Tacrine-Coumarin Derivatives as Topoisomerase Inhibitors with Antitumor Effects on A549 Human Lung Carcinoma Cancer Cell Lines
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0016/18
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
UHHK 00179906
MH CZ - DRO
ITMS2014+313011D103
Operational program Research and Innovations for project Medical University Scientific Park in Košice
PubMed
33672694
PubMed Central
PMC7924348
DOI
10.3390/molecules26041133
PII: molecules26041133
Knihovny.cz E-zdroje
- Klíčová slova
- A549, DNA, cytotoxicity, lung carcinoma cells, tacrine-coumarin derivatives, topoisomerases I, II,
- MeSH
- buňky A549 MeSH
- DNA-topoisomerasy I metabolismus MeSH
- DNA-topoisomerasy typu II metabolismus MeSH
- inhibitory topoisomerasy I chemie farmakologie MeSH
- inhibitory topoisomerasy II chemie farmakologie MeSH
- kumariny chemie farmakologie MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buňky kultivované MeSH
- proliferace buněk účinky léků MeSH
- proteiny vázající poly-ADP-ribosu antagonisté a inhibitory metabolismus MeSH
- protinádorové látky chemie farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- takrin chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-topoisomerasy I MeSH
- DNA-topoisomerasy typu II MeSH
- inhibitory topoisomerasy I MeSH
- inhibitory topoisomerasy II MeSH
- kumariny MeSH
- proteiny vázající poly-ADP-ribosu MeSH
- protinádorové látky MeSH
- takrin MeSH
- TOP1 protein, human MeSH Prohlížeč
- TOP2A protein, human MeSH Prohlížeč
A549 human lung carcinoma cell lines were treated with a series of new drugs with both tacrine and coumarin pharmacophores (derivatives 1a-2c) in order to test the compounds' ability to inhibit both cancer cell growth and topoisomerase I and II activity. The ability of human topoisomerase I (hTOPI) and II to relax supercoiled plasmid DNA in the presence of various concentrations of the tacrine-coumarin hybrid molecules was studied with agarose gel electrophoresis. The biological activities of the derivatives were studied using MTT assays, clonogenic assays, cell cycle analysis and quantification of cell number and viability. The content and localization of the derivatives in the cells were analysed using flow cytometry and confocal microscopy. All of the studied compounds were found to have inhibited topoisomerase I activity completely. The effect of the tacrine-coumarin hybrid compounds on cancer cells is likely to be dependent on the length of the chain between the tacrine and coumarin moieties (1c, 1d = tacrine-(CH2)8-9-coumarin). The most active of the tested compounds, derivatives 1c and 1d, both display longer chains.
Zobrazit více v PubMed
Hamulakova S., Poprac P., Jomova K., Brezova V., Lauro P., Drostinova L., Jun D., Sepsova V., Hrabinova M., Soukup O., et al. Targeting copper (II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer’s disease using multifunctional tacrine-coumarin hybrid molecules. J. Inorg. Biochem. 2016;161:52–62. doi: 10.1016/j.jinorgbio.2016.05.001. PubMed DOI
Meng T., Qin Q.P., Wang Z.R., Peng L.T., Zou H.H., Gan Z.-Y., Tan M.-X., Wang K., Liang F.-P. Synthesis and biological evaluation of substituted 3-(2′-benzimidazolyl) coumarin platinum (II) complexes as new telomerase inhibitors. J. Inorg. Biochem. 2018;189:143–150. doi: 10.1016/j.jinorgbio.2018.09.004. PubMed DOI
Menezes J.C.J.M.D.S., Diederich M.F. Natural dimers of coumarin; chalcones, and resveratrol and the link between structure and pharmacology. Eur. J. Med. Chem. 2019;182:111637. doi: 10.1016/j.ejmech.2019.111637. PubMed DOI
Akkol K.E., Genç Y., Karpuz B., Sobarzo-Sánchez E., Capasso R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers. 2020;12:1959. doi: 10.3390/cancers12071959. PubMed DOI PMC
Carniero A., Matos M.J., Uriarte E., Santana L. Trending topics on coumarin and its derivatives. Molecules. 2021;26:501. doi: 10.3390/molecules26020501. PubMed DOI PMC
Goud N.S., Kumar P., Bharath R.W. Recent developments of target based coumarin derivatives as potential anticancer agents. Mini-Rev. Med. Chem. 2020;20:1754–1766. doi: 10.2174/1389557520666200510000718. PubMed DOI
Al-Warhi T., Sabt A., Elkaeed E.B., Eldehna W.M. Recent advancements of coumarin-based anticancer agents: An up-to-date Review. Bioorg. Chem. 2020;103:104163. doi: 10.1016/j.bioorg.2020.104163. PubMed DOI
Endo S., Oguri H., Segawa J., Kawai M., Hu D., Xia S., Okada T., Irie K., Fujii S., Gouda H., et al. Development of novel AKR1C3 inhibitors as new potential treatment for castration-resistant prostate cancer. Med. Chem. 2020;63:10396–10411. doi: 10.1021/acs.jmedchem.0c00939. PubMed DOI
Finn G., Kenealy E., Creaven B., Egan D. In vitro cytotoxic potential and mechanism of action of selected coumarins; using human renal cell lines. Cancer Lett. 2002;183:61–68. doi: 10.1016/S0304-3835(02)00102-7. PubMed DOI
Nautiyal J., Banerjee S., Kanwar S.S., Yu Y., Patel B.B., Sarkar F.H., Majumdar A.P. Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. Int. J. Cancer. 2011;128:951–961. doi: 10.1002/ijc.25410. PubMed DOI PMC
Purohit A., Foster P.A. Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers. J. Endocrinol. 2012;212:99–110. doi: 10.1530/JOE-11-0266. PubMed DOI
Pádua D., Rocha E., Gargiulo D.R., Ramos A.A. Bioactive compounds from brown seaweeds: Phloroglucinol, Fucoxanthin and Fucoidan as promising therapeutic agents against breast cancer. Phytochem. Lett. 2015;14:91–98. doi: 10.1016/j.phytol.2015.09.007. DOI
Curini M., Cravotto G., Epifano F., Giannone G. Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr. Med. Chem. 2006;13:199–222. doi: 10.2174/092986706775197890. PubMed DOI
Chirieac L.R., Dacic S. Target therapies in lung cancer. Surg. Pathol. Clin. 2010;3:71–82. doi: 10.1016/j.path.2010.04.001. PubMed DOI PMC
Meng Y., Bai X., Huang Y., He L., Zhang Z., Li X., Cui D., Zang X. Basic fibroblast growth factor signaling regulates cancer stem cells in lung cancer A549 cells. J. Pharm. Pharm. 2019;71:1412–1420. doi: 10.1111/jphp.13136. PubMed DOI
Kumar M., Singla R., Dandriyal J., Jaitak V. Coumarin derivatives as anticancer agents for lung cancer therapy: A review. Anticancer Agents Med. Chem. 2018;18:964–984. doi: 10.2174/1871520618666171229185926. PubMed DOI
Hueso-Falcon I., Amesty A., Anaissi-Alfonso L., Lozenzo-Castrillejo I., Machin F., Estevez-Braun A. Synthesis and biological evaluation of naphtoquinone-coumarin conjugates ass topoisomerase II inhibitors. Bioorg. Med. Chem. Lett. 2017;27:484–489. doi: 10.1016/j.bmcl.2016.12.040. PubMed DOI
Liang X., Wu Q., Luan S., Yin Z., He C., Yin L., He C., Yin L., Zou Y., Yuan Z., et al. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur. J. Med. Chem. 2019;171:129–168. doi: 10.1016/j.ejmech.2019.03.034. PubMed DOI
Paul K., Bindal S., Luxami V. Synthesis of new conjugated coumarin–benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett. 2013;23:3667–3672. doi: 10.1016/j.bmcl.2012.12.071. PubMed DOI
Chen H., Li S., Yao Y., Zhou L., Zhao J., Gu Y., Wang K., Li X. Design, synthesis, and anti-tumor activities of novel triphenylethylene-coumarin hybrids, and their interactions with ct-DNA. Bioorg. Med. Chem. Lett. 2013;23:4785–4789. doi: 10.1016/j.bmcl.2013.07.009. PubMed DOI
Musa M.A., Badisa V.L., Latinwo L.M., Patterson T.A., Owens M.A. Coumarin-based benzopyranone derivatives induced apoptosis in human lung (A549) cancer cells. Anticancer Res. 2012;32:4271–4276. PubMed
Vijay Avin B.R., Thirusangu P., Lakshmi Ranganatha V., Firdouse A., Prabhakar B.T., Khanum S.A. Synthesis and tumor inhibitory activity of novel coumarin analogs targeting angiogenesis and apoptosis. Eur. J. Med. Chem. 2014;75:211–221. doi: 10.1016/j.ejmech.2014.01.050. PubMed DOI
Kozurkova M., Kristian P. Biological characteristics of tacrine derivatives. In: Kristian P., editor. Acridine isothiocyanates: Chemistry and Biology. Lambert Academic Publishing; Saarbrücken, Germany: 2014. pp. 206–233.
Kozurkova M., Hamulakova S., Gazova Z., Paulikova H., Kristian P. Neuroactive multifunctional tacrine congeners with cholinesterase, anti-amyloid aggregation and neuroprotective properties. Pharmaceuticals. 2011;7:4382–4418. doi: 10.3390/ph4020382. DOI
Agbo E.N., Gildenhuys S., Choong Y.S., Mphahlele M.J., More G.K. Synthesis of furocoumarin-stilbene hybrids as potential multifunctional drugs against multiple biochemical targets associated with Alzheimer’s disease. Bioorg. Chem. 2020;101:103997. doi: 10.1016/j.bioorg.2020.103997. PubMed DOI
Mansouri A., Haouzi D., Descatoire V., Demeilliers C.H., Sutton A., Vadrot N., Fromenty B., Feldman G., Pessayre D., Berson A. Tacrine inhibits topoisomerase and DNA synthesis to cause mitochondrial DNA depletion and apoptosis in mouse liver. Hepatology. 2003;38:715–725. doi: 10.1053/jhep.2003.50353. PubMed DOI
Snyder R.D., Arone M.R. Putative identification of functional interaction s between DNA intercalating agents and topoisomerase II using the V79 in vitro micronucleus assay. Mutat. Res. 2002;503:21–35. doi: 10.1016/S0027-5107(02)00028-3. PubMed DOI
Krajňáková L., Pisarčíková J., Drajna L., Labudova M., Imrich J., Paulikova H., Kožurková M. Intracellular distribution of new tacrine analogues as a potential cause of their cytotoxicity against human neuroblastoma cells SH-SY5Y. Med. Chem. Res. 2018;27:2353–2365. doi: 10.1007/s00044-019-02326-4. DOI
Sabolová D., Kristian P., Kožurková M. Multifunctional properties of novel tacrine congeners: Cholinesterase inhibition and cytotoxic activity. J. Appl. Tox. 2018;38:1377–1387. doi: 10.1002/jat.3622. PubMed DOI
Singh H., Vir Singh J., Bhagat K., Kaur Gulati H., Sanduja M., Kumar N., Kinarivala N., Sharma S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg. Med. Chem. 2019;27:3477–3510. doi: 10.1016/j.bmc.2019.06.033. PubMed DOI PMC
Thomas A., Bates S., Figg W.D., Pommier Y. DNA Topoisomerase targeting drugs. Holl. -Frei. Cancer Med. 2017:1–17.
Shi W.L., Marcus S., Lowary T. Cytotoxicity and topoisomerase I/II inhibition of glycosylated 2-phenyl-indoles, 2-phenyl-benzo[b]thiophenes and 2-phenyl-benzo[b] furans. Bioorg. Med. Chem. 2011;19:603–612. doi: 10.1016/j.bmc.2010.10.054. PubMed DOI
Konkoľová E., Janočková J., Perjési P., Vašková J., Kožurková M. Selected ferrocenyl chalcones as DNA/BSA-interacting agents and inhibitors of DNA topoisomerase I and II activity. J. Organomet. Chem. 2018;861:1–9. doi: 10.1016/j.jorganchem.2018.01.031. DOI
Solárová Z., Kello M., Hamuľáková S., Mirossay L., Solár P. Anticancer effect of tacrine-coumarin derivatives on diverse human and mouse cancer cell lines. Acta Chim. Slov. 2018;65:875–881. doi: 10.17344/acsi.2018.4519. PubMed DOI
Hu M.-K. Synthesis and in-vitro anticancer evaluation of bis-tacrine congeners. J. Pharm. Pharm. 2000;53:83–88. doi: 10.1211/0022357011775046. PubMed DOI
Roldan-Pena J.M., Alejandre-Ramos D., Lopez O., Maya I., Lagunes I., Padron J.M., Pena-Altamira L.E., Bartolini M., Monti B., Bolognesi M.L., et al. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer´s and antiproliferative agents. Eur. J. Med. Chem. 2017;138:761–773. doi: 10.1016/j.ejmech.2017.06.048. PubMed DOI
Janočková J., Korabečný J., Plšíková J., Babková K., Konkoľová E., Kučerová D., Vargová J., Kovaľ J., Jendželovský R., Fedoročko P., et al. In vitro investigating of anticancer activity of new 7-MEOTA-tacrine heterodimers. J. Enz. Inhib. Med. Chem. 2019;34:877–897. doi: 10.1080/14756366.2019.1593159. PubMed DOI PMC
Brunet C.L., Gunby R.H., Benson R.S.P., Hickman J.A., Watson A.J.M., Brady G. Commitment to cell death measured by loss of clonogenicity is separable from the appearance of apoptotic markers. Cell Death Differ. 1998;5:107–115. doi: 10.1038/sj.cdd.4400334. PubMed DOI
Janočková J., Plšíková J., Kašpárková J., Brabec V., Jendželovský R., Mikeš J., Kovaľ J., Hamuľaková S., Fedoročko P., Kuča K., et al. Inhibition of DNA topoisomerases I and II and growth inhibition of HL-60 cells by novel acridine-based compounds. Eur. J. Med. Chem. 2015;76:192–202. doi: 10.1016/j.ejps.2015.04.023. PubMed DOI
Konkoľová E., Hudáčová M., Hamuľaková S., Kožurková M. Spectroscopic evaluation of novel tacrine-coumarin hybrids as BSA-interacting agents. Org. Med. Chem. Int. J. 2019;8:1–7.