Evaluation of cholinesterase activities during in vivo intoxication using an electrochemical sensor strip - correlation with intoxication symptoms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
22412329
PubMed Central
PMC3297120
DOI
10.3390/s90503627
PII: s90503627
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, activity, blood, butyrylcholinesterase, cholinesterase, intoxication, paraoxon, pesticide,
- Publikační typ
- časopisecké články MeSH
Cholinesterase activity in blood of laboratory rats was monitored. Rats were intoxicated with paraoxon at dosis of 0 - 65 - 125 - 170 - 250 - 500 nmol. The 250 nmol dose was found to be the LD(50). An electrochemical sensor was found useful to provide information about cholinesterase activity. The decrease of cholinesterase activity was correlated to intoxication symptoms and mortality level. It was found that the symptoms of intoxication are not observed while at least 50% of cholinesterase activity in blood remains. The minimal cholinesterase activity essential to survival is around 10%, when compared with the initial state. No changes in levels of low moleculary weight antioxidants were observed.
Zobrazit více v PubMed
Soreq H., Seidman S. Acetylcholinesterase – new rolew for an old actor. Nat. Rev. Neurosci. 2001;2:294–302. PubMed
Pohanka M., Jun D., Kuca K. Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators. Talanta. 2008;77:451–454. PubMed
Balali-Mood M., Balali-Mood K. Neurotoxic disorders of organophosphorus compounds and their managements. Arch. Iran. Med. 2008;11:65–89. PubMed
Eddieston M., Buckley N.A., Eyer P., Dawson A.H. Medical management of acute organophosphorus pesticide self-poisoning. Lancet. 2008;37:597–607. PubMed PMC
Baydin A., Aygun D., Yazici M., Karatas A., Deniz T., Yardan T. Is there a relationship between th blood cholinesterase and QTc interval in the patients with acute organophosphate poisoning? Int. J. Clin. Pract. 2007;61:927–930. PubMed
Ellman G.L., Courtney D.K., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. PubMed
Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: cholinesterase activity measured in the presence of oximes. Anal. Biochem. 2007;370:223–227. PubMed
Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., Kizek R. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors. 2007;7:2402–2418. PubMed PMC
Krizkova S., Beklova M., Pikula J., Adam V., Horna A., Kizek R. Hazards of secondary bromadiolone intoxications evaluated using high-performance liquid chromatography with electrochemical detection. Sensors. 2007;7:1271–1286.
Supalkova V., Huska D., Diopan V., Hanustiak P., Zika O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., Adam V., Trnkova L., Beklova M., Kizek R. Electroanalysis of plant thiols. Sensors. 2007;7:932–952.
Krizkova S., Ryant P., Krystofova O., Adam V., Galiova M., Beklova M., Babula P., Kaiser J., Novotny K., Novotny J., Liska M., Malina R., Zehnalek J., Hubalek J., Havel L., Kizek R. Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions – plants as bioindicators of environmental pollution. Sensors. 2008;8:445–463. PubMed PMC
Pohanka M., Dobes P., Drtinova L., Kuca K. Nerve agents assay using cholinesterase based biosensor. Electroanalysis. 2009 doi: 10.1002/elan.200804528.. In press. DOI
Pohanka M., Jun D., Kuca K. Amperometric biosensor for real time assay of organophosphates. Sensors. 2008;8:5303–5312. PubMed PMC
Pohanka M., Kuca K., Kassa J. New performance of biosensor technology for Alzheimer's disease drugs: in vitro comparison of tacrine and 7-methoxytacrine. Neuroendocrinol. Lett. 2008;29:755–758. PubMed
Pohanka M., Jun D., Kalasz H., Kuca K. Cholinesterase biosensor construction – a review. Prot. Pept. Lett. 2008;15:795–798. PubMed
Pohanka M., Kuca K., Jun D. Sensor system based on acetylcholinesterase in homogenous phase for analysis of paraoxon. Anal. Lett. 2008;41:2214–2223.
Pohanka M., Hrabinova M., Kuca K. Diagnosis of intoxication by the organophosphate Vx: comparison between an electrochemical sensor and Ellman's photometric method. Sensors. 2008;8:5229–5237. PubMed PMC
Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. PubMed
Bajgar J., Michalek H., Bisso G.M. Differential reactivation by HI-6 in vivo of paraoxon-inhibited rat brain acetylcholinesterase molecular forms. Neurochem. Int. 1995;26:347–350. PubMed
Masson P., Goasdoue J.L. Evidence that the conformational stability of aged organophosphate-inhibited cholinesterase is altered. Biochim. Biophys. Acta. 1986;869:304–313. PubMed
Curtil C., Masson P. Aging of cholinesterase after inhibition by organophosphates. Ann. Pharm. Fr. 1993;51:63–77. PubMed
Saleh A.M., Vijayasarathy C., Fernandez-Cabezudo M., Taleb M., Petroianu G. Influence of paraoxon (POX) and parathion (PAT) on apoptosis: a possible mechanism for toxicity in low-dose exposure. J. Appl. Toxicol. 2003;23:23–39. PubMed
Levy-Khademi F., Tenenbaum A.N., Wexler I.D., Amitai Y. Unintentional organophosphate intoxication in children. Pediatr. Emerg. Care. 2007;23:716–718. PubMed
Pohanka M., Zdarova-Karasova J., Musilek K., Kuca K., Kassa J. Effect of five acetylcholinesterase reactivators on tabun intoxicated rats: induction of oxidative stress versus reactivation efficacy. J. Appl. Toxicol. 2009 doi: 10.1002/jat.1432. In press. PubMed DOI
Millard CB., Broomfield C.A. Anticholinesterases: medical applications of neurochemical principles. J. Neurochem. 1995;64:1909–1918. PubMed
El-Naggar A.E., Abdalla M.S., El-Sebaey A.S., Badawy S.M. Clinical findings and cholinesterase levels in childrenof organophosphates and carbamates poisoning. Eur. J. Pediatr. 2008 In press. PubMed
Pollak Y., Gilboa A., Ben-Menachem O., Ben-Hur T., Soreq H., Yirmiya R. Acetylcholinesterase inhibitors reduce brain and blood interleukin-1beta production. Ann. Neurol. 2005;57:741–745. PubMed
Nezhinskaia G.I., Vladykin A.L., Sapronov N.S. Modulation of the cholinergic system during inflammation. Eksp. Klin. Farmakol. 2008;71:65–69. PubMed
Fang L., Kraus B., Lehmann J., Heilmann J., Zhang Y., Decker M. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett. 2008;18:2905–2909. PubMed
Pohanka M., Jun D., Kuca K. Photometric microplates assay for estimation of paraoxon inhibited acetylcholinesterase reactivation efficacy. J. Enz. Inhib. Med. Chem. 2008;23:781–784. PubMed
Okuno S., Sakurada K., Ohta H., Ikegaya H., Kazui Y., Akutsu T., Takatori T., Iwadate K. Blood-brain barrier penetration of novel pyridinealdoxime methiodide (PAM) type oxime examined by brain microdialysis with LC-MS/MS. Toxicol. Appl. Pharmacol. 2008;227:8–15. PubMed
Chevion S., Roberts M.A., Chevion M. The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic. Biol. Med. 2000;28:860–870. PubMed
Psotova J., Zahálková J., Hrbac J., Simanek V., Bartek J. Determination of total antioxidant capacity in plasma by cyclic voltammetry. Two case reports. Biomed. Papers. 2001;145:81–83. PubMed
Pohanka M., Stetina R. Shift of oxidants and antioxidants levels in rats as a reaction to exposure to sulfur mustard. J. Appl. Toxicol. 2009 In press. PubMed
Bernik T.R., Friedman S.G., Ochani M., DiRaimo R., Ulloa L., Yang H., Sudan S., Czura C.J., Ivanova S.M., Tracey K.J. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J. Exp. Med. 2002;195:781–788. PubMed PMC
Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:468–462. PubMed
Brimjon S., Gao Y., Anker J.J., Gliddon L.A., LaFleur D., Shah R., Zhao Q., Singh M., Carroll M.E. A cocaine hydrolase engineered from human butyrylcholinesterae selectively blocks cocaine toxicity and reinstatement of drug seeking in rats. Neuropsychopharmacology. 2008;33:2715–2725. PubMed PMC
Time-dependent changes of oxime K027 concentrations in different parts of rat central nervous system