Biosensors as Nano-Analytical Tools for COVID-19 Detection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34883826
PubMed Central
PMC8659776
DOI
10.3390/s21237823
PII: s21237823
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19 detection, RT-LAMP, electrochemical, nanobiosensor, optical, piezoelectric, smart and wearable,
- MeSH
- biosenzitivní techniky * MeSH
- COVID-19 * MeSH
- lidé MeSH
- nanotechnologie MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- senzitivita a specificita MeSH
- techniky amplifikace nukleových kyselin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Selective, sensitive and affordable techniques to detect disease and underlying health issues have been developed recently. Biosensors as nanoanalytical tools have taken a front seat in this context. Nanotechnology-enabled progress in the health sector has aided in disease and pandemic management at a very early stage efficiently. This report reflects the state-of-the-art of nanobiosensor-based virus detection technology in terms of their detection methods, targets, limits of detection, range, sensitivity, assay time, etc. The article effectively summarizes the challenges with traditional technologies and newly emerging biosensors, including the nanotechnology-based detection kit for COVID-19; optically enhanced technology; and electrochemical, smart and wearable enabled nanobiosensors. The less explored but crucial piezoelectric nanobiosensor and the reverse transcription-loop mediated isothermal amplification (RT-LAMP)-based biosensor are also discussed here. The article could be of significance to researchers and doctors dedicated to developing potent, versatile biosensors for the rapid identification of COVID-19. This kind of report is needed for selecting suitable treatments and to avert epidemics.
Biomedical Research Center University Hospital Sokolska 581 50005 Hradec Kralove Czech Republic
Ramrao Adik Institute of Technology DY Patil University Nerul Navi Mumbai 400706 India
School of Studies in Chemistry Pt Ravishankar Shukla University Raipur 492010 India
Zobrazit více v PubMed
Lu H., Stratton C.W., Tang Y.-W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol. 2020;92:401–402. doi: 10.1002/jmv.25678. PubMed DOI PMC
Zheng Y.-Y., Ma Y.-T., Zhang J.-Y., Xie X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020;17:259–260. doi: 10.1038/s41569-020-0360-5. PubMed DOI PMC
WHO Coronavirus (COVID-19) Dashboard|WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. [(accessed on 24 March 2021)]. Available online: https://covid19.who.int.
Loeffelholz M.J., Tang Y.-W. Laboratory diagnosis of emerging human coronavirus infections—The state of the art. Emerg. Microbes Infect. 2020;9:747–756. doi: 10.1080/22221751.2020.1745095. PubMed DOI PMC
Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC
Narayanan K., Makino S. Cooperation of an RNA Packaging Signal and a Viral Envelope Protein in Coronavirus RNA Packaging. J. Virol. 2001;75:9059–9067. doi: 10.1128/JVI.75.19.9059-9067.2001. PubMed DOI PMC
Li Y., Xia L. Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management. Am. J. Roentgenol. 2020;214:1280–1286. doi: 10.2214/AJR.20.22954. PubMed DOI
Velagapudi R., Kumar A., Bhatia H.S., El-Bakoush A., Lepiarz-Raba I., Fiebich B.L., Olajide O.A. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int. Immunopharmacol. 2017;48:17–29. doi: 10.1016/j.intimp.2017.04.018. PubMed DOI
Carter L.J., Garner L.V., Smoot J.W., Li Y., Zhou Q., Saveson C.J., Sasso J.M., Gregg A.C., Soares D.J., Beskid T.R., et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent. Sci. 2020;6:591–605. doi: 10.1021/acscentsci.0c00501. PubMed DOI PMC
Soler M., Huertas C.S., Lechuga L.M. Label-free plasmonic biosensors for point-of-care diagnostics: A review. Expert Rev. Mol. Diagn. 2019;19:71–81. doi: 10.1080/14737159.2019.1554435. PubMed DOI
Masson J.-F. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sens. 2017;2:16–30. doi: 10.1021/acssensors.6b00763. PubMed DOI
Sharifi M., Hosseinali S.H., Alizadeh R.H., Hasan A., Attar F., Salihi A., Shekha M.S., Amen K.M., Aziz F.M., Saboury A.A., et al. Plasmonic and chiroplasmonic nanobiosensors based on gold nanoparticles. Talanta. 2020;212:120782. doi: 10.1016/j.talanta.2020.120782. PubMed DOI
Sharifi M., Avadi M.R., Attar F., Dashtestani F., Ghorchian H., Rezayat S.M., Saboury A.A., Falahati M. Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens. Bioelectron. 2018;126:773–784. doi: 10.1016/j.bios.2018.11.026. PubMed DOI
Sharifi M., Hasan A., Attar F., Taghizadeh A., Falahati M. Development of point-of-care nanobiosensors for breast cancers diagnosis. Talanta. 2020;217:121091. doi: 10.1016/j.talanta.2020.121091. PubMed DOI
Fu Z., Tang N., Chen Y., Ma L., Wei Y., Lu Y., Ye K., Liu H., Tang F., Huang G., et al. CT features of COVID-19 patients with two consecutive negative RT-PCR tests after treatment. Sci. Rep. 2020;10:11548. doi: 10.1038/s41598-020-68509-x. PubMed DOI PMC
Fang Y., Zhang H., Xie J., Lin M., Ying L., Pang P., Ji W. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020;395:A1–A2. doi: 10.1148/radiol.2020200432. PubMed DOI PMC
Brogna B., Brogna C., Martino A., Minichiello S., Romeo D.M., Romano P., Bignardi E., Mazza E.M., Musto L. SARS-CoV-2 Infection with Different Radiological Insights. Diagnostics. 2020;10:283. doi: 10.3390/diagnostics10050283. PubMed DOI PMC
Wu J., Liu J., Li S., Peng Z., Xiao Z., Wang X., Yan R., Luo J. Detection and analysis of nucleic acid in various biological samples of COVID-19 patients. Travel Med. Infect. Dis. 2020;37:101673. doi: 10.1016/j.tmaid.2020.101673. PubMed DOI PMC
Wu D., Wu T., Liu Q., Yang Z. The SARS-CoV-2 outbreak: What we know. Int. J. Infect. Dis. 2020;94:44–48. doi: 10.1016/j.ijid.2020.03.004. PubMed DOI PMC
Fred H.L. Drawbacks and limitations of computed tomography: Views from a medical educator. Tex. Hear. Inst. J. 2004;31:345–348. PubMed PMC
Suleman S., Shukla S.K., Malhotra N., Bukkitgar S.D., Shetti N.P., Pilloton R., Narang J., Tan Y.N., Aminabhavi T.M. Point of care detection of COVID-19: Advancement in biosensing and diagnostic methods. Chem. Eng. J. 2021;414:128759. doi: 10.1016/j.cej.2021.128759. PubMed DOI PMC
Theamboonlers A., Samransamruajkit R., Thongme C., Amonsin A., Chongsrisawat V., Poovorawan Y. Human Coronavirus Infection among Children with Acute Lower Respiratory Tract Infection in Thailand. Intervirology. 2006;50:71–77. doi: 10.1159/000097392. PubMed DOI PMC
Jin Y.-H., Cai L., Cheng Z.-S., Cheng H., Deng T., Fan Y.-P., Fang C., Huang D., Huang L.-Q., Huang Q., et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version) Mil. Med. Res. 2020;7:4. doi: 10.1186/s40779-020-0233-6. PubMed DOI PMC
Udugama B., Kadhiresan P., Kozlowski H.N., Malekjahani A., Osborne M., Li V.Y.C., Chen H., Mubareka S., Gubbay J.B., Chan W.C.W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020;14:3822–3835. doi: 10.1021/acsnano.0c02624. PubMed DOI
Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433. PubMed DOI PMC
Singh B., Datta B., Ashish A., Dutta G. A comprehensive review on current COVID-19 detection methods: From lab care to point of care diagnosis. Sens. Int. 2021;2:100119. doi: 10.1016/j.sintl.2021.100119. PubMed DOI PMC
Moore S.C., Penrice-Randal R., Alruwaili M., Dong X., Pullan S.T., Carter D., Bewley K., Zhao Q., Sun Y., Hartley C., et al. Amplicon based MinION sequencing of SARS-CoV-2 and metagenomic characterisation of nasopharyngeal swabs from patients with COVID-19. medRxiv. 2020:1–15. doi: 10.1101/2020.03.05.20032011. DOI
Manning J.E., Bohl J.A., Lay S., Chea S., Sovann L., Sengdoeurn Y., Heng S., Vuthy C., Kalantar K., Ahyong V., et al. Rapid metagenomic characterization of a case of imported COVID-19 in Cambodia. bioRxiv. 2020 doi: 10.1101/2020.03.02.968818. DOI
Shakya M., Lo C.-C., Chain P.S.G. Advances and Challenges in Metatranscriptomic Analysis. Front. Genet. 2019;10:904. doi: 10.3389/fgene.2019.00904. PubMed DOI PMC
Tan W., Lu Y., Zhang J., Wang J., Dan Y., Tan Z., He X., Qian C., Sun Q., Hu Q., et al. Viral kinetics and antibody responses in patients with COVID-19. medRxiv. 2020 doi: 10.1101/2020.03.24.20042382. DOI
Fierz W. Basic problems of serological laboratory diagnosis. Methods Mol. Med. 2004;94:393–428. doi: 10.1385/1-59259-679-7:393. PubMed DOI
Kassanjee R., Pilcher C.D., Busch M.P., Murphy G., Facente S.N., Keating S., McKinney E., Marson K., Price M., Martin J.N., et al. Viral load criteria and threshold optimization to improve HIV incidence assay characteristics. Aids. 2016;30:2361–2371. doi: 10.1097/QAD.0000000000001209. PubMed DOI PMC
Alanagreh L., Alzoughool F., Atoum M. The Human Coronavirus Disease COVID-19: Its Origin, Characteristics, and Insights into Potential Drugs and Its Mechanisms. Pathogens. 2020;9:331. doi: 10.3390/pathogens9050331. PubMed DOI PMC
Liu R., Fu A., Deng Z., Li Y., Liu T. Promising methods for detection of novel coronavirus SARS-CoV-2. VIEW. 2020;1:2–5. doi: 10.1002/viw2.4. PubMed DOI PMC
Xiang J., Yan M., Li H., Liu T., Lin C., Huang S., Shen C. Evaluation of Enzyme-Linked Immunoassay and Colloidal Gold-Immunochromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-2) Causing an Outbreak of Pneumonia (COVID-19) medRxiv. 2020 doi: 10.1101/2020.02.27.20028787. DOI
Simeon K., Sharma M., Dorward J., Naidoo J., Dlamini N., Moodley P., Samsunder N., Barnabas R.V., Garrett N., Drain P.K. Comparative cost analysis of point-of-care versus laboratory-based testing to initiate and monitor HIV treatment in South Africa. PLoS ONE. 2019;14:e0223669. doi: 10.1371/journal.pone.0223669. PubMed DOI PMC
Inci F., Saylan Y., Kojouri A.M., Ogut M.G., Denizli A., Demirci U. A disposable microfluidic-integrated hand-held plasmonic platform for protein detection. Appl. Mater. Today. 2020;18:14–16. doi: 10.1016/j.apmt.2019.100478. DOI
Saylan Y., Akgönüllü S., Yavuz H., Ünal S., Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors. 2019;19:1279. doi: 10.3390/s19061279. PubMed DOI PMC
Inci F., Karaaslan M.G., Mataji-Kojouri A., Shah P.A., Saylan Y., Zeng Y., Avadhani A., Sinclair R., Lau D.T.-Y., Demirci U. Enhancing the nanoplasmonic signal by a nanoparticle sandwiching strategy to detect viruses. Appl. Mater. Today. 2020;20:100709. doi: 10.1016/j.apmt.2020.100709. DOI
Saylan Y., Akgönüllü S., Denizli A. Plasmonic Sensors for Monitoring Biological and Chemical Threat Agents. Biosensors. 2020;10:142. doi: 10.3390/bios10100142. PubMed DOI PMC
Asghar W., Shafiee H., Velasco V., Sah V.R., Guo S., El Assal R., Inci F., Rajagopalan A., Jahangir M., Anchan R.M., et al. Toxicology Study of Single-Walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Sci. Rep. 2016;6:30270. doi: 10.1038/srep30270. PubMed DOI PMC
Inci F., Ozen M., Saylan Y., Miansari M., Cimen D., Dhara R., Chinnasamy T., Yuksekkaya M., Filippini C., Kumar D.K., et al. A Novel On-Chip Method for Differential Extraction of Sperm in Forensic Cases. Adv. Sci. 2018;5:1800121. doi: 10.1002/advs.201800121. PubMed DOI PMC
Inci F., Karaaslan M.G., Gupta R., Avadhani A., Ogut M.G., Atila E.E., Duncan G., Klevan L., Demirci U. Bio-Inspired Magnetic Beads for Isolation of Sperm from Heterogenous Samples in Forensic Applications. Forensic Sci. Int. Genet. 2020;52:102451. doi: 10.1016/j.fsigen.2020.102451. PubMed DOI
Deshmukh S., Inci F., Karaaslan M.G., Ogut M.G., Duncan D., Klevan L., Duncan G., Demirci U. A confirmatory test for sperm in sexual assault samples using a microfluidic-integrated cell phone imaging system. Forensic Sci. Int. Genet. 2020;48:102313. doi: 10.1016/j.fsigen.2020.102313. PubMed DOI
Erdem I., Eş I., Akceoglu G.A., Saylan Y., Inci F. Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases. Biosensors. 2021;11:296. doi: 10.3390/bios11090296. PubMed DOI PMC
Campàs M., Katakis I. DNA biochip arraying, detection and amplification strategies. TrAC Trends Anal. Chem. 2004;23:49–62. doi: 10.1016/S0165-9936(04)00104-9. DOI
Liu S., Leech D., Ju H. Application of Colloidal Gold in Protein Immobilization, Electron Transfer, and Biosensing. Anal. Lett. 2003;36:1–19. doi: 10.1081/AL-120017740. DOI
Bukkitgar S., Shetti N.P., Malladi R.S., Reddy K.R., Kalanur S.S., Aminabhavi T. Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol. J. Mol. Liq. 2019;300:112368. doi: 10.1016/j.molliq.2019.112368. DOI
Bukkitgar S.D., Kumar S., Pratibha, Singh S., Singh V., Reddy K.R., Sadhu V., Bagihalli G.B., Shetti N.P., Reddy C.V., et al. Functional nanostructured metal oxides and its hybrid electrodes—Recent advancements in electrochemical biosensing applications. Microchem. J. 2020;159:105522. doi: 10.1016/j.microc.2020.105522. DOI
Shetti N.P., Malode S.J., Nayak D.S., Bukkitgar S., Bagihalli G.B., Kulkarni R., Reddy K.R. Novel nanoclay-based electrochemical sensor for highly efficient electrochemical sensing nimesulide. J. Phys. Chem. Solids. 2019;137:109210. doi: 10.1016/j.jpcs.2019.109210. DOI
Ilager D., Seo H., Shetti N.P., Kalanur S.S. CTAB modified Fe-WO3 as an electrochemical detector of amitrole by catalytic oxidation. J. Environ. Chem. Eng. 2020;8:104580. doi: 10.1016/j.jece.2020.104580. DOI
Shetti N.P., Bukkitgar S., Reddy K.R., Reddy C.V., Aminabhavi T. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 2019;141:111417. doi: 10.1016/j.bios.2019.111417. PubMed DOI
Shetti N.P., Bukkitgar S.D., Reddy K.R., Reddy C.V., Aminabhavi T.M. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B Biointerfaces. 2019;178:385–394. doi: 10.1016/j.colsurfb.2019.03.013. PubMed DOI
Bukkitgar S.D., Shetti N.P., Reddy K.R., Saleh T.A., Aminabhavi T.M. Ultrasonication and electrochemically-assisted synthesis of reduced graphene oxide nanosheets for electrochemical sensor applications. FlatChem. 2020;23:100183. doi: 10.1016/j.flatc.2020.100183. DOI
Antiochia R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: From past to perspectives. Microchim. Acta. 2020;187:639. doi: 10.1007/s00604-020-04615-x. PubMed DOI PMC
Krejcova L., Nejdl L., Hynek D., Krizkova S., Kopel P., Adam V., Kizek R. Beads-Based Electrochemical Assay for the Detection of Influenza Hemagglutinin Labeled with CdTe Quantum Dots. Molecules. 2013;18:15573–15586. doi: 10.3390/molecules181215573. PubMed DOI PMC
Esseghaier C., Ng A., Zourob M. A novel and rapid assay for HIV-1 protease detection using magnetic bead mediation. Biosens. Bioelectron. 2013;41:335–341. doi: 10.1016/j.bios.2012.08.049. PubMed DOI
Lin Y.-Y., Wang J., Liu G., Wu H., Wai C., Lin Y. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens. Bioelectron. 2008;23:1659–1665. doi: 10.1016/j.bios.2008.01.037. PubMed DOI
Lazerges M., Bedioui F. Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Anal. Bioanal. Chem. 2013;405:3705–3714. doi: 10.1007/s00216-012-6672-5. PubMed DOI
Tran L.D., Nguyen B.H., Van Hieu N., Tran H.V., Le Nguyen H., Nguyen P.X. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Mater. Sci. Eng. C. 2011;31:477–485. doi: 10.1016/j.msec.2010.11.007. DOI
Solanki P.R., Patel M.K., Kaushik A., Pandey M.K., Kotnala R.K., Malhotra B.D. Sol-Gel Derived Nanostructured Metal Oxide Platform for Bacterial Detection. Electroanalysis. 2011;23:2699–2708. doi: 10.1002/elan.201100351. DOI
Yao C.-Y. Biosensors for hepatitis B virus detection. World J. Gastroenterol. 2014;20:12485–12492. doi: 10.3748/wjg.v20.i35.12485. PubMed DOI PMC
Soler M., Estévez M.-C., Cardenosa-Rubio M., Astua A., Lechuga L.M. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens. 2020;5:2663–2678. doi: 10.1021/acssensors.0c01180. PubMed DOI
Srivastava M., Srivastava N., Mishra P., Malhotra B.D. Prospects of nanomaterials-enabled biosensors for COVID-19 detection. Sci. Total Environ. 2020;754:142363. doi: 10.1016/j.scitotenv.2020.142363. PubMed DOI PMC
Fracchiolla N.S., Artuso S., Cortelezzi A. Biosensors in Clinical Practice: Focus on Oncohematology. Sensors. 2013;13:6423–6447. doi: 10.3390/s130506423. PubMed DOI PMC
Steglich P., Hülsemann M., Dietzel B., Mai A. Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review. Molecules. 2019;24:519. doi: 10.3390/molecules24030519. PubMed DOI PMC
Zanchetta G., Lanfranco R., Giavazzi F., Bellini T., Buscaglia M. Emerging applications of label-free optical biosensors. Nanophotonics. 2017;6:627–645. doi: 10.1515/nanoph-2016-0158. DOI
Ciminelli C., Dell’Olio F., Conteduca D., Armenise M.N. Silicon photonic biosensors. IET Optoelectron. 2019;13:48–54. doi: 10.1049/iet-opt.2018.5082. DOI
Bruinink A., Wang J., Wick P. Effect of particle agglomeration in nanotoxicology. Arch. Toxicol. 2015;89:659–675. doi: 10.1007/s00204-015-1460-6. PubMed DOI
Saylan Y., Erdem S., Ünal S., Denizli A. An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. Biosensors. 2019;9:65. doi: 10.3390/bios9020065. PubMed DOI PMC
Shi L., Sun Q., He J., Xu H., Liu C., Zhao C., Xu Y., Wu C., Xiang J., Gu D., et al. Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Bio-Med. Mater. Eng. 2015;26:S2207–S2216. doi: 10.3233/BME-151526. PubMed DOI
Chang Y.-F., Wang W.-H., Hong Y.-W., Yuan R.-Y., Chen K.-H., Huang Y.-W., Lu P.-L., Chen Y.-H., Chen Y.-M.A., Su L.-C., et al. Simple Strategy for Rapid and Sensitive Detection of Avian Influenza A H7N9 Virus Based on Intensity-Modulated SPR Biosensor and New Generated Antibody. Anal. Chem. 2018;90:1861–1869. doi: 10.1021/acs.analchem.7b03934. PubMed DOI
Kim S.A., Byun K.M., Kim K., Jang S.M., Ma K., Oh Y., Kim D., Kim S.G., Shuler M.L., Kim S.J. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays (Nanotechnology (2010) 21 (355503)) Nanotechnology. 2011;22:289501. doi: 10.1088/0957-4484/22/28/289501. PubMed DOI
Bai H., Wang R., Hargis B., Lu H., Li Y. A SPR Aptasensor for Detection of Avian Influenza Virus H5N1. Sensors. 2012;12:12506–12518. doi: 10.3390/s120912506. PubMed DOI PMC
Alimova A., Katz A., Podder R., Minko G., Wei H., Alfano R.R., Gottlieb P. Virus Particles Monitored by Fluorescence Spectroscopy: A Potential Detection Assay for Macromolecular Assembly. Photochem. Photobiol. 2004;80:41–46. doi: 10.1562/2004-02-11-RA-080.1. PubMed DOI
Waye M., Law P., Wong C.-H., Au T., Chuck C., Kong S.-K., Chan P., To K.-F., Lo A., Chan J., et al. The 3a Protein of SARS-coronavirus Induces Apoptosis in Vero E6 Cells; Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference; Shanghai, China. 24 January 2005; pp. 7482–7485. PubMed DOI
Huang J.C., Chang Y.-F., Chen K.-H., Su L.-C., Lee C.-W., Chen C.-C., Chen Y.-M.A., Chou C. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosens. Bioelectron. 2009;25:320–325. doi: 10.1016/j.bios.2009.07.012. PubMed DOI PMC
Murugan D., Bhatia H., Sai V.V.R., Satija J. P-FAB: A Fiber-Optic Biosensor Device for Rapid Detection of COVID-19. Trans. Indian Natl. Acad. Eng. 2020;5:211–215. doi: 10.1007/s41403-020-00122-w. PubMed DOI PMC
Nag P., Sadani K., Mukherji S. Optical Fiber Sensors for Rapid Screening of COVID-19. Trans. Indian Natl. Acad. Eng. 2020;5:233–236. doi: 10.1007/s41403-020-00128-4. PubMed DOI PMC
Haes A.J., Chang L., Klein W.L., Van Duyne R.P. Detection of a Biomarker for Alzheimer’s Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor. J. Am. Chem. Soc. 2005;127:2264–2271. doi: 10.1021/ja044087q. PubMed DOI
Anker J.N., Hall W.P., Lyandres O., Shah N.C., Zhao J., Van Duyne R.P. Biosensing with plasmonic nanosensors. Nanosci. Technol. A Collect. Rev. Nat. J. 2010:308–319. doi: 10.1142/9789814287005_0032. PubMed DOI
Qiu G., Ng S.P., Wu C.-M.L. Bimetallic Au-Ag alloy nanoislands for highly sensitive localized surface plasmon resonance biosensing. Sens. Actuators B Chem. 2018;265:459–467. doi: 10.1016/j.snb.2018.03.066. DOI
Qiu G., Thakur A., Xu C., Ng S.-P., Lee Y., Wu C.-M.L. Detection of Glioma-Derived Exosomes with the Biotinylated Antibody-Functionalized Titanium Nitride Plasmonic Biosensor. Adv. Funct. Mater. 2018;29:1806761. doi: 10.1002/adfm.201806761. DOI
Qiu G., Gai Z., Tao Y., Schmitt J., Kullak-Ublick G.A., Wang J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano. 2020;14:5268–5277. doi: 10.1021/acsnano.0c02439. PubMed DOI
Cady N.C., Tokranova N., Minor A., Nikvand N., Strle K., Lee W.T., Page W., Guignon E., Pilar A., Gibson G.N. Multiplexed detection and quantification of human antibody response to COVID-19 infection using a plasmon enhanced biosensor platform. Biosens. Bioelectron. 2020;171:112679. doi: 10.1016/j.bios.2020.112679. PubMed DOI PMC
Zeng Y.-P., Hu J., Long Y., Zhang C.-Y. Sensitive Detection of DNA Methyltransferase Using Hairpin Probe-Based Primer Generation Rolling Circle Amplification-Induced Chemiluminescence. Anal. Chem. 2013;85:6143–6150. doi: 10.1021/ac4011292. PubMed DOI
Tian B., Gao F., Fock J., Dufva M., Hansen M.F. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens. Bioelectron. 2020;165:112356. doi: 10.1016/j.bios.2020.112356. PubMed DOI
Bhalla N., Pan Y., Yang Z., Payam A.F. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS Nano. 2020;14:7783–7807. doi: 10.1021/acsnano.0c04421. PubMed DOI PMC
Wei F., Lillehoj P.B., Ho C.-M. DNA Diagnostics: Nanotechnology-Enhanced Electrochemical Detection of Nucleic Acids. Pediatr. Res. 2010;67:458–468. doi: 10.1203/PDR.0b013e3181d361c3. PubMed DOI PMC
Laba K., Lapkowski M., Officer D.L., Wagner P., Data P. Electrochemical and optical aspects of cobalt meso-carbazole substituted porphyrin complexes. Electrochimica Acta. 2019;330:135140. doi: 10.1016/j.electacta.2019.135140. DOI
Lim R.R.X., Bonanni A. The potential of electrochemistry for the detection of coronavirus-induced infections. TrAC Trends Anal. Chem. 2020;133:116081. doi: 10.1016/j.trac.2020.116081. PubMed DOI PMC
Zafar S., Lu M., Jagtiani A. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors. Sci. Rep. 2017;7:41430. doi: 10.1038/srep41430. PubMed DOI PMC
Sarkar D., Liu W., Xie X., Anselmo A.C., Mitragotri S., Banerjee K. MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS Nano. 2014;8:3992–4003. doi: 10.1021/nn5009148. PubMed DOI
Kashefi-Kheyrabadi L., Nguyen H.V., Go A., Baek C., Jang N., Lee J.M., Cho N.-H., Min J., Lee M.-H. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosens. Bioelectron. 2021;195:113649. doi: 10.1016/j.bios.2021.113649. PubMed DOI PMC
Alafeef M., Dighe K., Moitra P., Pan D. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano. 2020;14:17028–17045. doi: 10.1021/acsnano.0c06392. PubMed DOI PMC
Khan M.S., Dighe K., Wang Z., Srivastava I., Daza E., Schwartz-Dual A.S., Ghannam J., Misra S.K., Pan D. Detection of prostate specific antigen (PSA) in human saliva using an ultra-sensitive nanocomposite of graphene nanoplatelets with diblock-co-polymers and Au electrodes. Analyst. 2018;143:1094–1103. doi: 10.1039/C7AN01932G. PubMed DOI
Ishikawa F.N., Curreli M., Olson C.A., Liao H.-I., Sun R., Roberts R.W., Cote R.J., Thompson M.E., Zhou C. Importance of Controlling Nanotube Density for Highly Sensitive and Reliable Biosensors Functional in Physiological Conditions. ACS Nano. 2010;4:6914–6922. doi: 10.1021/nn101198u. PubMed DOI
Miripour Z.S., Sarrami-Forooshani R., Sanati H., Makarem J., Taheri M.S., Shojaeian F., Eskafi A.H., Abbasvandi F., Namdar N., Ghafari H., et al. Real-time diagnosis of reactive oxygen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this pandemic. Biosens. Bioelectron. 2020;165:112435. doi: 10.1016/j.bios.2020.112435. PubMed DOI PMC
Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281–292.e6. doi: 10.1016/j.cell.2020.02.058. PubMed DOI PMC
Gowri A., Kumar N.A., Anand B.S. Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of Covid-19—A minireview. TrAC Trends Anal. Chem. 2021;137:116205. doi: 10.1016/j.trac.2021.116205. PubMed DOI PMC
Li X., Qin Z., Fu H., Li T., Peng R., Li Z., Rini J.M., Liu X. Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Biosens. Bioelectron. 2021;177:112672. doi: 10.1016/j.bios.2020.112672. PubMed DOI PMC
Zhao H., Liu F., Xie W., Zhou T.-C., OuYang J., Jin L., Li H., Zhao C.-Y., Zhang L., Wei J., et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sens. Actuators B Chem. 2020;327:128899. doi: 10.1016/j.snb.2020.128899. PubMed DOI PMC
Zhang F., Abudayyeh O.O., Gootenberg J.S., Sciences C. A Protocol for Detection of COVID-19 Using CRISPR Diagnostics. 2020; pp. 1–8. [(accessed on 2 November 2021)]. Available online: https://www.broadinstitute.org/files/publications/special/COVID-19%20detection%20(updated).pdf.
Cesewski E., Johnson B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020;159:112214. doi: 10.1016/j.bios.2020.112214. PubMed DOI PMC
Long F., Zhang Z., Wang J., Yan L., Zhou B. Cobalt-nickel bimetallic nanoparticles decorated graphene sensitized imprinted electrochemical sensor for determination of octylphenol. Electrochim. Acta. 2015;168:337–345. doi: 10.1016/j.electacta.2015.04.054. DOI
Li S., Ma L., Zhou M., Li Y., Xia Y., Fan X., Cheng C., Luo H. New opportunities for emerging 2D materials in bioelectronics and biosensors. Curr. Opin. Biomed. Eng. 2019;13:32–41. doi: 10.1016/j.cobme.2019.08.016. DOI
Cai L., Zhang Z., Xiao H., Chen S., Fu J. An eco-friendly imprinted polymer based on graphene quantum dots for fluorescent detection of p-nitroaniline. RSC Adv. 2019;9:41383–41391. doi: 10.1039/C9RA08726E. PubMed DOI PMC
Yang X., Zhang F., Hu Y., Chen D., He Z., Xiong L. Gold nanoparticals doping graphene sheets nanocomposites sensitized screen-printed carbon electrode as a disposable platform for voltammetric determination of guaiacol in bamboo juice. Int. J. Electrochem. Sci. 2014;9:5061–5072.
Seo G., Lee G., Kim M.J., Baek S.-H., Choi M., Ku K.B., Lee C.-S., Jun S., Park D., Kim H.G., et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano. 2020;14:5135–5142. doi: 10.1021/acsnano.0c02823. PubMed DOI
Innocenzi P., Stagi L. Carbon-based antiviral nanomaterials: Graphene, C-dots, and fullerenes. A perspective. Chem. Sci. 2020;11:6606–6622. doi: 10.1039/D0SC02658A. PubMed DOI PMC
Raghav P.K., Mohanty S. Are graphene and graphene-derived products capable of preventing COVID-19 infection? Med. Hypotheses. 2020;144:110031. doi: 10.1016/j.mehy.2020.110031. PubMed DOI PMC
Janissen R., Sahoo P.K., Santos C.A., da Silva A.M., von Zuben A.A.G., Souto D.E.P., Costa A.D.T., Celedon P., Zanchin N.I.T., Almeida D.B., et al. InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. Nano Lett. 2017;17:5938–5949. doi: 10.1021/acs.nanolett.7b01803. PubMed DOI
Liu J., Chen X., Wang Q., Xiao M., Zhong D., Sun W., Zhang G., Zhang Z. Ultrasensitive Monolayer MoS2 Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. Nano Lett. 2019;19:1437–1444. doi: 10.1021/acs.nanolett.8b03818. PubMed DOI
Li J., Wu D., Yu Y., Li T., Li K., Xiao M.-M., Li Y., Zhang Z.-Y., Zhang G.-J. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosens. Bioelectron. 2021;183:113206. doi: 10.1016/j.bios.2021.113206. PubMed DOI PMC
Hajian R., Balderston S., Tran T., DeBoer T., Etienne J., Sandhu M., Wauford N.A., Chung J.-Y., Nokes J., Athaiya M., et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 2019;3:427–437. doi: 10.1038/s41551-019-0371-x. PubMed DOI PMC
Mobed A., Shafigh E.S. Biosensors promising bio-device for pandemic screening “COVID-19”. Microchem. J. 2021;164:106094. doi: 10.1016/j.microc.2021.106094. PubMed DOI PMC
Akyildiz I.F., Pierobon M., Balasubramaniam S., Koucheryavy Y. The internet of Bio-Nano things. IEEE Commun. Mag. 2015;53:32–40. doi: 10.1109/MCOM.2015.7060516. DOI
Mostafalu P., Akbari M., Alberti K.A., Xu Q., Khademhosseini A., Sonkusale S.R. A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst. Nanoeng. 2016;2:16039. doi: 10.1038/micronano.2016.39. PubMed DOI PMC
Gohel H.A., Upadhyay H., Lagos L., Cooper K., Sanzetenea A. Predictive maintenance architecture development for nuclear infrastructure using machine learning. Nucl. Eng. Technol. 2020;52:1436–1442. doi: 10.1016/j.net.2019.12.029. DOI
Dimitrov D.V. Medical Internet of Things and Big Data in Healthcare. Healthc. Inform. Res. 2016;22:156–163. doi: 10.4258/hir.2016.22.3.156. PubMed DOI PMC
Gubbi J., Buyya R., Marusic S., Palaniswami M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013;29:1645–1660. doi: 10.1016/j.future.2013.01.010. DOI
Berrouiguet S., Perez-Rodriguez M.M., Larsen M., Baca-García E., Courtet P., Oquendo M. From eHealth to iHealth: Transition to Participatory and Personalized Medicine in Mental Health. J. Med. Internet Res. 2018;20:1–8. doi: 10.2196/jmir.7412. PubMed DOI PMC
McCall B. COVID-19 and artificial intelligence: Protecting health-care workers and curbing the spread. Lancet Digit. Health. 2020;2:e166–e167. doi: 10.1016/S2589-7500(20)30054-6. PubMed DOI PMC
Lukas H., Xu C., Yu Y., Gao W. Emerging Telemedicine Tools for Remote COVID-19 Diagnosis, Monitoring, and Management. ACS Nano. 2020;14:16180–16193. doi: 10.1021/acsnano.0c08494. PubMed DOI
Song J., Pandian V., Mauk M.G., Bau H.H., Cherry S., Tisi L.C., Liu C. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping. Anal. Chem. 2018;90:4823–4831. doi: 10.1021/acs.analchem.8b00283. PubMed DOI PMC
Hollander J.E., Carr B.G. Virtually Perfect? Telemedicine for Covid-19. N. Engl. J. Med. 2020;382:1679–1681. doi: 10.1056/NEJMp2003539. PubMed DOI
Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585. PubMed DOI PMC
Black J.R.M., Bailey C., Przewrocka A., Dijkstra K.K., Swanton C. COVID-19: The case for health-care worker screening to prevent hospital transmission. Lancet. 2020;395:1418–1420. doi: 10.1016/S0140-6736(20)30917-X. PubMed DOI PMC
Ting D.S.W., Carin L., Dzau V., Wong T.Y. Digital technology and COVID-19. Nat. Med. 2020;26:459–461. doi: 10.1038/s41591-020-0824-5. PubMed DOI PMC
Mujawar M., Gohel H., Bhardwaj S., Srinivasan S., Hickman N., Kaushik A. Nano-enabled biosensing systems for intelligent healthcare: Towards COVID-19 management. Mater. Today Chem. 2020;17:100306. doi: 10.1016/j.mtchem.2020.100306. PubMed DOI PMC
Shan B., Broza Y.Y., Li W., Wang Y., Wu S., Liu Z., Wang J., Gui S., Wang L., Zhang Z., et al. Multiplexed Nanomaterial-Based Sensor Array for Detection of COVID-19 in Exhaled Breath. ACS Nano. 2020;14:12125–12132. doi: 10.1021/acsnano.0c05657. PubMed DOI
Leïchlé T., Nicu L., Alava T. MEMS Biosensors and COVID-19: Missed Opportunity. ACS Sensors. 2020;5:3297–3305. doi: 10.1021/acssensors.0c01463. PubMed DOI
Aarogya Setu. [(accessed on 13 January 2021)]; Available online: https://www.aarogyasetu.gov.in/
WhatsApp Coronavirus Information Hub. [(accessed on 13 January 2021)]. Available online: https://www.whatsapp.com/coronavirus/?lang=fb.
Torrente-Rodríguez R.M., Tu J., Yang Y., Min J., Wang M., Song Y., Yu Y., Xu C., Ye C., IsHak W.W., et al. Investigation of Cortisol Dynamics in Human Sweat Using a Graphene-Based Wireless mHealth System. Matter. 2020;2:921–937. doi: 10.1016/j.matt.2020.01.021. PubMed DOI PMC
Pfefferbaum B., North C.S. Mental Health and the COVID-19 Pandemic. N. Engl. J. Med. 2020;383:510–512. doi: 10.1056/NEJMp2008017. PubMed DOI
Zhou X., Snoswell C.L., Harding L.E., Bambling M., Edirippulige S., Bai X., Smith A.C. The Role of Telehealth in Reducing the Mental Health Burden from COVID-19. Telemed. e-Health. 2020;26:377–379. doi: 10.1089/tmj.2020.0068. PubMed DOI
Stojanovic R., Skraba A., Lutovac B. A Headset Like Wearable Device to Track COVID-19 Symptoms; Proceedings of the 2020 9th Mediterranean Conference on Embedded Computing (MECO); Budva, Montenegro. 8–11 June 2020; pp. 1–4. DOI
Tavakoli M., Carriere J., Torabi A. Robotics, Smart Wearable Technologies, and Autonomous Intelligent Systems for Healthcare During the COVID-19 Pandemic: An Analysis of the State of the Art and Future Vision. Adv. Intell. Syst. 2020;2:2000071. doi: 10.1002/aisy.202000071. DOI
Seshadri D.R., Davies E.V., Harlow E.R., Hsu J.J., Knighton S.C., Walker T.A., Voos J.E., Drummond C.K. Wearable Sensors for COVID-19: A Call to Action to Harness Our Digital Infrastructure for Remote Patient Monitoring and Virtual Assessments. Front. Digit. Health. 2020;2:8. doi: 10.3389/fdgth.2020.00008. PubMed DOI PMC
Driggin E., Madhavan M.V., Bikdeli B., Chuich T., Laracy J., Biondi-Zoccai G., Brown T.S., Der-Nigoghossian C., Zidar D.A., Haythe J., et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems during the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020;75:2352–2371. doi: 10.1016/j.jacc.2020.03.031. PubMed DOI PMC
Shirazi S., Mami S., Mohtadi N., Ghaysouri A., Tavan H., Nazari A., Kokhazadeh T., Mollazadeh R. Sudden cardiac death in COVID-19 patients, a report of three cases. Future Cardiol. 2021;17:113–118. doi: 10.2217/fca-2020-0082. PubMed DOI PMC
Teo J. Early Detection of Silent Hypoxia in COVID-19 Pneumonia Using Smartphone Pulse Oximetry. J. Med Syst. 2020;44:134. doi: 10.1007/s10916-020-01587-6. PubMed DOI PMC
Dias D., Paulo Silva Cunha J. Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies. Sensors. 2018;18:2414. doi: 10.3390/s18082414. PubMed DOI PMC
Jeong H., Rogers J.A., Xu S. Continuous on-body sensing for the COVID-19 pandemic: Gaps and opportunities. Sci. Adv. 2020;6:eabd4794. doi: 10.1126/sciadv.abd4794. PubMed DOI PMC
Rabiee N., Bagherzadeh M., Ghasemi A., Zare H. Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic. Int. J. Mol. Sci. 2020;21:5126. doi: 10.3390/ijms21145126. PubMed DOI PMC
Liu W., Liu L., Kou G., Zheng Y., Ding Y., Ni W., Wang Q., Tan L., Wu W., Tang S., et al. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020;58:420–461. doi: 10.1128/JCM.00461-20. PubMed DOI PMC
Campbell D.P. Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems; Interferometric Biosensors. Conf. Proc. Int. Symp. Signals Syst. Electron. 2018. [(accessed on 30 January 2021)]. pp. 169–211. Available online: http://link.springer.com/chapter/10.1007/978-0-387-75113-9_9. DOI
Draz M.S., Lakshminaraasimulu N.K., Krishnakumar S., Battalapalli D., Vasan A., Kanakasabapathy M.K., Sreeram A., Kallakuri S., Thirumalaraju P., Li Y., et al. Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone. ACS Nano. 2018;12:5709–5718. doi: 10.1021/acsnano.8b01515. PubMed DOI PMC
Ganganboina A.B., Khoris I.M., Chowdhury A.D., Li T.-C., Park E.Y. Ultrasensitive Detection of the Hepatitis E Virus by Electrocatalytic Water Oxidation Using Pt-Co3O4 Hollow Cages. ACS Appl. Mater. Interfaces. 2020;12:50212–50221. doi: 10.1021/acsami.0c13247. PubMed DOI
Islam S., Shukla S., Bajpai V.K., Han Y.-K., Huh Y.S., Kumar A., Ghosh A., Gandhi S. A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosens. Bioelectron. 2018;126:792–799. doi: 10.1016/j.bios.2018.11.041. PubMed DOI
Woon W., Leung F., Sun Q. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nanoaerosols. Sep. Purif. Technol. 2020;250:116886. PubMed PMC
Lum J., Wang R., Lassiter K., Srinivasan B., Abi-Ghanem D., Berghman L., Hargis B., Tung S., Lu H., Li Y. Rapid detection of avian influenza H5N1 virus using impedance measurement of immuno-reaction coupled with RBC amplification. Biosens. Bioelectron. 2012;38:67–73. doi: 10.1016/j.bios.2012.04.047. PubMed DOI
Xia Y., Chen Y., Tang Y., Cheng G., Yu X., He H., Cao G., Lu H., Liu Z., Zheng S.-Y. Smartphone-Based Point-of-Care Microfluidic Platform Fabricated with a ZnO Nanorod Template for Colorimetric Virus Detection. ACS Sensors. 2019;4:3298–3307. doi: 10.1021/acssensors.9b01927. PubMed DOI
Yeh Y.-T., Tang Y., Sebastian A., Dasgupta A., Perea-Lopez N., Albert I., Lu H., Terrones M., Zheng S.-Y. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. Sci. Adv. 2016;2:e1601026. doi: 10.1126/sciadv.1601026. PubMed DOI PMC
Dhand R., Li J. Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020;202:651–659. doi: 10.1164/rccm.202004-1263PP. PubMed DOI PMC
Xue Q., Kan X., Pan Z., Li Z., Pan W., Zhou F., Duan X. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. Biosens. Bioelectron. 2021;186:113286. doi: 10.1016/j.bios.2021.113286. PubMed DOI PMC
Wang R., Wang L., Callaway Z.T., Lu H., Huang T.J., Li Y. A nanowell-based QCM aptasensor for rapid and sensitive detection of avian influenza virus. Sens. Actuators B Chem. 2016;240:934–940. doi: 10.1016/j.snb.2016.09.067. DOI
Erofeev A.S., Gorelkin P.V., Kolesov D.V., Kiselev G.A., Dubrovin E., Yaminsky I.V. Label-free sensitive detection of influenza virus using PZT discs with a synthetic sialylglycopolymer receptor layer. R. Soc. Open Sci. 2019;6:190255. doi: 10.1098/rsos.190255. PubMed DOI PMC
Wangchareansak T., Sangma C., Ngernmeesri P., Thitithanyanont A., Lieberzeit P.A. Self-assembled glucosamine monolayers as biomimetic receptors for detecting WGA lectin and influenza virus with a quartz crystal microbalance. Anal. Bioanal. Chem. 2013;405:6471–6478. doi: 10.1007/s00216-013-7057-0. PubMed DOI
Albano D.R.B., Shum K., Tanner J.A., Fung Y.S. BS5.3—Piezoelectric quartz crystal aptamer biosensor for detection and quantification of SARS CoV helicase protein; Proceedings of the 17th International Meeting on Chemical Sensors—IMCS 2018; Vienna, Austria. 15–19 July 2018; pp. 211–213. DOI
Zuo B., Li S., Guo Z., Zhang J., Chen C. Piezoelectric Immunosensor for SARS-Associated Coronavirus in Sputum. Anal. Chem. 2004;76:3536–3540. doi: 10.1021/ac035367b. PubMed DOI
Pandey L.M. Design of engineered surfaces for prospective detection of SARS-CoV-2 using quartz crystal microbalance-based techniques. Expert Rev. Proteom. 2020;17:425–432. doi: 10.1080/14789450.2020.1794831. PubMed DOI
Alhalaili B., Popescu I., Kamoun O., Alzubi F., Alawadhia S., Vidu R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. Sensors. 2020;20:6591. doi: 10.3390/s20226591. PubMed DOI PMC
PathSensors, Inc Announced the Development of a SARS-CoV-2 Biosensor. 2020. [(accessed on 30 January 2021)]. Available online: https://www.smithsdetection.com/press-releases/pathsensors-inc-announced-the-development-of-a-sars-cov-2-biosensor/
Abbott Launches Molecular Point-of-Care Test to Detect Novel Coronavirus in as Little as Five Minutes. 2020. [(accessed on 30 January 2021)]. Available online: https://abbott.mediaroom.com/2020-03-27-Abbott-Launches-Molecular-Point-of-Care-Test-to-Detect-Novel-Coronavirus-in-as-Little-as-Five-Minutes.
Di L., Fu Y., Sun Y., Li J., Liu L., Yao J., Wang G., Wu Y., Lao K., Lee R.W., et al. RNA sequencing by direct tagmentation of RNA/DNA hybrids. Proc. Natl. Acad. Sci. USA. 2020;117:2886–2893. doi: 10.1073/pnas.1919800117. PubMed DOI PMC
Mahari S., Roberts A., Shahdeo D., Gandhi S. eCovSens-Ultrasensitive Novel in-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 Antigen, a Spike Protein Domain 1 of SARS-CoV-2. bioRxiv. 2020:1–20. doi: 10.1101/2020.04.24.059204. DOI
Arya S.K., Saha S., Ramirez-Vick J., Gupta V., Bhansali S., Singh S.P. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Anal. Chim. Acta. 2012;737:1–21. doi: 10.1016/j.aca.2012.05.048. PubMed DOI
Jianrong C., Yuqing M., Nongyue H., Xiaohua W., Sijiao L. Nanotechnology and biosensors. Biotechnol. Adv. 2004;22:505–518. doi: 10.1016/j.biotechadv.2004.03.004. PubMed DOI
Draz M.S., Shafiee H. Applications of gold nanoparticles in virus detection. Theranostics. 2018;8:1985–2017. doi: 10.7150/thno.23856. PubMed DOI PMC
Moitra P., Alafeef M., Dighe K., Frieman M.B., Pan D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano. 2020;14:7617–7627. doi: 10.1021/acsnano.0c03822. PubMed DOI PMC
Kumar V., Mishra S., Sharma R., Agarwal J., Ghoshal U., Khanna T., Sharma L.K., Verma S.K., Tiwari S. Development of RNA-based assay for rapid detection of SARS-CoV-2 in clinical samples. bioRxiv. 2020 doi: 10.1101/2020.06.30.172833. PubMed DOI PMC
Li Z., Yi Y., Luo X., Xiong N., Liu Y., Li S., Sun R., Wang Y., Hu B., Chen W., et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020;92:1518–1524. doi: 10.1002/jmv.25727. PubMed DOI PMC
Ma Q., Wang J., Li Z., Lv X., Liang L., Yuan Q. Recent Progress in Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped Nanoparticles. Small. 2019;15:e1804969. doi: 10.1002/smll.201804969. PubMed DOI
Banerjee R., Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Anal. 2018;143:1970–1996. doi: 10.1039/C8AN00307F. PubMed DOI
Chen Z., Zhang Z., Zhai X., Li Y., Lin L., Zhao H., Bian L., Li P., Yu L., Wu Y., et al. Rapid and Sensitive Detection of anti-SARS-CoV-2 IgG, Using Lanthanide-Doped Nanoparticles-Based Lateral Flow Immunoassay. Anal. Chem. 2020;92:7226–7231. doi: 10.1021/acs.analchem.0c00784. PubMed DOI
Islam A., Ahsan Z. Plausible Approach for Rapid Detection of SARS-CoV-2 Virus by Magnetic Nanoparticle Based Biosensors. Am. J. Nanosci. 2020;6:6. doi: 10.11648/j.ajn.20200602.11. DOI
Barnett J.M., Monnier B.M., Tyler S., West D., Ballantine-Dykes H., Regan E., Wraith P., Kiely J., Luxton R. Initial trail results of a magnetic biosensor for the rapid detection of Porcine Reproductive and Respiratory Virus (PRRSV) infection. Sens. Bio-Sens. Res. 2019;27:100315. doi: 10.1016/j.sbsr.2019.100315. DOI
Zhao Z., Cui H., Song W., Ru X., Zhou W., Yu X. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. bioRxiv. 2020 doi: 10.1101/2020.02.22.961268. PubMed DOI PMC
Wu K., Saha R., Su D., Krishna V.D., Liu J., Cheeran M.C.-J., Wang J.-P. Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19. ACS Appl. Nano Mater. 2020;3:9560–9580. doi: 10.1021/acsanm.0c02048. PubMed DOI
Dixon R.V., Skaria E., Lau W.M., Manning P., Birch-Machin M.A., Moghimi S.M., Ng K.W. Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm. Sin. B. 2021;11:2344–2361. doi: 10.1016/j.apsb.2021.02.010. PubMed DOI PMC
Ates H.C., Yetisen A.K., Güder F., Dincer C. Wearable devices for the detection of COVID-19. Nat. Electron. 2021;4:13–14. doi: 10.1038/s41928-020-00533-1. DOI