Tacrine-Coumarin Derivatives as Topoisomerase Inhibitors with Antitumor Effects on A549 Human Lung Carcinoma Cancer Cell Lines

. 2021 Feb 20 ; 26 (4) : . [epub] 20210220

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33672694

Grantová podpora
1/0016/18 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
UHHK 00179906 MH CZ - DRO
ITMS2014+313011D103 Operational program Research and Innovations for project Medical University Scientific Park in Košice

A549 human lung carcinoma cell lines were treated with a series of new drugs with both tacrine and coumarin pharmacophores (derivatives 1a-2c) in order to test the compounds' ability to inhibit both cancer cell growth and topoisomerase I and II activity. The ability of human topoisomerase I (hTOPI) and II to relax supercoiled plasmid DNA in the presence of various concentrations of the tacrine-coumarin hybrid molecules was studied with agarose gel electrophoresis. The biological activities of the derivatives were studied using MTT assays, clonogenic assays, cell cycle analysis and quantification of cell number and viability. The content and localization of the derivatives in the cells were analysed using flow cytometry and confocal microscopy. All of the studied compounds were found to have inhibited topoisomerase I activity completely. The effect of the tacrine-coumarin hybrid compounds on cancer cells is likely to be dependent on the length of the chain between the tacrine and coumarin moieties (1c, 1d = tacrine-(CH2)8-9-coumarin). The most active of the tested compounds, derivatives 1c and 1d, both display longer chains.

Zobrazit více v PubMed

Hamulakova S., Poprac P., Jomova K., Brezova V., Lauro P., Drostinova L., Jun D., Sepsova V., Hrabinova M., Soukup O., et al. Targeting copper (II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer’s disease using multifunctional tacrine-coumarin hybrid molecules. J. Inorg. Biochem. 2016;161:52–62. doi: 10.1016/j.jinorgbio.2016.05.001. PubMed DOI

Meng T., Qin Q.P., Wang Z.R., Peng L.T., Zou H.H., Gan Z.-Y., Tan M.-X., Wang K., Liang F.-P. Synthesis and biological evaluation of substituted 3-(2′-benzimidazolyl) coumarin platinum (II) complexes as new telomerase inhibitors. J. Inorg. Biochem. 2018;189:143–150. doi: 10.1016/j.jinorgbio.2018.09.004. PubMed DOI

Menezes J.C.J.M.D.S., Diederich M.F. Natural dimers of coumarin; chalcones, and resveratrol and the link between structure and pharmacology. Eur. J. Med. Chem. 2019;182:111637. doi: 10.1016/j.ejmech.2019.111637. PubMed DOI

Akkol K.E., Genç Y., Karpuz B., Sobarzo-Sánchez E., Capasso R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers. 2020;12:1959. doi: 10.3390/cancers12071959. PubMed DOI PMC

Carniero A., Matos M.J., Uriarte E., Santana L. Trending topics on coumarin and its derivatives. Molecules. 2021;26:501. doi: 10.3390/molecules26020501. PubMed DOI PMC

Goud N.S., Kumar P., Bharath R.W. Recent developments of target based coumarin derivatives as potential anticancer agents. Mini-Rev. Med. Chem. 2020;20:1754–1766. doi: 10.2174/1389557520666200510000718. PubMed DOI

Al-Warhi T., Sabt A., Elkaeed E.B., Eldehna W.M. Recent advancements of coumarin-based anticancer agents: An up-to-date Review. Bioorg. Chem. 2020;103:104163. doi: 10.1016/j.bioorg.2020.104163. PubMed DOI

Endo S., Oguri H., Segawa J., Kawai M., Hu D., Xia S., Okada T., Irie K., Fujii S., Gouda H., et al. Development of novel AKR1C3 inhibitors as new potential treatment for castration-resistant prostate cancer. Med. Chem. 2020;63:10396–10411. doi: 10.1021/acs.jmedchem.0c00939. PubMed DOI

Finn G., Kenealy E., Creaven B., Egan D. In vitro cytotoxic potential and mechanism of action of selected coumarins; using human renal cell lines. Cancer Lett. 2002;183:61–68. doi: 10.1016/S0304-3835(02)00102-7. PubMed DOI

Nautiyal J., Banerjee S., Kanwar S.S., Yu Y., Patel B.B., Sarkar F.H., Majumdar A.P. Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. Int. J. Cancer. 2011;128:951–961. doi: 10.1002/ijc.25410. PubMed DOI PMC

Purohit A., Foster P.A. Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers. J. Endocrinol. 2012;212:99–110. doi: 10.1530/JOE-11-0266. PubMed DOI

Pádua D., Rocha E., Gargiulo D.R., Ramos A.A. Bioactive compounds from brown seaweeds: Phloroglucinol, Fucoxanthin and Fucoidan as promising therapeutic agents against breast cancer. Phytochem. Lett. 2015;14:91–98. doi: 10.1016/j.phytol.2015.09.007. DOI

Curini M., Cravotto G., Epifano F., Giannone G. Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr. Med. Chem. 2006;13:199–222. doi: 10.2174/092986706775197890. PubMed DOI

Chirieac L.R., Dacic S. Target therapies in lung cancer. Surg. Pathol. Clin. 2010;3:71–82. doi: 10.1016/j.path.2010.04.001. PubMed DOI PMC

Meng Y., Bai X., Huang Y., He L., Zhang Z., Li X., Cui D., Zang X. Basic fibroblast growth factor signaling regulates cancer stem cells in lung cancer A549 cells. J. Pharm. Pharm. 2019;71:1412–1420. doi: 10.1111/jphp.13136. PubMed DOI

Kumar M., Singla R., Dandriyal J., Jaitak V. Coumarin derivatives as anticancer agents for lung cancer therapy: A review. Anticancer Agents Med. Chem. 2018;18:964–984. doi: 10.2174/1871520618666171229185926. PubMed DOI

Hueso-Falcon I., Amesty A., Anaissi-Alfonso L., Lozenzo-Castrillejo I., Machin F., Estevez-Braun A. Synthesis and biological evaluation of naphtoquinone-coumarin conjugates ass topoisomerase II inhibitors. Bioorg. Med. Chem. Lett. 2017;27:484–489. doi: 10.1016/j.bmcl.2016.12.040. PubMed DOI

Liang X., Wu Q., Luan S., Yin Z., He C., Yin L., He C., Yin L., Zou Y., Yuan Z., et al. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur. J. Med. Chem. 2019;171:129–168. doi: 10.1016/j.ejmech.2019.03.034. PubMed DOI

Paul K., Bindal S., Luxami V. Synthesis of new conjugated coumarin–benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett. 2013;23:3667–3672. doi: 10.1016/j.bmcl.2012.12.071. PubMed DOI

Chen H., Li S., Yao Y., Zhou L., Zhao J., Gu Y., Wang K., Li X. Design, synthesis, and anti-tumor activities of novel triphenylethylene-coumarin hybrids, and their interactions with ct-DNA. Bioorg. Med. Chem. Lett. 2013;23:4785–4789. doi: 10.1016/j.bmcl.2013.07.009. PubMed DOI

Musa M.A., Badisa V.L., Latinwo L.M., Patterson T.A., Owens M.A. Coumarin-based benzopyranone derivatives induced apoptosis in human lung (A549) cancer cells. Anticancer Res. 2012;32:4271–4276. PubMed

Vijay Avin B.R., Thirusangu P., Lakshmi Ranganatha V., Firdouse A., Prabhakar B.T., Khanum S.A. Synthesis and tumor inhibitory activity of novel coumarin analogs targeting angiogenesis and apoptosis. Eur. J. Med. Chem. 2014;75:211–221. doi: 10.1016/j.ejmech.2014.01.050. PubMed DOI

Kozurkova M., Kristian P. Biological characteristics of tacrine derivatives. In: Kristian P., editor. Acridine isothiocyanates: Chemistry and Biology. Lambert Academic Publishing; Saarbrücken, Germany: 2014. pp. 206–233.

Kozurkova M., Hamulakova S., Gazova Z., Paulikova H., Kristian P. Neuroactive multifunctional tacrine congeners with cholinesterase, anti-amyloid aggregation and neuroprotective properties. Pharmaceuticals. 2011;7:4382–4418. doi: 10.3390/ph4020382. DOI

Agbo E.N., Gildenhuys S., Choong Y.S., Mphahlele M.J., More G.K. Synthesis of furocoumarin-stilbene hybrids as potential multifunctional drugs against multiple biochemical targets associated with Alzheimer’s disease. Bioorg. Chem. 2020;101:103997. doi: 10.1016/j.bioorg.2020.103997. PubMed DOI

Mansouri A., Haouzi D., Descatoire V., Demeilliers C.H., Sutton A., Vadrot N., Fromenty B., Feldman G., Pessayre D., Berson A. Tacrine inhibits topoisomerase and DNA synthesis to cause mitochondrial DNA depletion and apoptosis in mouse liver. Hepatology. 2003;38:715–725. doi: 10.1053/jhep.2003.50353. PubMed DOI

Snyder R.D., Arone M.R. Putative identification of functional interaction s between DNA intercalating agents and topoisomerase II using the V79 in vitro micronucleus assay. Mutat. Res. 2002;503:21–35. doi: 10.1016/S0027-5107(02)00028-3. PubMed DOI

Krajňáková L., Pisarčíková J., Drajna L., Labudova M., Imrich J., Paulikova H., Kožurková M. Intracellular distribution of new tacrine analogues as a potential cause of their cytotoxicity against human neuroblastoma cells SH-SY5Y. Med. Chem. Res. 2018;27:2353–2365. doi: 10.1007/s00044-019-02326-4. DOI

Sabolová D., Kristian P., Kožurková M. Multifunctional properties of novel tacrine congeners: Cholinesterase inhibition and cytotoxic activity. J. Appl. Tox. 2018;38:1377–1387. doi: 10.1002/jat.3622. PubMed DOI

Singh H., Vir Singh J., Bhagat K., Kaur Gulati H., Sanduja M., Kumar N., Kinarivala N., Sharma S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg. Med. Chem. 2019;27:3477–3510. doi: 10.1016/j.bmc.2019.06.033. PubMed DOI PMC

Thomas A., Bates S., Figg W.D., Pommier Y. DNA Topoisomerase targeting drugs. Holl. -Frei. Cancer Med. 2017:1–17.

Shi W.L., Marcus S., Lowary T. Cytotoxicity and topoisomerase I/II inhibition of glycosylated 2-phenyl-indoles, 2-phenyl-benzo[b]thiophenes and 2-phenyl-benzo[b] furans. Bioorg. Med. Chem. 2011;19:603–612. doi: 10.1016/j.bmc.2010.10.054. PubMed DOI

Konkoľová E., Janočková J., Perjési P., Vašková J., Kožurková M. Selected ferrocenyl chalcones as DNA/BSA-interacting agents and inhibitors of DNA topoisomerase I and II activity. J. Organomet. Chem. 2018;861:1–9. doi: 10.1016/j.jorganchem.2018.01.031. DOI

Solárová Z., Kello M., Hamuľáková S., Mirossay L., Solár P. Anticancer effect of tacrine-coumarin derivatives on diverse human and mouse cancer cell lines. Acta Chim. Slov. 2018;65:875–881. doi: 10.17344/acsi.2018.4519. PubMed DOI

Hu M.-K. Synthesis and in-vitro anticancer evaluation of bis-tacrine congeners. J. Pharm. Pharm. 2000;53:83–88. doi: 10.1211/0022357011775046. PubMed DOI

Roldan-Pena J.M., Alejandre-Ramos D., Lopez O., Maya I., Lagunes I., Padron J.M., Pena-Altamira L.E., Bartolini M., Monti B., Bolognesi M.L., et al. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer´s and antiproliferative agents. Eur. J. Med. Chem. 2017;138:761–773. doi: 10.1016/j.ejmech.2017.06.048. PubMed DOI

Janočková J., Korabečný J., Plšíková J., Babková K., Konkoľová E., Kučerová D., Vargová J., Kovaľ J., Jendželovský R., Fedoročko P., et al. In vitro investigating of anticancer activity of new 7-MEOTA-tacrine heterodimers. J. Enz. Inhib. Med. Chem. 2019;34:877–897. doi: 10.1080/14756366.2019.1593159. PubMed DOI PMC

Brunet C.L., Gunby R.H., Benson R.S.P., Hickman J.A., Watson A.J.M., Brady G. Commitment to cell death measured by loss of clonogenicity is separable from the appearance of apoptotic markers. Cell Death Differ. 1998;5:107–115. doi: 10.1038/sj.cdd.4400334. PubMed DOI

Janočková J., Plšíková J., Kašpárková J., Brabec V., Jendželovský R., Mikeš J., Kovaľ J., Hamuľaková S., Fedoročko P., Kuča K., et al. Inhibition of DNA topoisomerases I and II and growth inhibition of HL-60 cells by novel acridine-based compounds. Eur. J. Med. Chem. 2015;76:192–202. doi: 10.1016/j.ejps.2015.04.023. PubMed DOI

Konkoľová E., Hudáčová M., Hamuľaková S., Kožurková M. Spectroscopic evaluation of novel tacrine-coumarin hybrids as BSA-interacting agents. Org. Med. Chem. Int. J. 2019;8:1–7.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...