Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VT2019-2021
uhk
CEP - Centrální evidence projektů
Excellence project
uhk fim
PubMed
35384450
PubMed Central
PMC8984675
DOI
10.1007/s00253-022-11901-6
PII: 10.1007/s00253-022-11901-6
Knihovny.cz E-zdroje
- Klíčová slova
- Agriculture and food industry, Bio-chemiluminescence, Biosensors, Carbon nanotubes, Diseases, Environmental application, Graphene, Pollution,
- MeSH
- biosenzitivní techniky * MeSH
- grafit * MeSH
- luminiscence MeSH
- nanotrubičky uhlíkové * MeSH
- povrchová plasmonová rezonance MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- grafit * MeSH
- nanotrubičky uhlíkové * MeSH
The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. KEY POINTS: • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement.
Biomedical Research Center University Hospital Hradec Kralove 50005 Hradec Kralove Czech Republic
Department of Life Sciences Ben Gurion University of the Negev 84105 Beer Sheva Israel
Zobrazit více v PubMed
Afsahi S, Lerner MB, Goldstein JM, Lee J, Tang X, Bagarozzi DA, Pan D, Locascio L, Walker A, Barron F, Goldsmith BR. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens Bioelectron. 2018;100:85–88. doi: 10.1016/j.bios.2017.08.051. PubMed DOI
Afsarimanesh N, Mukhopadhyay SC, Kruger M. Molecularly imprinted polymer-based electrochemical biosensor for bone loss detection. IEEE Trans Biomed Eng. 2018;65:1264–1271. doi: 10.1109/TBME.2017.2744667. PubMed DOI
Afsarimanesh N, Mukhopadhyay SC, Kruger M. State-of-the-art of sensing technologies for monitoring of bone-health. In: Afsarimanesh N, Mukhopadhyay SC, Kruger M, editors. Electrochemical biosensor: point-of-care for early detection of bone loss. Cham: Springer International Publishing; 2019. pp. 7–31.
Alhadrami HA, Paton GI. The potential applications of SOS-lux biosensors for rapid screening of mutagenic chemicals. FEMS MicrobiolLett. 2013;344:69–76. doi: 10.1111/1574-6968.12156. PubMed DOI
Alleyne CJ, Kirk AG, McPhedran RC, Nicorovici N-AP, Maystre D. Enhanced SPR sensitivity using periodic metallic structures. Opt Express. 2007;15:8163–8169. doi: 10.1364/oe.15.008163. PubMed DOI
Andryukov BG, Besednova NN, Romashko RV, Zaporozhets TS, Efimov TA (2020) Label-free biosensors for laboratory-based diagnostics of infections: current achievements and new trends. Biosensors (Basel) 10. 10.3390/bios10020011 PubMed PMC
Angelopoulou Μ, Botsialas A, Salapatas A, Petrou PS, Haasnoot W, Makarona E, Jobst G, Goustouridis D, Siafaka-Kapadai A, Raptis I, Misiakos K, Kakabakos SE. Assessment of goat milk adulteration with a label-free monolithically integrated optoelectronic biosensor. Anal Bioanal Chem. 2015;407:3995–4004. doi: 10.1007/s00216-015-8596-3. PubMed DOI
Anik Ü, Tepeli Y, Diouani MF. Fabrication of electrochemical model influenza A virus biosensor based on the measurements of neuroaminidase enzyme activity. Anal Chem. 2016;88:6151–6153. doi: 10.1021/acs.analchem.6b01720. PubMed DOI
Arduini F, Cinti S, Scognamiglio V, Moscone D. Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta. 2016;183:2063–2083. doi: 10.1007/s00604-016-1858-8. DOI
Ashiba H, Sugiyama Y, Wang X, Shirato H, Higo-Moriguchi K, Taniguchi K, Ohki Y, Fujimaki M. Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels. Biosens Bioelectron. 2017;93:260–266. doi: 10.1016/j.bios.2016.08.099. PubMed DOI
Babamiri B, Salimi A, Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens Bioelectron. 2018;117:332–339. doi: 10.1016/j.bios.2018.06.003. PubMed DOI
Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB. Structure-assigned optical spectra of single-walled carbon nanotubes. Science. 2002;298:2361–2366. doi: 10.1126/science.1078727. PubMed DOI
Bae JW, Seo HB, Belkin S, Gu MB. An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment. Anal Bioanal Chem. 2020;412:3373–3381. doi: 10.1007/s00216-020-02469-z. PubMed DOI
Bahadır EB, Sezgintürk MK. Electrochemical biosensors for hormone analyses. Biosens Bioelectron. 2015;68:62–71. doi: 10.1016/j.bios.2014.12.054. PubMed DOI
Bai H, Wang R, Hargis B, Lu H, Li Y. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors (basel) 2012;12:12506–12518. doi: 10.3390/s120912506. PubMed DOI PMC
Balaji A, Zhang J (2017) Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol 8. 10.1186/s12645-017-0035-z PubMed PMC
Bhatta D, Villalba MM, Johnson CL, Emmerson GD, Ferris NP, King DP, Lowe CR. Rapid detection of foot-and-mouth disease virus with optical microchip sensors. Procedia Chemistry. 2012;6:2–10. doi: 10.1016/j.proche.2012.10.124. DOI
Bidmanova S, Kotlanova M, Rataj T, Damborsky J, Trtilek M, Prokop Z. Fluorescence-based biosensor for monitoring of environmental pollutants: from concept to field application. Biosens Bioelectron. 2016;84:97–105. doi: 10.1016/j.bios.2015.12.010. PubMed DOI
Bobrinetskiy II, Knezevic NZ. Graphene-based biosensors for on-site detection of contaminants in food. Anal Methods. 2018;10:5061–5070. doi: 10.1039/C8AY01913D. DOI
Bolton EK, Sayler GS, Nivens DE, Rochelle JM, Ripp S, Simpson ML. Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actuators, B Chem. 2002;85:179–185. doi: 10.1016/S0925-4005(02)00106-5. PubMed DOI
Borghei G, Hall EAH. BRET-linked ATP assay with luciferase. Analyst. 2014;139:4185–4192. doi: 10.1039/C4AN00436A. PubMed DOI
Brar SK, Hegde K, Pachapur VL. Tools, techniques and protocols for monitoring environmental contaminants. Elsevier; 2019.
Brogioni B, Berti F. Surface plasmon resonance for the characterization of bacterial polysaccharide antigens: a review. Med Chem Commun. 2014;5:1058–1066. doi: 10.1039/C4MD00088A. DOI
Cady NC, Tokranova N, Minor A, Nikvand N, Strle K, Lee WT, Page W, Guignon E, Pilar A, Gibson GN. Multiplexed detection and quantification of human antibody response to COVID-19 infection using a plasmon enhanced biosensor platform. Biosens Bioelectron. 2021;171:112679. doi: 10.1016/j.bios.2020.112679. PubMed DOI PMC
Cai H, Parks JW, Wall TA, Stott MA, Stambaugh A, Alfson K, Griffiths A, Mathies RA, Carrion R, Patterson JL, Hawkins AR, Schmidt H. Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Sci Rep. 2015;5:14494. doi: 10.1038/srep14494. PubMed DOI PMC
Campuzano S, Ruiz-Valdepeñas Montiel V, Serafín V, Yáñez-Sedeño P, Pingarrón JM (2020) Cutting-edge advances in electrochemical affinity biosensing at different molecular level of emerging food allergens and adulterants. Biosensors (Basel) 10. 10.3390/bios10020010 PubMed PMC
Cao J, Sun T, Grattan KTV. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuators, B Chem. 2014;195:332–351. doi: 10.1016/j.snb.2014.01.056. DOI
Caputo D, de Cesare G, Dolci LS, Mirasoli M, Nascetti A, Roda A, Scipinotti R. Microfluidic chip with integrated a-Si: H photodiodes for chemiluminescence-based bioassays. IEEE Sens J. 2013;13:2595–2602. doi: 10.1109/JSEN.2013.2256889. DOI
Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron. 2020;159:112214. doi: 10.1016/j.bios.2020.112214. PubMed DOI PMC
Chalupowicz D, Veltman B, Droby S, Eltzov E. Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit. Sens Actuators B Chem. 2020;311:127896. doi: 10.1016/j.snb.2020.127896. DOI
Chappelle EW, Levin GV. Use of the firefly bioluminescent reaction for rapid detection and counting of bacteria. Biochem Med. 1968;2:41–52. doi: 10.1016/0006-2944(68)90006-9. DOI
Chauhan N, Narang J, Jain U. Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid) J Exp Nanosci. 2016;11:111–122. doi: 10.1080/17458080.2015.1030712. DOI
Cheeveewattanagul N, Morales-Narváez E, Hassan A-RHA, Bergua JF, Surareungchai W, Somasundrum M, Merkoçi A. Straightforward immunosensing platform based on graphene oxide-decorated nanopaper: a highly sensitive and fast biosensing approach. Adv Func Mater. 2017;27:1702741. doi: 10.1002/adfm.201702741. DOI
Chen Z, Berciaud S, Nuckolls C, Heinz TF, Brus LE. Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano. 2010;4:2964–2968. doi: 10.1021/nn1005107. PubMed DOI
Chen Z, Zhang Z, Zhai X, Li Y, Lin L, Zhao H, Bian L, Li P, Yu L, Wu Y, Lin G. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem. 2020;92:7226–7231. doi: 10.1021/acs.analchem.0c00784. PubMed DOI
Cheng N, Du D, Wang X, Liu D, Xu W, Luo Y, Lin Y. Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol. 2019;37:1236–1254. doi: 10.1016/j.tibtech.2019.04.008. PubMed DOI
Chong JPC, Liew OW, Li BQ, Asundi AK (2007) Optical fluorescence biosensor for plant water stress detection. 6535:65350S.10.1117/12.740959
Chung H, Li J, Kim Y, Van Os JMC, Brounts SH, Choi CY. Using implantable biosensors and wearable scanners to monitor dairy cattle’s core body temperature in real-time. Comput Electron Agric. 2020;174:105453. doi: 10.1016/j.compag.2020.105453. DOI
Créton R, Jaffe LF. Chemiluminescence microscopy as a tool in biomedical research. Biotechniques. 2001;31(1098–1100):1102–1105. doi: 10.2144/01315rv01. PubMed DOI
Cunha I, Biltes R, Sales M, Vasconcelos V (2018) Aptamer-based biosensors to detect aquatic phycotoxins and cyanotoxins. Sensors (Basel) 18. 10.3390/s18072367 PubMed PMC
De Michele R, Carimi F, Frommer WB. Mitochondrial biosensors. Int J Biochem Cell Biol. 2014;48:39–44. doi: 10.1016/j.biocel.2013.12.014. PubMed DOI
Deng J, Toh C-S. Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of Dengue virus. Sensors. 2013;13:7774–7785. doi: 10.3390/s130607774. PubMed DOI PMC
Dervisevic M, Dervisevic E, Çevik E, Şenel M. Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform. J Food Drug Anal. 2017;25:510–519. doi: 10.1016/j.jfda.2016.12.005. PubMed DOI PMC
Di Fusco M, Quintavalla A, Lombardo M, Guardigli M, Mirasoli M, Trombini C, Roda A. Organically modified silica nanoparticles doped with new acridine-1,2-dioxetane analogues as thermochemiluminescence reagentless labels for ultrasensitive immunoassays. Anal Bioanal Chem. 2015;407:1567–1576. doi: 10.1007/s00216-014-8406-3. PubMed DOI
Dominguez RB, Hayat A, Alonso GA, Gutiérrez JM, Muñoz R, Marty J-L. 19 - Nanomaterial-based biosensors for food contaminant assessment. In: Grumezescu AM, editor. Nanobiosensors. Academic Press; 2017. pp. 805–839.
Dudak FC, Boyaci İH. Peptide-based surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B. Food Anal Methods. 2014;7:506–511. doi: 10.1007/s12161-013-9739-9. DOI
Dudchenko OY, Pyeshkova VM, Soldatkin OO, Akata B, Kasap BO, Soldatkin AP, Dzyadevych SV (2016) Development of silicalite/glucose oxidase-based biosensor and its application for glucose determination in juices and nectars. Nanoscale Res Lett 11.10.1186/s11671-016-1275-2 PubMed PMC
Eed HR, Abdel-Kader NS, El Tahan MH, Dai T, Amin R. Bioluminescence-sensing assay for microbial growth recognition. Journal of Sensors. 2015;2016:e1492467. doi: 10.1155/2016/1492467. DOI
El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun. 2013;4:1475. doi: 10.1038/ncomms2446. PubMed DOI
Ensafi AA, Karbalaei S, Heydari-Bafrooei E, Rezaei B. Biosensing of naringin in marketed fruits and juices based on its interaction with DNA. J Iran Chem Soc. 2016;13:19–27. doi: 10.1007/s13738-015-0707-8. DOI
Erdem Ö, Saylan Y, Cihangir N, Denizli A. Molecularly imprinted nanoparticles based plasmonic sensors for real-time Enterococcus faecalis detection. Biosens Bioelectron. 2019;126:608–614. doi: 10.1016/j.bios.2018.11.030. PubMed DOI
Erden PE, Kılıç E. A review of enzymatic uric acid biosensors based on amperometric detection. Talanta. 2013;107:312–323. doi: 10.1016/j.talanta.2013.01.043. PubMed DOI
Ettenauer J, Zuser K, Kellner K, Posnicek T, Brandl M. Development of an automated biosensor for rapid detection and quantification of E. coli in water. Procedia Engineering. 2015;120:376–379. doi: 10.1016/j.proeng.2015.08.643. DOI
Evtugyn G, Subjakova V, Melikishvili S, Hianik T. Affinity biosensors for detection of mycotoxins in food. Adv Food Nutr Res. 2018;85:263–310. doi: 10.1016/bs.afnr.2018.03.003. PubMed DOI
Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y. Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta. 2008;620:8–26. doi: 10.1016/j.aca.2008.05.022. PubMed DOI PMC
Fan Z, Yao B, Ding Y, Zhao J, Xie M, Zhang K. Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds. Biosens Bioelectron. 2021;178:113015. doi: 10.1016/j.bios.2021.113015. PubMed DOI PMC
Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thammakhet C, Thavarungkul P. A highly stable oxygen-independent glucose biosensor based on a chitosan-albumin cryogel incorporated with carbon nanotubes and ferrocene. Sens Actuators B Chem. 2013;185:725–734. doi: 10.1016/j.snb.2013.05.056. DOI
Fukuda M, Wakuta S, Kamiyo J, Fujiwara T, Takano J. Establishment of genetically encoded biosensors for cytosolic boric acid in plant cells. Plant J. 2018;95:763–774. doi: 10.1111/tpj.13985. PubMed DOI
Gahlaut A, Hooda V, Gothwal A, Hooda V. Enzyme-based ultrasensitive electrochemical biosensors for rapid assessment of nitrite toxicity: recent advances and perspectives. Crit Rev Anal Chem. 2019;49:32–43. doi: 10.1080/10408347.2018.1461551. PubMed DOI
Gao G, Qian J, Fang D, Yu Y, Zhi J. Development of a mediated whole cell-based electrochemical biosensor for joint toxicity assessment of multi-pollutants using a mixed microbial consortium. Anal Chim Acta. 2016;924:21–28. doi: 10.1016/j.aca.2016.04.011. PubMed DOI
Gao G, Fang D, Yu Y, Wu L, Wang Y, Zhi J. A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta. 2017;167:208–216. doi: 10.1016/j.talanta.2017.01.081. PubMed DOI
Garzón V, Pinacho DG, Bustos R-H, Garzón G, Bustamante S. Optical biosensors for therapeutic drug monitoring. Biosensors. 2019;9:132. doi: 10.3390/bios9040132. PubMed DOI PMC
Gatel L, Cuprys A, Kumar P, Suresh G, Bendourou F, Chaali M, Hegde K, Brar SK. Chapter 7 - Recent advances in oligonucleotide-based sensor technology for detection of endocrine-disrupting chemicals (EDC) in the environment. In: Kaur Brar S, Hegde K, Pachapur VL, editors. Tools, techniques and protocols for monitoring environmental contaminants. Elsevier; 2019. pp. 147–167.
Ge L, Liu Q, Hao N, Kun W. Recent developments of photoelectrochemical biosensors for food analysis. J Mater Chem B. 2019;7:7283–7300. doi: 10.1039/C9TB01644A. PubMed DOI
Gramberg B, Kintzios S, Schmidt U, Mewis I, Ulrichs C. A basic approach towards the development of bioelectric bacterial biosensors for the detection of plant viruses. J Phytopathol. 2012;160:106–111. doi: 10.1111/j.1439-0434.2011.01867.x. DOI
Grześkowiak BF, Tuśnio K, Woźniak A, Szalata M, Lipiński D, Jurga S, Słomski R (2019) Transgenic plant detection using an AuNPs based SPR biosensor. Biosensors (Basel) 9.10.3390/bios9040116 PubMed PMC
Hassan SHA, Van Ginkel SW, Hussein MAM, Abskharon R, Oh S-E. Toxicity assessment using different bioassays and microbial biosensors. Environ Int. 2016;92–93:106–118. doi: 10.1016/j.envint.2016.03.003. PubMed DOI
Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens Actuators, B Chem. 2008;134:755–760. doi: 10.1016/j.snb.2008.06.020. DOI
Heineman WR, Karube I, Schmid RD, Turner APF (2016) Biosensors 92 Proceedings: The Second World Congress on Biosensors. Elsevier
Hosseinkhani S. Molecular enigma of multicolor bioluminescence of firefly luciferase. Cell Mol Life Sci. 2011;68:1167–1182. doi: 10.1007/s00018-010-0607-0. PubMed DOI PMC
Huang X, Liang Y, Ruan L, Ren J. Chemiluminescent detection of cell apoptosis enzyme by gold nanoparticle-based resonance energy transfer assay. Anal Bioanal Chem. 2014;406:5677–5684. doi: 10.1007/s00216-013-7611-9. PubMed DOI
Huang Y, Shi M, Zhao L, Zhao S, Hu K, Chen Z-F, Chen J, Liang H. Carbon nanotube signal amplification for ultrasensitive fluorescence polarization detection of DNA methyltransferase activity and inhibition. Biosens Bioelectron. 2014;54:285–291. doi: 10.1016/j.bios.2013.10.065. PubMed DOI
Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-enhanced no-wash biosensors for in vitro diagnostics of cancer. ACS Nano. 2017;11:5238–5292. doi: 10.1021/acsnano.7b02618. PubMed DOI
Hummelen JC, Luider TM, Wynberg H (1986) [39] Stable 1,2-dioxetanes as labels for thermochemiluminescent immunoassay. In: Methods in Enzymology. Academic Press, pp 531–557 PubMed
Hummelen JC, Luider TM, Wynberg H (1988) Thermochemiluminescence immunoassay. EPRINTS-BOOK-TITLE
Ilkhani H, Farhad S. A novel electrochemical DNA biosensor for Ebola virus detection. Anal Biochem. 2018;557:151–155. doi: 10.1016/j.ab.2018.06.010. PubMed DOI
İstek MM, Erdem MM, Gürsan AE. Impedimetric nanobiosensor for the detection of sequence-selective DNA hybridization. Hacettepe Journal of Biology and Chemistry. 2019;46:495–503.
Izadi Z, Sheikh-Zeinoddin M, Ensafi AA, Soleimanian-Zad S. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosens Bioelectron. 2016;80:582–589. doi: 10.1016/j.bios.2016.02.032. PubMed DOI
Jahanshahi P, Zalnezhad E, Sekaran SD, Adikan FRM. Rapid immunoglobulin M-based dengue diagnostic test using surface plasmon resonance biosensor. Sci Rep. 2014;4:3851. doi: 10.1038/srep03851. PubMed DOI PMC
Jin W, Maduraiveeran G. Electrochemical detection of chemical pollutants based on gold nanomaterials. Trends in Environmental Analytical Chemistry. 2017;14:28–36. doi: 10.1016/j.teac.2017.05.001. DOI
Jin CE, Lee TY, Koo B, Sung H, Kim S-H, Shin Y. Rapid virus diagnostic system using bio-optical sensor and microfluidic sample processing. Sens Actuators B Chem. 2018;255:2399–2406. doi: 10.1016/j.snb.2017.08.197. DOI
Jung S-H, Jang H, Lim M-C, Kim J-H, Shin K-S, Kim SM, Kim H-Y, Kim Y-R, Jeon T-J. Chromatic biosensor for detection of phosphinothricin acetyltransferase by use of polydiacetylene vesicles encapsulated within automatically generated immunohydrogel beads. Anal Chem. 2015;87:2072–2078. doi: 10.1021/ac501795x. PubMed DOI
Kabessa Y, Eyal O, Bar-On O, Korouma V, Yagur-Kroll S, Belkin S, Agranat AJ. Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells. Biosens Bioelectron. 2016;79:784–788. doi: 10.1016/j.bios.2016.01.011. PubMed DOI
Kauffmann JM. Biosensors in the pharmaceutical domain. Ann Pharm Fr. 2002;60:28–37. PubMed
Kaur H, Kumar S, Verma N. Enzyme-based colorimetric and potentiometric biosensor for detecting Pb (II) ions in milk. Braz Arch Biol Technol. 2014;57:613–619. doi: 10.1590/S1516-8913201402160. DOI
Kaushik A, Yndart A, Kumar S, Jayant RD, Vashist A, Brown AN, Li C-Z, Nair M (2018) A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci Rep 8.10.1038/s41598-018-28035-3 PubMed PMC
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: a review. Talanta. 2020;206:120251. doi: 10.1016/j.talanta.2019.120251. PubMed DOI
Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TRLC, Mercier PP, Wang J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron. 2015;74:1061–1068. doi: 10.1016/j.bios.2015.07.039. PubMed DOI PMC
Kim J, Campbell AS, de Ávila BE-F, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol. 2019;37:389–406. doi: 10.1038/s41587-019-0045-y. PubMed DOI PMC
Kriss R, Pieper KJ, Parks J, Edwards MA. Challenges of detecting lead in drinking water using at-home test kits. Environ Sci Technol. 2021;55:1964–1972. doi: 10.1021/acs.est.0c07614. PubMed DOI
Kundu M, Krishnan P, Kotnala RK, Sumana G. Recent developments in biosensors to combat agricultural challenges and their future prospects. Trends Food Sci Technol. 2019;88:157–178. doi: 10.1016/j.tifs.2019.03.024. DOI
Larrieu A, Champion A, Legrand J, Lavenus J, Mast D, Brunoud G, Oh J, Guyomarc’h S, Pizot M, Farmer EE, Turnbull C, Vernoux T, Bennett MJ, Laplaze L. A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat Commun. 2015;6:6043. doi: 10.1038/ncomms7043. PubMed DOI PMC
Lee J, Morita M, Takemura K, Park EY. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens Bioelectron. 2018;102:425–431. doi: 10.1016/j.bios.2017.11.052. PubMed DOI
Lengger S, Otto J, Elsässer D, Schneider O, Tiehm A, Fleischer J, Niessner R, Seidel M. Oligonucleotide microarray chip for the quantification of MS2, ΦX174, and adenoviruses on the multiplex analysis platform MCR 3. Anal Bioanal Chem. 2014;406:3323–3334. doi: 10.1007/s00216-014-7641-y. PubMed DOI
Li J, Chen L, Du L, Li M. Cage the firefly luciferin! - a strategy for developing bioluminescent probes. Chem Soc Rev. 2013;42:662–676. doi: 10.1039/c2cs35249d. PubMed DOI
Li N, Liu D, Cui H. Metal-nanoparticle-involved chemiluminescence and its applications in bioassays. Anal Bioanal Chem. 2014;406:5561–5571. doi: 10.1007/s00216-014-7901-x. PubMed DOI
Li X, Scida K, Crooks RM. Detection of hepatitis B virus DNA with a paper electrochemical sensor. Anal Chem. 2015;87:9009–9015. doi: 10.1021/acs.analchem.5b02210. PubMed DOI
Li N, Larin EM, Kerman K. A miniaturized impedimetric immunosensor for the competitive detection of adrenocorticotropic hormone. Sensors. 2017;17:2836. doi: 10.3390/s17122836. PubMed DOI PMC
Liang Q, Yamashita T, Yamamoto-Ikemoto R, Yokoyama H. Flame-oxidized stainless-steel anode as a probe in bioelectrochemical system-based biosensors to monitor the biochemical oxygen demand of wastewater. Sensors. 2018;18:607. doi: 10.3390/s18020607. PubMed DOI PMC
Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators. 1983;4:299–304. doi: 10.1016/0250-6874(83)85036-7. DOI
Liedberg B, Lundström I, Stenberg E. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens Actuators, B Chem. 1993;11:63–72. doi: 10.1016/0925-4005(93)85239-7. DOI
Lim JM, Kim JH, Ryu MY, Cho CH, Park TJ, Park JP. An electrochemical peptide sensor for detection of dengue fever biomarker NS1. Anal Chim Acta. 2018;1026:109–116. doi: 10.1016/j.aca.2018.04.005. PubMed DOI
Lin K-C, Lin Y-C, Chen S-M. A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles. Electrochim Acta. 2013;96:164–172. doi: 10.1016/j.electacta.2013.02.098. DOI
Liu Y, Shen T, Hu L, Gong H, Chen C, Chen X, Cai C. Development of a thermosensitive molecularly imprinted polymer resonance light scattering sensor for rapid and highly selective detection of hepatitis A virus in vitro. Sens Actuators, B Chem. 2017;253:1188–1193. doi: 10.1016/j.snb.2017.07.166. DOI
Lv M, Liu Y, Geng J, Kou X, Xin Z, Yang D. Engineering nanomaterials-based biosensors for food safety detection. Biosens Bioelectron. 2018;106:122–128. doi: 10.1016/j.bios.2018.01.049. PubMed DOI
Ma L, He Y, Wang Y, Wang Y, Li R, Huang Z, Jiang Y, Gao J. Nanocomposites of Pt nanoparticles anchored on UiO66-NH2 as carriers to construct acetylcholinesterase biosensors for organophosphorus pesticide detection. Electrochim Acta. 2019;318:525–533. doi: 10.1016/j.electacta.2019.06.110. DOI
Marquette CA, Blum LJ (2010) Chapter 14: Chemiluminescent and bioluminescent biosensors. In: Chemiluminescence and Bioluminescence. pp 488–510
Marrazza G. Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors. 2014;4:301–317. doi: 10.3390/bios4030301. PubMed DOI PMC
Marzocchi E, Grilli S, Della Ciana L, Prodi L, Mirasoli M, Roda A. Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts. Anal Biochem. 2008;377:189–194. doi: 10.1016/j.ab.2008.03.020. PubMed DOI
Matsubara K, Kawata S, Minami S. Optical chemical sensor based on surface plasmon measurement. Appl Opt. 1988;27:1160–1163. doi: 10.1364/AO.27.001160. PubMed DOI
Mejri Omrani N, Hayat A, Korri-Youssoufi H, Marty JL. Electrochemical biosensors for food security: mycotoxins detection. In: Nikolelis DP, Nikoleli G-P, editors. Biosensors for security and bioterrorism applications. Cham: Springer International Publishing; 2016. pp. 469–490.
Mello LD, Kisner A, Goulart MOF, Kubota LT. Biosensors for antioxidant evaluation in biological systems. Comb Chem High Throughput Screen. 2013;16:109–120. doi: 10.2174/1386207311316020005. PubMed DOI
Mittal S, Kaur H, Gautam N, Mantha AK. Biosensors for breast cancer diagnosis: a review of bioreceptors, biotransducers and signal amplification strategies. Biosens Bioelectron. 2017;88:217–231. doi: 10.1016/j.bios.2016.08.028. PubMed DOI
Mofford DM, Reddy GR, Miller SC. Aminoluciferins extend firefly luciferase bioluminescence into the near-infrared and can be preferred substrates over d-luciferin. J Am Chem Soc. 2014;136:13277–13282. doi: 10.1021/ja505795s. PubMed DOI PMC
Moitra P, Alafeef M, Dighe K, Frieman MB, Pan D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14:7617–7627. doi: 10.1021/acsnano.0c03822. PubMed DOI PMC
Morales-Narváez E, Golmohammadi H, Naghdi T, Yousefi H, Kostiv U, Horák D, Pourreza N, Merkoçi A. Nanopaper as an optical sensing platform. ACS Nano. 2015;9:7296–7305. doi: 10.1021/acsnano.5b03097. PubMed DOI
Morales-Narváez E, Baptista-Pires L, Zamora-Gálvez A, Merkoçi A. Graphene-based biosensors: going simple. Adv Mater. 2017;29:1604905. doi: 10.1002/adma.201604905. PubMed DOI
Nguyen V-T, Kwon YS, Gu MB. Aptamer-based environmental biosensors for small molecule contaminants. Curr Opin Biotechnol. 2017;45:15–23. doi: 10.1016/j.copbio.2016.11.020. PubMed DOI
Niwa K, Ichino Y, Kumata S, Nakajima Y, Hiraishi Y, Kato D-I, Viviani VR, Ohmiya Y. Quantum yields and kinetics of the firefly bioluminescence reaction of beetle luciferases. Photochem Photobiol. 2010;86:1046–1049. doi: 10.1111/j.1751-1097.2010.00777.x. PubMed DOI
Nomngongo PN, Catherine Ngila J, Msagati TAM, Gumbi BP, Iwuoha EI. Determination of selected persistent organic pollutants in wastewater from landfill leachates, using an amperometric biosensor. Physics and Chemistry of the Earth, Parts a/b/c. 2012;50–52:252–261. doi: 10.1016/j.pce.2012.08.001. DOI
Noor Aini B, Siddiquee S, Ampon K (2016) Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol). Biosensors (Basel) 6. 10.3390/bios6030032 PubMed PMC
Oldach L, Zhang J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem Biol. 2014;21:186–197. doi: 10.1016/j.chembiol.2013.12.012. PubMed DOI PMC
Osman AM, Zomer G, Laane C, Hilhorst R. Comparative studies of the chemiluminescent horseradish peroxidase-catalysed peroxidation of acridan (GZ-11) and luminol reactions: effect of pH and scavengers of reactive oxygen species on the light intensity of these systems. Luminescence. 2000;15:189–197. doi: 10.1002/1522-7243(200005/06)15:3<189::aid-bio585>3.0.co;2-a. PubMed DOI
Pacheco JG, Silva MSV, Freitas M, Nouws HPA, Delerue-Matos C. Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15–3) Sens Actuators, B Chem. 2018;256:905–912. doi: 10.1016/j.snb.2017.10.027. DOI
Pang Y, Rong Z, Wang J, Xiao R, Wang S. A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF) Biosens Bioelectron. 2015;66:527–532. doi: 10.1016/j.bios.2014.10.052. PubMed DOI
Pang Y, Jian J, Tu T, Yang Z, Ling J, Li Y, Wang X, Qiao Y, Tian H, Yang Y, Ren T-L. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens Bioelectron. 2018;116:123–129. doi: 10.1016/j.bios.2018.05.038. PubMed DOI
Park JY, Kricka LJ. Prospects for the commercialization of chemiluminescence-based point-of-care and on-site testing devices. Anal Bioanal Chem. 2014;406:5631–5637. doi: 10.1007/s00216-014-7697-8. PubMed DOI
Park J-M, Jung H-W, Chang YW, Kim H-S, Kang M-J, Pyun J-C. Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity. Anal Chim Acta. 2015;853:360–367. doi: 10.1016/j.aca.2014.10.011. PubMed DOI
Peltomaa R, Glahn-Martínez B, Benito-Peña E, Moreno-Bondi MC (2018) Optical biosensors for label-free detection of small molecules. Sensors (Basel) 18. 10.3390/s18124126 PubMed PMC
Peng F, Su Y, Zhong Y, Fan C, Lee S-T, He Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc Chem Res. 2014;47:612–623. doi: 10.1021/ar400221g. PubMed DOI
Pham HTM, Giersberg M, Gehrmann L, Hettwer K, Tuerk J, Uhlig S, Hanke G, Weisswange P, Simon K, Baronian K, Kunze G. The determination of pharmaceuticals in wastewater using a recombinant Arxula adeninivorans whole cell biosensor. Sens Actuators B Chem. 2015;211:439–448. doi: 10.1016/j.snb.2015.01.107. DOI
Piro B, Shi S, Reisberg S, Noël V, Anquetin G (2016) Comparison of electrochemical immunosensors and aptasensors for detection of small organic molecules in environment, food safety, clinical and public security. Biosensors (Basel) 6. 10.3390/bios6010007 PubMed PMC
Pohanka M, Malir F, Roubal T, Kuca K. Detection of aflatoxins in capsicum spice using an electrochemical immunosensor. Anal Lett. 2008;41:2344–2353. doi: 10.1080/00032710802350518. DOI
Pohanka M, Novotný L, Misík J, Kuca K, Zdarova-Karasova J, Hrabinova M. Evaluation of cholinesterase activities during in vivo intoxication using an electrochemical sensor strip - correlation with intoxication symptoms. Sensors (basel) 2009;9:3627–3634. doi: 10.3390/s90503627. PubMed DOI PMC
Pollap A, Kochana J. Electrochemical immunosensors for antibiotic detection. Biosensors. 2019;9:61. doi: 10.3390/bios9020061. PubMed DOI PMC
Pourasl AH, Ahmadi MT, Rahmani M, Chin HC, Lim CS, Ismail R, Tan MLP. Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res Lett. 2014;9:33. doi: 10.1186/1556-276X-9-33. PubMed DOI PMC
Prabowo BA, Wang RYL, Secario MK, Ou P-T, Alom A, Liu J-J, Liu K-C. Rapid detection and quantification of Enterovirus 71 by a portable surface plasmon resonance biosensor. Biosens Bioelectron. 2017;92:186–191. doi: 10.1016/j.bios.2017.01.043. PubMed DOI
Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, Ghosh KK, Krejcar O. Biosensors as nano-analytical tools for COVID-19 detection. Sensors. 2021;21:7823. doi: 10.3390/s21237823. PubMed DOI PMC
Pundir CS, Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Anal Biochem. 2012;429:19–31. doi: 10.1016/j.ab.2012.06.025. PubMed DOI
Pyati R, Richter MM. ECL—electrochemical luminescence. Annu Rep Prog Chem Sect c: Phys Chem. 2007;103:12–78. doi: 10.1039/B605635K. DOI
Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano. 2020;14:5268–5277. doi: 10.1021/acsnano.0c02439. PubMed DOI
Ramachandra BL, Gumpu MB, Nesakumar N, Krishnan UM, Rayappan JBB. Calcium carbide in mangoes: an electrochemical way for detection. Anal Methods. 2016;8:4590–4599. doi: 10.1039/C6AY01314G. DOI
Ramanathan M, Patil M, Epur R, Yun Y, Shanov V, Schulz M, Heineman WR, Datta MK, Kumta PN. Gold-coated carbon nanotube electrode arrays: immunosensors for impedimetric detection of bone biomarkers. Biosens Bioelectron. 2016;77:580–588. doi: 10.1016/j.bios.2015.10.014. PubMed DOI
Randriamampita C, Lellouch AC. Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnol J. 2014;9:203–212. doi: 10.1002/biot.201300195. PubMed DOI
Ray S, Panjikar S, Anand R. Design of protein-based biosensors for selective detection of benzene groups of pollutants. ACS Sens. 2018;3:1632–1638. doi: 10.1021/acssensors.8b00190. PubMed DOI
Riedel T, Rodriguez-Emmenegger C, de los Santos Pereira A, Bědajánková A, Jinoch P, Boltovets PM, Brynda E. Diagnosis of Epstein–Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosens Bioelectron. 2014;55:278–284. doi: 10.1016/j.bios.2013.12.011. PubMed DOI
Roda A, Guardigli M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem. 2012;402:69–76. doi: 10.1007/s00216-011-5455-8. PubMed DOI
Roda A, Guardigli M, Calabria D, Calabretta MM, Cevenini L, Michelini E. A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst. 2014;139:6494–6501. doi: 10.1039/C4AN01612B. PubMed DOI
Roda A, Michelini E, Cevenini L, Calabria D, Calabretta MM, Simoni P. Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem. 2014;86:7299–7304. doi: 10.1021/ac502137s. PubMed DOI
Roda A, Mirasoli M, Michelini E, Di Fusco M, Zangheri M, Cevenini L, Roda B, Simoni P. Progress in chemical luminescence-based biosensors: a critical review. Biosens Bioelectron. 2016;76:164–179. doi: 10.1016/j.bios.2015.06.017. PubMed DOI
Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C. Electrochemical biosensors for fast detection of food contaminants trends and perspective. Trends Anal Chem. 2016;79:80–87. doi: 10.1016/j.trac.2015.12.017. DOI
Salahandish R, Ghaffarinejad A, Naghib SM, Majidzadeh-A K, Zargartalebi H, Sanati-Nezhad A. Nano-biosensor for highly sensitive detection of HER2 positive breast cancer. Biosens Bioelectron. 2018;117:104–111. doi: 10.1016/j.bios.2018.05.043. PubMed DOI
Sandeau L, Vuillaume C, Contié S, Grinenval E, Belloni F, Rigneault H, Owens RM, Fournet MB. Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing. Lab Chip. 2015;15:877–881. doi: 10.1039/C4LC01025F. PubMed DOI
Sappia L, Felice B, Sanchez MA, Martí M, Madrid R, Pividori MI. Electrochemical sensor for alkaline phosphatase as biomarker for clinical and in vitro applications. Sens Actuators B Chem. 2019;281:221–228. doi: 10.1016/j.snb.2018.10.105. DOI
Sarkar A, Sarkar KD, Amrutha V, Dutta K. Chapter 15 - An overview of enzyme-based biosensors for environmental monitoring. In: Kaur Brar S, Hegde K, Pachapur VL, editors. Tools, techniques and protocols for monitoring environmental contaminants. Elsevier; 2019. pp. 307–329.
Sasaki JE, Sandroff B, Bamman M, Motl RW. Motion sensors in multiple sclerosis: narrative review and update of applications. Expert Rev Med Devices. 2017;14:891–900. doi: 10.1080/17434440.2017.1386550. PubMed DOI PMC
Satoh T, Kato J, Takiguchi N, Ohtake H, Kuroda A. ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell. Biosci Biotechnol Biochem. 2004;68:1216–1220. doi: 10.1271/bbb.68.1216. PubMed DOI
Sayhi M, Ouerghi O, Belgacem K, Arbi M, Tepeli Y, Ghram A, Anik Ü, Österlund L, Laouini D, Diouani MF. Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode. Biosens Bioelectron. 2018;107:170–177. doi: 10.1016/j.bios.2018.02.018. PubMed DOI
Saylan Y, Denizli A. Molecular fingerprints of hemoglobin on a nanofilm chip. Sensors. 2018;18:3016. doi: 10.3390/s18093016. PubMed DOI PMC
Saylan Y, Erdem Ö, Ünal S, Denizli A. An alternative medical diagnosis method: biosensors for virus detection. Biosensors. 2019;9:65. doi: 10.3390/bios9020065. PubMed DOI PMC
Selvolini G, Marrazza G (2017) MIP-based sensors: promising new tools for cancer biomarker determination. Sensors (Basel) 17. 10.3390/s17040718 PubMed PMC
Seo G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, Lee C-S, Jun S, Park D, Kim HG, Kim S-J, Lee J-O, Kim BT, Park EC, Kim SI. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14:5135–5142. doi: 10.1021/acsnano.0c02823. PubMed DOI
Shafiee H, Lidstone EA, Jahangir M, Inci F, Hanhauser E, Henrich TJ, Kuritzkes DR, Cunningham BT, Demirci U. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci Rep. 2014;4:4116. doi: 10.1038/srep04116. PubMed DOI PMC
Shahar H, Tan LL, Ta GC, Heng LY. Detection of halogenated hydrocarbon pollutants using enzymatic reflectance biosensor. Sens Actuators, B Chem. 2019;281:80–89. doi: 10.1016/j.snb.2018.10.076. DOI
Sharma AK, Jha R, Gupta BD. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J. 2007;7:1118–1129. doi: 10.1109/JSEN.2007.897946. DOI
Shim JS, Ahn CH. Optical immunosensor using carbon nanotubes coated with a photovoltaic polymer. Biosens Bioelectron. 2012;34:208–214. doi: 10.1016/j.bios.2012.02.004. PubMed DOI
Singh S, Khajuria R. Utilization of biosensors for environment monitoring. In: Singh J, Vyas A, Wang S, Prasad R, editors. Microbial biotechnology: basic research and applications. Singapore: Springer; 2020. pp. 299–316.
Singh S, Gill AAS, Nlooto M, Karpoormath R. Prostate cancer biomarkers detection using nanoparticles based electrochemical biosensors. Biosens Bioelectron. 2019;137:213–221. doi: 10.1016/j.bios.2019.03.065. PubMed DOI
Soldatkina OV, Soldatkin OO, Kasap BO, Kucherenko DYu, Kucherenko IS, Kurc BA, Dzyadevych SV. A novel amperometric glutamate biosensor based on glutamate oxidase adsorbed on silicalite. Nanoscale Res Lett. 2017;12:260. doi: 10.1186/s11671-017-2026-8. PubMed DOI PMC
Song J, Mauk MG, Hackett BA, Cherry S, Bau HH, Liu C. Instrument-free point-of-care molecular detection of Zika virus. Anal Chem. 2016;88:7289–7294. doi: 10.1021/acs.analchem.6b01632. PubMed DOI PMC
Sousa JB, Ramos-Jesus J, Fonseca RAS, Delerue-Matos C, Barroso MF, Santos JR. Chapter 9 - Biosensors as advanced device for the transgenic plants and food and detection. In: Holban AM, Grumezescu AM, editors. Genetically engineered foods. Academic Press; 2018. pp. 221–245.
Sparaco M, Lavorgna L, Conforti R, Tedeschi G, Bonavita S. The role of wearable devices in multiple sclerosis. Mult Scler Int. 2018;2018:7627643. doi: 10.1155/2018/7627643. PubMed DOI PMC
Subraya KK, Diggs A, Porterfield DM. Amperometric biosensor approaches for quantification of indole 3-acetic acid in plant stress responses. Commun Soil Sci Plant Anal. 2013;44:1749–1763. doi: 10.1080/00103624.2013.783920. DOI
Sun J-Z, Peter Kingori G, Si R-W, Zhai D-D, Liao Z-H, Sun D-Z, Zheng T, Yong Y-C. Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol. 2015;71:801–809. doi: 10.2166/wst.2015.035. PubMed DOI
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians n/a. 10.3322/caac.21660 PubMed
Tam PD, Van Hieu N, Chien ND, Le A-T, Anh Tuan M. DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. J Immunol Methods. 2009;350:118–124. doi: 10.1016/j.jim.2009.08.002. PubMed DOI
Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, Lo SC, Tan JS, Hani H, Rasedee A. Wide dynamic range of surface-plasmon-resonance-based assay for hepatitis B surface antigen antibody optimal detection in comparison with ELISA. Biotechnol Appl Biochem. 2017;64:735–744. doi: 10.1002/bab.1528. PubMed DOI
Tan Y, Wei T. Detection of 17β-estradiol in water samples by a novel double-layer molecularly imprinted film-based biosensor. Talanta. 2015;141:279–287. doi: 10.1016/j.talanta.2015.04.019. PubMed DOI
Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang Y, Wang Q. Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 2006;6:1632–1636. doi: 10.1021/nl060613v. PubMed DOI
Tekaya N, Saiapina O, Ben Ouada H, Lagarde F, Namour P, Ben Ouada H, Jaffrezic-Renault N. Bi-enzymatic conductometric biosensor for detection of heavy metal ions and pesticides in water samples based on enzymatic inhibition in Arthrospira platensis. J Environ Prot. 2014;5:441–453. doi: 10.4236/jep.2014.55047. DOI
Thouand G, Marks R. Bioluminescence: fundamentals and applications in biotechnology - Berlin, Heidelberg: Springer; 2014.
Thunemann M, Schmidt K, de Wit C, Han X, Jain RK, Fukumura D, Feil R (2014) Correlative intravital imaging of cGMP signals and vasodilation in mice. Front Physiol 5. 10.3389/fphys.2014.00394 PubMed PMC
Turemis M, Silletti S, Pezzotti G, Sanchís J, Farré M, Giardi MT. Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring. Sens Actuators, B Chem. 2018;270:424–432. doi: 10.1016/j.snb.2018.04.111. DOI
Vaisocherová-Lísalová H, Víšová I, Ermini ML, Špringer T, Song XC, Mrázek J, Lamačová J, Scott Lynn N, Šedivák P, Homola J. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens Bioelectron. 2016;80:84–90. doi: 10.1016/j.bios.2016.01.040. PubMed DOI
Verma N, Kaur H, Kumar S. Whole cell based electrochemical biosensor for monitoring lead ions in milk. Biotechnology. 2011;10:259–266. doi: 10.3923/biotech.2011.259.266. DOI
Verma N, Singh AK, Kaur P. Biosensor based on ion selective electrode for detection of l-arginine in fruit juices. J Anal Chem. 2015;70:1111–1115. doi: 10.1134/S1061934815090129. DOI
Verma V, Kala D, Gupta S, Kumar H, Kaushal A, Kuča K, Cruz-Martins N, Kumar D. Leptospira interrogans outer membrane protein-based nanohybrid sensor for the diagnosis of leptospirosis. Sensors. 2021;21:2552. doi: 10.3390/s21072552. PubMed DOI PMC
Vermeir S, Nicolaï BM, Verboven P, Van Gerwen P, Baeten B, Hoflack L, Vulsteke V, Lammertyn J. Microplate differential calorimetric biosensor for ascorbic acid analysis in food and pharmaceuticals. Anal Chem. 2007;79:6119–6127. doi: 10.1021/ac070325z. PubMed DOI
Viter R, Tereshchenko A, Smyntyna V, Ogorodniichuk J, Starodub N, Yakimova R, Khranovskyy V, Ramanavicius A. Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella. Sens Actuators, B Chem. 2017;252:95–102. doi: 10.1016/j.snb.2017.05.139. DOI
Vizzini P, Braidot M, Vidic J, Manzano M. Electrochemical and optical biosensors for the detection of Campylobacter and Listeria: an update look. Micromachines. 2019;10:500. doi: 10.3390/mi10080500. PubMed DOI PMC
Wäckers F, Olson D, Rains G, Lundby F, Haugen J-E. Boar taint detection using parasitoid biosensors. J Food Sci. 2011;76:S41–47. doi: 10.1111/j.1750-3841.2010.01887.x. PubMed DOI
Wang J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis. 2005;17:7–14. doi: 10.1002/elan.200403113. DOI
Wang X, Li Y, Wang H, Fu Q, Peng J, Wang Y, Du J, Zhou Y, Zhan L. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of Hepatitis B virus in buffer, blood serum and plasma. Biosens Bioelectron. 2010;26:404–410. doi: 10.1016/j.bios.2010.07.121. PubMed DOI
Weerathunge P, Ramanathan R, Torok VA, Hodgson K, Xu Y, Goodacre R, Behera BK, Bansal V. Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Anal Chem. 2019;91:3270–3276. doi: 10.1021/acs.analchem.8b03300. PubMed DOI
Weng X, Zhao W, Neethirajan S, Duffield T (2015) Microfluidic biosensor for β-hydroxybutyrate (βHBA) determination of subclinical ketosis diagnosis. J Nanobiotechnology 13. 10.1186/s12951-015-0076-6 PubMed PMC
Wu L, Deng D, Jin J, Lu X, Chen J. Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A. Biosens Bioelectron. 2012;35:193–199. doi: 10.1016/j.bios.2012.02.045. PubMed DOI
Wu Y, Xue P, Kang Y, Hui KM. Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal Chem. 2013;85:8661–8668. doi: 10.1021/ac401445a. PubMed DOI
Wu X, Luo L, Yang S, Ma X, Li Y, Dong C, Tian Y, Zhang L, Shen Z, Wu A. Improved SERS nanoparticles for direct detection of circulating tumor cells in the BLood. ACS Appl Mater Interfaces. 2015;7:9965–9971. doi: 10.1021/acsami.5b02276. PubMed DOI
Xu T, Scafa N, Xu L-P, Zhou S, Al-Ghanem KA, Mahboob S, Fugetsu B, Zhang X. Electrochemical hydrogen sulfide biosensors. Analyst. 2016;141:1185–1195. doi: 10.1039/C5AN02208H. PubMed DOI
Xu Q, Yuan H, Dong X, Zhang Y, Asif M, Dong Z, He W, Ren J, Sun Y, Xiao F. Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples. Biosens Bioelectron. 2018;107:153–162. doi: 10.1016/j.bios.2018.02.026. PubMed DOI
Xu L, Wen Y, Pandit S, Mokkapati VRSS, Mijakovic I, Li Y, Ding M, Ren S, Li W, Liu G. Graphene-based biosensors for the detection of prostate cancer protein biomarkers: a review. BMC Chemistry. 2019;13:112. doi: 10.1186/s13065-019-0611-x. PubMed DOI PMC
Yakoh A, Pimpitak U, Rengpipat S, Hirankarn N, Chailapakul O, Chaiyo S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens Bioelectron. 2021;176:112912. doi: 10.1016/j.bios.2020.112912. PubMed DOI PMC
Yang N, Chen X, Ren T, Zhang P, Yang D. Carbon nanotube based biosensors. Sens Actuators B Chem. 2015;207:690–715. doi: 10.1016/j.snb.2014.10.040. DOI
Yang G, Xiao Z, Tang C, Deng Y, Huang H, He Z. Recent advances in biosensor for detection of lung cancer biomarkers. Biosens Bioelectron. 2019;141:111416. doi: 10.1016/j.bios.2019.111416. PubMed DOI
Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010;10:4962–4969. doi: 10.1021/nl103025u. PubMed DOI PMC
Ye W, Xu Y, Zheng L, Zhang Y, Yang M, Sun P. A nanoporous alumina membrane based electrochemical biosensor for histamine determination with biofunctionalized magnetic nanoparticles concentration and signal amplification. Sensors. 2016;16:1767. doi: 10.3390/s16101767. PubMed DOI PMC
Yildirim N, Long F, Gao C, He M, Shi H-C, Gu AZ. Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples. Environ Sci Technol. 2012;46:3288–3294. doi: 10.1021/es203624w. PubMed DOI
Yoo SM, Lee SY. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016;34:7–25. doi: 10.1016/j.tibtech.2015.09.012. PubMed DOI
Younis MR, Wang C, Younis MA, Xia X-H (2020) Use of biosensors for mycotoxins analysis in food stuff. In: Nanobiosensors. John Wiley & Sons, Ltd, pp 171–201
Yu H, He Y. Seed-assisted synthesis of dendritic Au–Ag bimetallic nanoparticles with chemiluminescence activity and their application in glucose detection. Sens Actuators, B Chem. 2015;209:877–882. doi: 10.1016/j.snb.2014.12.058. DOI
Yu F, Tian S, Yao D, Knoll W. Surface plasmon enhanced diffraction for label-free biosensing. Anal Chem. 2004;76:3530–3535. doi: 10.1021/ac049964p. PubMed DOI
Yu Q, Griss R, Schena A, Johnsson K. Chapter Thirteen - Highly modular bioluminescent sensors for small molecules and proteins. In: Thompson RB, Fierke CA, editors. Methods in Enzymology. Academic Press; 2017. pp. 365–382. PubMed
Zangheri M, Di Nardo F, Anfossi L, Giovannoli C, Baggiani C, Roda A, Mirasoli M. A multiplex chemiluminescent biosensor for type B-fumonisins and aflatoxin B1 quantitative detection in maize flour. Analyst. 2015;140:358–365. doi: 10.1039/c4an01613k. PubMed DOI
Zare H, Aryan E, Meshkat Z, Gheybi F, Neshani A, Ghazvini K, Rezayi M. Development of biosensors for the detection of COVID-19. Nanomedicine Research Journal. 2021;6:11–16. doi: 10.22034/nmrj.2021.01.002. DOI
Zehani N, Fortgang P, Saddek Lachgar M, Baraket A, Arab M, Dzyadevych SV, Kherrat R, Jaffrezic-Renault N. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosens Bioelectron. 2015;74:830–835. doi: 10.1016/j.bios.2015.07.051. PubMed DOI
Zeng Y, Zhu Z, Du D, Lin Y. Nanomaterial-based electrochemical biosensors for food safety. J Electroanal Chem. 2016;781:147–154. doi: 10.1016/j.jelechem.2016.10.030. DOI
Zhang G-J, Zhang L, Huang MJ, Luo ZHH, Tay GKI, Lim E-JA, Kang TG, Chen Y. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens Actuators B Chem. 2010;146:138–144. doi: 10.1016/j.snb.2010.02.021. DOI
Zhang HY, Du XY, Liu Q, Xia C, Sun LW. Detection of progesterone in bovine milk using an electrochemical immunosensor. Int J Dairy Technol. 2013;66:461–467. doi: 10.1111/1471-0307.12076. DOI
Zhang Q, Zhang D, Lu Y, Yao Y, Li S, Liu Q. Graphene oxide-based optical biosensor functionalized with peptides for explosive detection. Biosens Bioelectron. 2015;68:494–499. doi: 10.1016/j.bios.2015.01.040. PubMed DOI
Zhang Z, Sohgawa M, Yamashita K, Noda M. A micromechanical cantilever-based liposome biosensor for characterization of protein-membrane interaction. Electroanalysis. 2016;28:620–625. doi: 10.1002/elan.201500412. DOI
Zhang W, Liu QX, Guo ZH, Lin JS (2018) Practical application of aptamer-based biosensors in detection of low molecular weight pollutants in water sources. Molecules 23. 10.3390/molecules23020344 PubMed PMC
Zhou X, Zhu D, Liao Y, Liu W, Liu H, Ma Z, Xing D. Synthesis, labeling and bioanalytical applications of a tris(2,2′-bipyridyl)ruthenium(II)-based electrochemiluminescence probe. Nat Protoc. 2014;9:1146–1159. doi: 10.1038/nprot.2014.060. PubMed DOI
Zhou Z, Xu L, Wu S, Su B. A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst. 2014;139:4934–4939. doi: 10.1039/C4AN00687A. PubMed DOI
Zhu Z, Feng M, Zuo L, Zhu Z, Wang F, Chen L, Li J, Shan G, Luo S-Z. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens Bioelectron. 2015;65:320–326. doi: 10.1016/j.bios.2014.10.059. PubMed DOI
Zomer G (2010) Chapter 2:The nature of chemiluminescent reactions. In: Chemiluminescence and Bioluminescence. pp 51–90