2010;7:327–331. doi: 10.2174/157017810791130540. DOI
Kristofikova Z., Ricny J., Soukup O., Korabecny J., Nepovimova E., Kuca K., Ripova D. Inhibitors of Acetylcholinesterase Derived from 7-Methoxytacrine and Their Effects on the Choline Transporter CHT1. Dement. Geriatr. Cogn. Disord. 2017;43:45–58. doi: 10.1159/000453256. PubMed DOI
O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
In vitro investigating of anticancer activity of new 7-MEOTA-tacrine heterodimers
Profiling donepezil template into multipotent hybrids with antioxidant properties