In vitro investigating of anticancer activity of new 7-MEOTA-tacrine heterodimers
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
30938202
PubMed Central
PMC6450562
DOI
10.1080/14756366.2019.1593159
Knihovny.cz E-zdroje
- Klíčová slova
- 7-MEOTA-tacrine heterodimers, HL-60, calf thymus DNA, human dermal fibroblasts, topoisomerases,
- MeSH
- akridiny chemická syntéza chemie farmakologie MeSH
- buňky A549 MeSH
- fibroblasty účinky léků MeSH
- HL-60 buňky MeSH
- lidé MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- takrin chemie farmakologie MeSH
- thiomočovina chemie farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 7-methoxy-1,2,3,4-tetrahydroacridin-9-amine MeSH Prohlížeč
- akridiny MeSH
- protinádorové látky MeSH
- takrin MeSH
- thiomočovina MeSH
A combination of biochemical, biophysical and biological techniques was used to study calf thymus DNA interaction with newly synthesized 7-MEOTA-tacrine thiourea 12-17 and urea heterodimers 18-22, and to measure interference with type I and II topoisomerases. Their biological profile was also inspected in vitro on the HL-60 cell line using different flow cytometric techniques (cell cycle distribution, detection of mitochondrial membrane potential dissipation, and analysis of metabolic activity/viability). The compounds exhibited a profound inhibitory effect on topoisomerase activity (e.g. compound 22 inhibited type I topoisomerase at 1 µM concentration). The treatment of HL-60 cells with the studied compounds showed inhibition of cell growth especially with hybrids containing thiourea (14-17) and urea moieties (21 and 22). Moreover, treatment of human dermal fibroblasts with the studied compounds did not indicate significant cytotoxicity. The observed results suggest beneficial selectivity of the heterodimers as potential drugs to target cancer cells.
Associated Tissue Bank Faculty of Medicine P J Šafárik University Kosice Slovak Republic
b Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic
f Department of Biophysics Faculty of Science Palacke University Olomouc Czech Republic
Zobrazit více v PubMed
Giacobini E. Invited review cholinesterase inhibitors for Alzheimer’s disease therapy: from tacrine to future applications. Neurochem Int 1998;32:413–9. PubMed
Shaw FH, Bentley G. Morphine antagonism. Nature 1952;169:712–3. PubMed
Hunter AJ, Murray TK, Jones JA, et al. . The cholinergic pharmacology of tetrahydroaminoacridine in vivo and in vitro. Br J Pharm 1989;98:79–86. PubMed PMC
Zovko A, Sepcic K, Turk T, et al. . New aspects of the relationship between acetylcholinesterase activity and cancer I. Poly-Aps Exp 2009;6:58–69.
Soukup O, Jun D, Zdarova-Karasova J, et al. . A resurrection of 7-MEOTA: a comparison with tacrine. Curr Alzh Res 2013;10:893–906. PubMed
Summers WK, Majovski LV, Marsh GM, et al. . Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N Engl J Med 1986;315:1241–5. PubMed
Watkins PB, Zimmerman HJ, Knapp MJ, et al. . Hepatotoxic effects of tacrine administration in patients with Alzheimers disease. J Am Med Assoc 1994;271:992–8. PubMed
Kozurkova M, Hamulakova S, Gazova Z, et al. . Neuroactive multifunctional tacrine congeners with cholinesterase, anti-amyloid aggregation and neuroprotective properties. Pharm 2011;4:382–418.
Patocka J, Jun D, Kuca K. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer’s disease. Curr Drug Metab 2008;9:332–5. PubMed
Ezoulin MJM, Dong CZ, Liu Z, et al. . Study of PMS777, a new type of acetylcholinesterase inhibitor, in human HepG2 cells. Comparison with tacrine and galanthamine on oxidative stress and mitochondrial impairment. Toxicol In Vitro 2006;20:824–31. PubMed
Galisteo M, Rissel M, Sergent O, et al. . Hepatotoxicity of tacrine: occurrence of membrane fluidity alterations without involvement of lipid peroxidation. J Pharmacol Exp Ther 2000;294:160–7. PubMed
Osseni RA, Debbasch C, Christen MO, et al. . Tacrine-induced reactive oxygen species in a human liver cell line: the role of anethole dithiolethione as a scavenger. Toxicol In Vitro 1999;13:683–8. PubMed
Robertson DG, Braden TK, Urda ER, et al. . Elucidation of mitochondrial effects by tetrahydroaminoacridine (tacrine) in rat, dog, monkey and human hepatic parenchymal cells. Arch Toxicol 1998;72:362–71. PubMed
Gazova Z, Soukup O, Sepsova V, et al. . Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer’s disease treatment. Biochim Biophys Acta Mol Basis Dis 2017;1863:607–19. PubMed
Nepovimova E, Korabecny J, Dolezal R, et al. . Tacrine-trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 2015;58:8985–9003. PubMed
Nepovimova E, Uliassi E, Korabecny J, et al. . Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J Med Chem 2014;57:8576–89. PubMed
Spilovska K, Korabecny J, Nepovimova E, et al. . Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease. Curr Top Med Chem 2017;17:1006–26. PubMed
Tumiatti V, Minarini A, Bolognesi ML, et al. . Tacrine derivatives and Alzheimer’s disease. Curr Med Chem 2010;17:1825–38. PubMed
Dejmek L. 7-MEOTA. Drugs Future 1990;15:126–9.
Koupilova M, Hrdina V, Fusek J. Exploitation of the antagonistic properties of some drugs against poisoning with psychochemicals. Activitas Nervosa Superior 1981;23:292–3. PubMed
Bajgar J, Fusek J, Patoka J, Hrdina V. Protective effect of 9-amino-7-methoxy-1,2,3,4-tetra-hydroacridine against inhibition of acetylcholinesterase by o-ethyl s-(2-dimethylaminoethyl) methylphosphonotioate in vivo. Arch Toxicol 1983;54:163–6. PubMed
Mansouri A, Haouzi D, Descatoire V, et al. . Tacrine inhibits topoisomerases and DNA synthesis to cause mitochondrial DNA depletion and apoptosis in mouse liver. Hepatology 2003;38:715–25. PubMed
Freudenreich CH, Kreuzer KN. Localization of an aminoacridine antitumor agent in a type-ii topoisomerase DNA complex. Proc Natl Acad Sci USA 1994;91:11007–11. PubMed PMC
Li TK, Liu LF. Tumor cell death induced by topoisomerase-targeting drugs. Ann Rev Pharm Toxicol 2001;41:53–77. PubMed
Lin JH, Castora FJ. DNA topoisomerase II from mammalian mitochondria is inhibited by the antitumor drugs, m-AMSA and VM-26. Biochem Biophys Res Commun 1991;176:690–7. PubMed
Skladanowski A, Plisov SY, Konopa J, Larsen AK. Inhibition of DNA topoisomerase II by imidazoacridinones, new antineoplastic agents with strong activity against solid tumors. Mol Pharmacol 1996;49:772–80. PubMed
Chen TK, Fico R, Canellakis ES. Diacridines, bifunctional intercalators. Chemistry and antitumor activity. J Med Chem 1978;21:868–74. PubMed
Denny WA. DNA-intercalating ligands as anti-cancer drugs: prospects for future design. Anti-Cancer Drug Design 1989;4:241–63. PubMed
Janočková J, Plšíková J, Koval’ J, et al. . Tacrine derivatives as dual topoisomerase I and II catalytic inhibitors. Bioorg Chem 2015;59:168–76. PubMed
Bailly C. Homocamptothecins: potent topoisomerase I inhibitors and promising anticancer drugs. Crit Rev Oncol Hematol 2003;45:91–108. PubMed
Salerno S, Da Settimo F, Taliani S, et al. . Recent advances in the development of dual topoisomerase I and II inhibitors as anticancer drugs. Curr Med Chem 2010;17:4270–90. PubMed
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35:495–516. PubMed PMC
Fox JL, MacFarlane M. Targeting cell death signalling in cancer: minimising ‘collateral damage’. Br J Cancer 2016;115:5–11. PubMed PMC
Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. Cancer J Clin 2005;55:178–94. PubMed
Andrs M, Korabecny J, Jun D, et al. . Phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring. J Med Chem 2015;58:41–71. PubMed
Papaphilis AD, Shaw YH. Interaction of acridines and tetrahydroacridines with DNA at low DNA/dye ratios. Biochim Biophys Acta 1977;476:122–30. PubMed
Crenshaw JM, Graves DE, Denny WA. Interactions of acridine antitumor agents with DNA: binding energies and groove preferences. Biochemistry 1995;34:13682–7. PubMed
Nelson EM, Tewey KM, Liu LF. Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4'-(9-acridinylamino)-methanesulfon-m-anisidide. Proc Natl Acad Sci USA 1984;81:1361–5. PubMed PMC
Korabecny J, Dolezal R, Cabelova P, et al. . 7-MEOTA-donepezil like compounds as cholinesterase inhibitors: synthesis, pharmacological evaluation, molecular modeling and QSAR studies. Eur J Med Chem 2014;82:426–38. PubMed
Spilovska K, Korabecny J, Kral J, et al. . 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment – synthesis, biological evaluation and molecular modeling studies. Molecules 2013;18:2397–418. PubMed PMC
Hamulakova S, Janovec L, Hrabinova M, et al. . Synthesis, design and biological evaluation of novel highly potent tacrine congeners for the treatment of Alzheimer’s disease. Eur J Med Chem 2012;55:23–31. PubMed
Los M, Burek CJ, Stroh C, et al. . Anticancer drugs of tomorrow: apoptotic pathways as targets for drug design. Drug Discov Today 2003;8:67–77. PubMed
Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Different 2003;10:709–17. PubMed
Zhang B, Li X, Li B, et al. . Acridine and its derivatives: a patent review (2009–2013). Exp Opin Therap Patents 2014;24:647–64. PubMed
Hsiang YH, Lihou MG, Liu LF. Arrest of replication forks by drug-stabilized topoisomerase i-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 1989;49:5077–82. PubMed
Zhu HJ, Gooderham NJ. Mechanisms of induction of cell cycle arrest and cell death by cryptolepine in human lung adenocarcinoma A549 cells. Toxicol Sci 2006;91:132–9. PubMed
Hu MK. Synthesis and in-vitro anticancer evaluation of bis-tacrine congeners. J Pharm Pharmacol 2001;53:83–8. PubMed
Spicer JA, Gamage SA, Rewcastle GW, et al. . Bis(phenazine-1-carboxamides): structure − activity relationships for a new class of dual topoisomerase I/II-directed anticancer drugs. J Med Chem 2000;43:1350–8. PubMed
Braña MF, Castellano JM, Perron D, et al. . Chromophore-modified bis-naphthalimides: synthesis and antitumor activity of bis-dibenz[de,h]isoquinoline-1,3-diones. J Med Chem 1997;40:449–54. PubMed
Hallgas B, Patonay T, Kiss-Szikszai A, et al. . Comparison of measured and calculated lipophilicity of substituted aurones and related compounds. J Chromatogr B Anal Technol Biomed Life Sci 2004;801:229–35. PubMed
Alonso C, Fuertes M, Gonzalez M, et al. . Synthesis and biological evaluation of indeno[1,5]naphthyridines as topoisomerase I (TopI) inhibitors with antiproliferative activity. Eur J Med Chem 2016;115:179–90. PubMed
Goodell JR, Madhok AA, Hiasa H, Ferguson DM. Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity. Bioorg Med Chem 2006;14:5467–80. PubMed
Kumar A, Ehrenshaft M, Tokar EJ, et al. . Nitric oxide inhibits topoisomerase II activity and induces resistance to topoisomerase II-poisons in human tumor cells. Biochim Biophys Acta General Subjects 2016;1860:1519–27. PubMed PMC
Wethington SL, Wright JD, Herzog TJ. Key role of topoisomerase I inhibitors in the treatment of recurrent and refractory epithelial ovarian carcinoma. Exp Rev Anticancer Ther 2008;8:819–31. PubMed
Ikeguchi M, Arai Y, Maeta Y, et al. . Topoisomerase I expression in tumors as a biological marker for CPT-11 chemosensitivity in patients with colorectal cancer. Surgery Today 2011;41:1196–9. PubMed
McClendon AK, Osheroff N. DNA topoisomerase II, genotoxicity, and cancer. Mutat Res Fund Mol Mechan Mutag 2007;623:83–97. PubMed PMC
Topcu Z. DNA topoisomerases as targets for anticancer drugs. J Clin Pharm Therap 2001;26:405–16. PubMed
Vos SM, Tretter EM, Schmidt BH, Berger JM. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 2011;12:827–41. PubMed PMC
Janockova J, Gulasova Z, Plsikova J, et al. . Interaction of cholinesterase modulators with DNA and their cytotoxic activity. Int J Biol Macrom 2014;64:53–62. PubMed
Larsen AK, Escargueil AE, Skladanowski A. Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther 2003;99:167–81. PubMed
Baviskar AT, Amrutkar SM, Trivedi N, et al. . Switch in site of inhibition: a strategy for structure-based discovery of human topoisomerase IIalpha catalytic inhibitors. ACS Med Chem Lett 2015;6:481–5. PubMed PMC
Vispe S, Vandenberghe I, Robin M, et al. . Novel tetra-acridine derivatives as dual inhibitors of topoisomerase II and the human proteasome. Biochem Pharmacol 2007;73:1863–72. PubMed
Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 2009;9:338–50. PubMed PMC
Denny WA. Emerging DNA topoisomerase inhibitors as anticancer drugs. Exp Opin Emerg Drugs 2004;9:105–33. PubMed
Jensen PB, Sehested M. DNA topoisomerase II rescue by catalytic inhibitors: a new strategy to improve the antitumor selectivity of etoposide. Biochem Pharmacol 1997;54:755–9. PubMed
Koceva-Chyla A, Jedrzejczak M, Skierski J, et al. . Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: relation to drug cytotoxicity and caspase-3 activation. Apoptosis 2005;10:1497–514. PubMed
Lu Z, Wientjes TSS, Au JS. Nontoxic suramin treatments enhance docetaxel activity in chemotherapy-pretreated non-small cell lung xenograft tumors. Pharm Res 2005;22:1069–78. PubMed
Yoshida M, Maehara Y, Sugimachi K. MST-16, a novel bis-dioxopiperazine anticancer agent, ameliorates doxorubicin-induced acute toxicity while maintaining antitumor efficacy. Clin Cancer Res 1999;5:4295–300. PubMed
Sarwar T, Rehman SU, Husain MA, et al. . Interaction of coumarin with calf thymus DNA: deciphering the mode of binding by in vitro studies. Int J Biol Macrom 2015;73:9–16. PubMed
Vantova Z, Paulikova H, Sabolova D, et al. . Cytotoxic activity of acridin-3,6-diyl dithiourea hydrochlorides in human leukemia line HL-60 and resistant subline HL-60/ADR. Int J Biol Macromol 2009;45:174–80. PubMed
Kozurkova M, Sabolova D, Janovec L, et al. . Cytotoxic activity of proflavine diureas: synthesis, antitumor, evaluation and DNA binding properties of 1',1''-(acridin-3,6-diyl)-3',3''-dialkyldiureas. Bioorg Med Chem 2008;16:3976–84. PubMed
Chaveerach U, Meenongwa A, Trongpanich Y, et al. . DNA binding and cleavage behaviors of copper(II) complexes with amidino-O-methylurea and N-methylphenyl-amidino-O-methylurea, and their antibacterial activities. Polyhedron 2010;29:731–8.
Tao M, Zhang GW, Xiong CH, Pan JH. Characterization of the interaction between resmethrin and calf thymus DNA in vitro. New J Chem 2015;39:3665–74.
Janockova J, Zilecka E, Kasparkova J, et al. . Assessment of DNA-binding affinity of cholinesterase reactivators and electrophoretic determination of their effect on topoisomerase I and II activity. Mol Biosys 2016;12:2910–20. PubMed
Lakowicz JR. Principles of fluorescence spectroscopy In: Lakowicz JR, ed. Quenching of fluorescence. Boston, MA: Springer US; 2006:277–330.
Kashanian S, Khodaei MM, Pakravan P. Spectroscopic studies on the interaction of isatin with calf thymus DNA. DNA Cell Biol 2010;29:639–46. PubMed
Qiao CY, Bi SY, Sun Y, et al. . Study of interactions of anthraquinones with DNA using ethidium bromide as a fluorescence probe. Spectrochim Acta A Mol Biomol Spectrosc 2008;70:136–43. PubMed
Tian FF, Jiang FL, Han XL, et al. . Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods. J Phys Chem B 2010;114:14842–53. PubMed
Khan SN, Danishuddin M, Khan AU. Inhibition of transcription factor assembly and structural stability on mitoxantrone binding with DNA. Biosci Rep 2010;30:331–40. PubMed
Shahabadi N, Fili SM, Kheirdoosh F. Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques. J Photochem Photobiol B Biol 2013;128:20–6. PubMed
Rodger A. Circular dichroism and linear dichroism. Encyclopedia of analytical chemistry. New York: John Wiley & Sons, Ltd; 2006.
Ranjbar B, Gill P. Circular dichroism techniques: biomolecular and nanostructural analyses – a review. Chem Biol Drug Design 2009;74:101–20. PubMed
Pabbathi A, Samanta A. Spectroscopic and molecular docking study of the interaction of DNA with a morpholinium ionic liquid. J Phys Chem B 2015;119:11099–105. PubMed
Nordén B, Kurucsev T. Analysing DNA complexes by circular and linear dichroism. J Mol Recognit 1994;7:141–55. PubMed
Galindo MA, Olea D, Romero MA, et al. . Design and non-covalent DNA binding of platinum(II) metallacalix[4]arenes. Chem Eur J 2007;13:5075–81. PubMed
Pascu GI, Hotze ACG, Sanchez-Cano C, et al. . Dinuclear ruthenium(II) triple-stranded helicates: luminescent supramolecular cylinders that bind and coil DNA and exhibit activity against cancer cell lines. Angew Chem Int Ed 2007;46:4374–8. PubMed
Hilovska L, Jendzelovsky R, Jendzelovska Z, et al. . Downregulation of BCRP and anti-apoptotic proteins by proadifen (SKF-525A) is responsible for the enhanced mitoxantrone accumulation and toxicity in mitoxantrone-resistant human promyelocytic leukemia cells. Int J Oncol 2015;47:1572–84. PubMed
Jendzelovsky R, Jendzelovska Z, Hilovska L, et al. . Proadifen sensitizes resistant ovarian adenocarcinoma cells to cisplatin. Toxicol Lett 2016;243:56–66. PubMed
Janockova J, Plsikova J, Kasparkova J, et al. . Inhibition of DNA topoisomerases I and II and growth inhibition of HL-60 cells by novel acridine-based compounds. Eur J Pharm Sci 2015;76:192–202. PubMed
Plsikova J, Janovec L, Koval J, et al. . 3,6-Bis(3-alkylguanidino)acridines as DNA-intercalating antitumor agents. Eur J Med Chem 2012;57:283–95. PubMed
Jenkins TC. Optical absorbance and fluorescence techniques for measuring DNA-drug interactions. Meth Mol Biol 1997;90:195–218. PubMed
McGhee JD, von Hippel PH. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 1974;86:469–89. PubMed
Lerman LS. Structural considerations in the interaction of DNA and acridines. J Mol Biol 1961;3:18–IN4. PubMed
Haris P, Mary V, Aparna P, et al. . A comprehensive approach to ascertain the binding mode of curcumin with DNA. Spectrochim Acta A Mol Biomol Spectrosc 2017;175:155–63. PubMed
Gharagozlou M, Boghaei DM. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies. Spectrochim Acta A Mol Biomol Spectrosc 2008;71:1617–22. PubMed
Rehman SU, Sarwar T, Husain MA, et al. . Studying non-covalent drug-DNA interactions. Arch Biochem Biophys 2015;576:49–60. PubMed
Bielavsky J. Analogs of 9-amino-1,2,3,4-tetrahydroacridine. Collect Czechoslovak Chem Commun 1977;42:2802–8.
Mezeiova E, Korabecny J, Sepsova V, et al. . Development of 2-methoxyhuprine as novel lead for Alzheimer’s disease therapy. Molecules 2017;22:1–19. PubMed PMC