Biosensors as Nano-Analytical Tools for COVID-19 Detection

. 2021 Nov 24 ; 21 (23) : . [epub] 20211124

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34883826

Selective, sensitive and affordable techniques to detect disease and underlying health issues have been developed recently. Biosensors as nanoanalytical tools have taken a front seat in this context. Nanotechnology-enabled progress in the health sector has aided in disease and pandemic management at a very early stage efficiently. This report reflects the state-of-the-art of nanobiosensor-based virus detection technology in terms of their detection methods, targets, limits of detection, range, sensitivity, assay time, etc. The article effectively summarizes the challenges with traditional technologies and newly emerging biosensors, including the nanotechnology-based detection kit for COVID-19; optically enhanced technology; and electrochemical, smart and wearable enabled nanobiosensors. The less explored but crucial piezoelectric nanobiosensor and the reverse transcription-loop mediated isothermal amplification (RT-LAMP)-based biosensor are also discussed here. The article could be of significance to researchers and doctors dedicated to developing potent, versatile biosensors for the rapid identification of COVID-19. This kind of report is needed for selecting suitable treatments and to avert epidemics.

Zobrazit více v PubMed

Lu H., Stratton C.W., Tang Y.-W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol. 2020;92:401–402. doi: 10.1002/jmv.25678. PubMed DOI PMC

Zheng Y.-Y., Ma Y.-T., Zhang J.-Y., Xie X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020;17:259–260. doi: 10.1038/s41569-020-0360-5. PubMed DOI PMC

WHO Coronavirus (COVID-19) Dashboard|WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. [(accessed on 24 March 2021)]. Available online: https://covid19.who.int.

Loeffelholz M.J., Tang Y.-W. Laboratory diagnosis of emerging human coronavirus infections—The state of the art. Emerg. Microbes Infect. 2020;9:747–756. doi: 10.1080/22221751.2020.1745095. PubMed DOI PMC

Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC

Narayanan K., Makino S. Cooperation of an RNA Packaging Signal and a Viral Envelope Protein in Coronavirus RNA Packaging. J. Virol. 2001;75:9059–9067. doi: 10.1128/JVI.75.19.9059-9067.2001. PubMed DOI PMC

Li Y., Xia L. Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management. Am. J. Roentgenol. 2020;214:1280–1286. doi: 10.2214/AJR.20.22954. PubMed DOI

Velagapudi R., Kumar A., Bhatia H.S., El-Bakoush A., Lepiarz-Raba I., Fiebich B.L., Olajide O.A. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int. Immunopharmacol. 2017;48:17–29. doi: 10.1016/j.intimp.2017.04.018. PubMed DOI

Carter L.J., Garner L.V., Smoot J.W., Li Y., Zhou Q., Saveson C.J., Sasso J.M., Gregg A.C., Soares D.J., Beskid T.R., et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent. Sci. 2020;6:591–605. doi: 10.1021/acscentsci.0c00501. PubMed DOI PMC

Soler M., Huertas C.S., Lechuga L.M. Label-free plasmonic biosensors for point-of-care diagnostics: A review. Expert Rev. Mol. Diagn. 2019;19:71–81. doi: 10.1080/14737159.2019.1554435. PubMed DOI

Masson J.-F. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sens. 2017;2:16–30. doi: 10.1021/acssensors.6b00763. PubMed DOI

Sharifi M., Hosseinali S.H., Alizadeh R.H., Hasan A., Attar F., Salihi A., Shekha M.S., Amen K.M., Aziz F.M., Saboury A.A., et al. Plasmonic and chiroplasmonic nanobiosensors based on gold nanoparticles. Talanta. 2020;212:120782. doi: 10.1016/j.talanta.2020.120782. PubMed DOI

Sharifi M., Avadi M.R., Attar F., Dashtestani F., Ghorchian H., Rezayat S.M., Saboury A.A., Falahati M. Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens. Bioelectron. 2018;126:773–784. doi: 10.1016/j.bios.2018.11.026. PubMed DOI

Sharifi M., Hasan A., Attar F., Taghizadeh A., Falahati M. Development of point-of-care nanobiosensors for breast cancers diagnosis. Talanta. 2020;217:121091. doi: 10.1016/j.talanta.2020.121091. PubMed DOI

Fu Z., Tang N., Chen Y., Ma L., Wei Y., Lu Y., Ye K., Liu H., Tang F., Huang G., et al. CT features of COVID-19 patients with two consecutive negative RT-PCR tests after treatment. Sci. Rep. 2020;10:11548. doi: 10.1038/s41598-020-68509-x. PubMed DOI PMC

Fang Y., Zhang H., Xie J., Lin M., Ying L., Pang P., Ji W. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020;395:A1–A2. doi: 10.1148/radiol.2020200432. PubMed DOI PMC

Brogna B., Brogna C., Martino A., Minichiello S., Romeo D.M., Romano P., Bignardi E., Mazza E.M., Musto L. SARS-CoV-2 Infection with Different Radiological Insights. Diagnostics. 2020;10:283. doi: 10.3390/diagnostics10050283. PubMed DOI PMC

Wu J., Liu J., Li S., Peng Z., Xiao Z., Wang X., Yan R., Luo J. Detection and analysis of nucleic acid in various biological samples of COVID-19 patients. Travel Med. Infect. Dis. 2020;37:101673. doi: 10.1016/j.tmaid.2020.101673. PubMed DOI PMC

Wu D., Wu T., Liu Q., Yang Z. The SARS-CoV-2 outbreak: What we know. Int. J. Infect. Dis. 2020;94:44–48. doi: 10.1016/j.ijid.2020.03.004. PubMed DOI PMC

Fred H.L. Drawbacks and limitations of computed tomography: Views from a medical educator. Tex. Hear. Inst. J. 2004;31:345–348. PubMed PMC

Suleman S., Shukla S.K., Malhotra N., Bukkitgar S.D., Shetti N.P., Pilloton R., Narang J., Tan Y.N., Aminabhavi T.M. Point of care detection of COVID-19: Advancement in biosensing and diagnostic methods. Chem. Eng. J. 2021;414:128759. doi: 10.1016/j.cej.2021.128759. PubMed DOI PMC

Theamboonlers A., Samransamruajkit R., Thongme C., Amonsin A., Chongsrisawat V., Poovorawan Y. Human Coronavirus Infection among Children with Acute Lower Respiratory Tract Infection in Thailand. Intervirology. 2006;50:71–77. doi: 10.1159/000097392. PubMed DOI PMC

Jin Y.-H., Cai L., Cheng Z.-S., Cheng H., Deng T., Fan Y.-P., Fang C., Huang D., Huang L.-Q., Huang Q., et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version) Mil. Med. Res. 2020;7:4. doi: 10.1186/s40779-020-0233-6. PubMed DOI PMC

Udugama B., Kadhiresan P., Kozlowski H.N., Malekjahani A., Osborne M., Li V.Y.C., Chen H., Mubareka S., Gubbay J.B., Chan W.C.W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020;14:3822–3835. doi: 10.1021/acsnano.0c02624. PubMed DOI

Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433. PubMed DOI PMC

Singh B., Datta B., Ashish A., Dutta G. A comprehensive review on current COVID-19 detection methods: From lab care to point of care diagnosis. Sens. Int. 2021;2:100119. doi: 10.1016/j.sintl.2021.100119. PubMed DOI PMC

Moore S.C., Penrice-Randal R., Alruwaili M., Dong X., Pullan S.T., Carter D., Bewley K., Zhao Q., Sun Y., Hartley C., et al. Amplicon based MinION sequencing of SARS-CoV-2 and metagenomic characterisation of nasopharyngeal swabs from patients with COVID-19. medRxiv. 2020:1–15. doi: 10.1101/2020.03.05.20032011. DOI

Manning J.E., Bohl J.A., Lay S., Chea S., Sovann L., Sengdoeurn Y., Heng S., Vuthy C., Kalantar K., Ahyong V., et al. Rapid metagenomic characterization of a case of imported COVID-19 in Cambodia. bioRxiv. 2020 doi: 10.1101/2020.03.02.968818. DOI

Shakya M., Lo C.-C., Chain P.S.G. Advances and Challenges in Metatranscriptomic Analysis. Front. Genet. 2019;10:904. doi: 10.3389/fgene.2019.00904. PubMed DOI PMC

Tan W., Lu Y., Zhang J., Wang J., Dan Y., Tan Z., He X., Qian C., Sun Q., Hu Q., et al. Viral kinetics and antibody responses in patients with COVID-19. medRxiv. 2020 doi: 10.1101/2020.03.24.20042382. DOI

Fierz W. Basic problems of serological laboratory diagnosis. Methods Mol. Med. 2004;94:393–428. doi: 10.1385/1-59259-679-7:393. PubMed DOI

Kassanjee R., Pilcher C.D., Busch M.P., Murphy G., Facente S.N., Keating S., McKinney E., Marson K., Price M., Martin J.N., et al. Viral load criteria and threshold optimization to improve HIV incidence assay characteristics. Aids. 2016;30:2361–2371. doi: 10.1097/QAD.0000000000001209. PubMed DOI PMC

Alanagreh L., Alzoughool F., Atoum M. The Human Coronavirus Disease COVID-19: Its Origin, Characteristics, and Insights into Potential Drugs and Its Mechanisms. Pathogens. 2020;9:331. doi: 10.3390/pathogens9050331. PubMed DOI PMC

Liu R., Fu A., Deng Z., Li Y., Liu T. Promising methods for detection of novel coronavirus SARS-CoV-2. VIEW. 2020;1:2–5. doi: 10.1002/viw2.4. PubMed DOI PMC

Xiang J., Yan M., Li H., Liu T., Lin C., Huang S., Shen C. Evaluation of Enzyme-Linked Immunoassay and Colloidal Gold-Immunochromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-2) Causing an Outbreak of Pneumonia (COVID-19) medRxiv. 2020 doi: 10.1101/2020.02.27.20028787. DOI

Simeon K., Sharma M., Dorward J., Naidoo J., Dlamini N., Moodley P., Samsunder N., Barnabas R.V., Garrett N., Drain P.K. Comparative cost analysis of point-of-care versus laboratory-based testing to initiate and monitor HIV treatment in South Africa. PLoS ONE. 2019;14:e0223669. doi: 10.1371/journal.pone.0223669. PubMed DOI PMC

Inci F., Saylan Y., Kojouri A.M., Ogut M.G., Denizli A., Demirci U. A disposable microfluidic-integrated hand-held plasmonic platform for protein detection. Appl. Mater. Today. 2020;18:14–16. doi: 10.1016/j.apmt.2019.100478. DOI

Saylan Y., Akgönüllü S., Yavuz H., Ünal S., Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors. 2019;19:1279. doi: 10.3390/s19061279. PubMed DOI PMC

Inci F., Karaaslan M.G., Mataji-Kojouri A., Shah P.A., Saylan Y., Zeng Y., Avadhani A., Sinclair R., Lau D.T.-Y., Demirci U. Enhancing the nanoplasmonic signal by a nanoparticle sandwiching strategy to detect viruses. Appl. Mater. Today. 2020;20:100709. doi: 10.1016/j.apmt.2020.100709. DOI

Saylan Y., Akgönüllü S., Denizli A. Plasmonic Sensors for Monitoring Biological and Chemical Threat Agents. Biosensors. 2020;10:142. doi: 10.3390/bios10100142. PubMed DOI PMC

Asghar W., Shafiee H., Velasco V., Sah V.R., Guo S., El Assal R., Inci F., Rajagopalan A., Jahangir M., Anchan R.M., et al. Toxicology Study of Single-Walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Sci. Rep. 2016;6:30270. doi: 10.1038/srep30270. PubMed DOI PMC

Inci F., Ozen M., Saylan Y., Miansari M., Cimen D., Dhara R., Chinnasamy T., Yuksekkaya M., Filippini C., Kumar D.K., et al. A Novel On-Chip Method for Differential Extraction of Sperm in Forensic Cases. Adv. Sci. 2018;5:1800121. doi: 10.1002/advs.201800121. PubMed DOI PMC

Inci F., Karaaslan M.G., Gupta R., Avadhani A., Ogut M.G., Atila E.E., Duncan G., Klevan L., Demirci U. Bio-Inspired Magnetic Beads for Isolation of Sperm from Heterogenous Samples in Forensic Applications. Forensic Sci. Int. Genet. 2020;52:102451. doi: 10.1016/j.fsigen.2020.102451. PubMed DOI

Deshmukh S., Inci F., Karaaslan M.G., Ogut M.G., Duncan D., Klevan L., Duncan G., Demirci U. A confirmatory test for sperm in sexual assault samples using a microfluidic-integrated cell phone imaging system. Forensic Sci. Int. Genet. 2020;48:102313. doi: 10.1016/j.fsigen.2020.102313. PubMed DOI

Erdem I., Eş I., Akceoglu G.A., Saylan Y., Inci F. Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases. Biosensors. 2021;11:296. doi: 10.3390/bios11090296. PubMed DOI PMC

Campàs M., Katakis I. DNA biochip arraying, detection and amplification strategies. TrAC Trends Anal. Chem. 2004;23:49–62. doi: 10.1016/S0165-9936(04)00104-9. DOI

Liu S., Leech D., Ju H. Application of Colloidal Gold in Protein Immobilization, Electron Transfer, and Biosensing. Anal. Lett. 2003;36:1–19. doi: 10.1081/AL-120017740. DOI

Bukkitgar S., Shetti N.P., Malladi R.S., Reddy K.R., Kalanur S.S., Aminabhavi T. Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol. J. Mol. Liq. 2019;300:112368. doi: 10.1016/j.molliq.2019.112368. DOI

Bukkitgar S.D., Kumar S., Pratibha, Singh S., Singh V., Reddy K.R., Sadhu V., Bagihalli G.B., Shetti N.P., Reddy C.V., et al. Functional nanostructured metal oxides and its hybrid electrodes—Recent advancements in electrochemical biosensing applications. Microchem. J. 2020;159:105522. doi: 10.1016/j.microc.2020.105522. DOI

Shetti N.P., Malode S.J., Nayak D.S., Bukkitgar S., Bagihalli G.B., Kulkarni R., Reddy K.R. Novel nanoclay-based electrochemical sensor for highly efficient electrochemical sensing nimesulide. J. Phys. Chem. Solids. 2019;137:109210. doi: 10.1016/j.jpcs.2019.109210. DOI

Ilager D., Seo H., Shetti N.P., Kalanur S.S. CTAB modified Fe-WO3 as an electrochemical detector of amitrole by catalytic oxidation. J. Environ. Chem. Eng. 2020;8:104580. doi: 10.1016/j.jece.2020.104580. DOI

Shetti N.P., Bukkitgar S., Reddy K.R., Reddy C.V., Aminabhavi T. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 2019;141:111417. doi: 10.1016/j.bios.2019.111417. PubMed DOI

Shetti N.P., Bukkitgar S.D., Reddy K.R., Reddy C.V., Aminabhavi T.M. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B Biointerfaces. 2019;178:385–394. doi: 10.1016/j.colsurfb.2019.03.013. PubMed DOI

Bukkitgar S.D., Shetti N.P., Reddy K.R., Saleh T.A., Aminabhavi T.M. Ultrasonication and electrochemically-assisted synthesis of reduced graphene oxide nanosheets for electrochemical sensor applications. FlatChem. 2020;23:100183. doi: 10.1016/j.flatc.2020.100183. DOI

Antiochia R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: From past to perspectives. Microchim. Acta. 2020;187:639. doi: 10.1007/s00604-020-04615-x. PubMed DOI PMC

Krejcova L., Nejdl L., Hynek D., Krizkova S., Kopel P., Adam V., Kizek R. Beads-Based Electrochemical Assay for the Detection of Influenza Hemagglutinin Labeled with CdTe Quantum Dots. Molecules. 2013;18:15573–15586. doi: 10.3390/molecules181215573. PubMed DOI PMC

Esseghaier C., Ng A., Zourob M. A novel and rapid assay for HIV-1 protease detection using magnetic bead mediation. Biosens. Bioelectron. 2013;41:335–341. doi: 10.1016/j.bios.2012.08.049. PubMed DOI

Lin Y.-Y., Wang J., Liu G., Wu H., Wai C., Lin Y. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens. Bioelectron. 2008;23:1659–1665. doi: 10.1016/j.bios.2008.01.037. PubMed DOI

Lazerges M., Bedioui F. Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Anal. Bioanal. Chem. 2013;405:3705–3714. doi: 10.1007/s00216-012-6672-5. PubMed DOI

Tran L.D., Nguyen B.H., Van Hieu N., Tran H.V., Le Nguyen H., Nguyen P.X. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Mater. Sci. Eng. C. 2011;31:477–485. doi: 10.1016/j.msec.2010.11.007. DOI

Solanki P.R., Patel M.K., Kaushik A., Pandey M.K., Kotnala R.K., Malhotra B.D. Sol-Gel Derived Nanostructured Metal Oxide Platform for Bacterial Detection. Electroanalysis. 2011;23:2699–2708. doi: 10.1002/elan.201100351. DOI

Yao C.-Y. Biosensors for hepatitis B virus detection. World J. Gastroenterol. 2014;20:12485–12492. doi: 10.3748/wjg.v20.i35.12485. PubMed DOI PMC

Soler M., Estévez M.-C., Cardenosa-Rubio M., Astua A., Lechuga L.M. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens. 2020;5:2663–2678. doi: 10.1021/acssensors.0c01180. PubMed DOI

Srivastava M., Srivastava N., Mishra P., Malhotra B.D. Prospects of nanomaterials-enabled biosensors for COVID-19 detection. Sci. Total Environ. 2020;754:142363. doi: 10.1016/j.scitotenv.2020.142363. PubMed DOI PMC

Fracchiolla N.S., Artuso S., Cortelezzi A. Biosensors in Clinical Practice: Focus on Oncohematology. Sensors. 2013;13:6423–6447. doi: 10.3390/s130506423. PubMed DOI PMC

Steglich P., Hülsemann M., Dietzel B., Mai A. Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review. Molecules. 2019;24:519. doi: 10.3390/molecules24030519. PubMed DOI PMC

Zanchetta G., Lanfranco R., Giavazzi F., Bellini T., Buscaglia M. Emerging applications of label-free optical biosensors. Nanophotonics. 2017;6:627–645. doi: 10.1515/nanoph-2016-0158. DOI

Ciminelli C., Dell’Olio F., Conteduca D., Armenise M.N. Silicon photonic biosensors. IET Optoelectron. 2019;13:48–54. doi: 10.1049/iet-opt.2018.5082. DOI

Bruinink A., Wang J., Wick P. Effect of particle agglomeration in nanotoxicology. Arch. Toxicol. 2015;89:659–675. doi: 10.1007/s00204-015-1460-6. PubMed DOI

Saylan Y., Erdem S., Ünal S., Denizli A. An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. Biosensors. 2019;9:65. doi: 10.3390/bios9020065. PubMed DOI PMC

Shi L., Sun Q., He J., Xu H., Liu C., Zhao C., Xu Y., Wu C., Xiang J., Gu D., et al. Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Bio-Med. Mater. Eng. 2015;26:S2207–S2216. doi: 10.3233/BME-151526. PubMed DOI

Chang Y.-F., Wang W.-H., Hong Y.-W., Yuan R.-Y., Chen K.-H., Huang Y.-W., Lu P.-L., Chen Y.-H., Chen Y.-M.A., Su L.-C., et al. Simple Strategy for Rapid and Sensitive Detection of Avian Influenza A H7N9 Virus Based on Intensity-Modulated SPR Biosensor and New Generated Antibody. Anal. Chem. 2018;90:1861–1869. doi: 10.1021/acs.analchem.7b03934. PubMed DOI

Kim S.A., Byun K.M., Kim K., Jang S.M., Ma K., Oh Y., Kim D., Kim S.G., Shuler M.L., Kim S.J. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays (Nanotechnology (2010) 21 (355503)) Nanotechnology. 2011;22:289501. doi: 10.1088/0957-4484/22/28/289501. PubMed DOI

Bai H., Wang R., Hargis B., Lu H., Li Y. A SPR Aptasensor for Detection of Avian Influenza Virus H5N1. Sensors. 2012;12:12506–12518. doi: 10.3390/s120912506. PubMed DOI PMC

Alimova A., Katz A., Podder R., Minko G., Wei H., Alfano R.R., Gottlieb P. Virus Particles Monitored by Fluorescence Spectroscopy: A Potential Detection Assay for Macromolecular Assembly. Photochem. Photobiol. 2004;80:41–46. doi: 10.1562/2004-02-11-RA-080.1. PubMed DOI

Waye M., Law P., Wong C.-H., Au T., Chuck C., Kong S.-K., Chan P., To K.-F., Lo A., Chan J., et al. The 3a Protein of SARS-coronavirus Induces Apoptosis in Vero E6 Cells; Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference; Shanghai, China. 24 January 2005; pp. 7482–7485. PubMed DOI

Huang J.C., Chang Y.-F., Chen K.-H., Su L.-C., Lee C.-W., Chen C.-C., Chen Y.-M.A., Chou C. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosens. Bioelectron. 2009;25:320–325. doi: 10.1016/j.bios.2009.07.012. PubMed DOI PMC

Murugan D., Bhatia H., Sai V.V.R., Satija J. P-FAB: A Fiber-Optic Biosensor Device for Rapid Detection of COVID-19. Trans. Indian Natl. Acad. Eng. 2020;5:211–215. doi: 10.1007/s41403-020-00122-w. PubMed DOI PMC

Nag P., Sadani K., Mukherji S. Optical Fiber Sensors for Rapid Screening of COVID-19. Trans. Indian Natl. Acad. Eng. 2020;5:233–236. doi: 10.1007/s41403-020-00128-4. PubMed DOI PMC

Haes A.J., Chang L., Klein W.L., Van Duyne R.P. Detection of a Biomarker for Alzheimer’s Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor. J. Am. Chem. Soc. 2005;127:2264–2271. doi: 10.1021/ja044087q. PubMed DOI

Anker J.N., Hall W.P., Lyandres O., Shah N.C., Zhao J., Van Duyne R.P. Biosensing with plasmonic nanosensors. Nanosci. Technol. A Collect. Rev. Nat. J. 2010:308–319. doi: 10.1142/9789814287005_0032. PubMed DOI

Qiu G., Ng S.P., Wu C.-M.L. Bimetallic Au-Ag alloy nanoislands for highly sensitive localized surface plasmon resonance biosensing. Sens. Actuators B Chem. 2018;265:459–467. doi: 10.1016/j.snb.2018.03.066. DOI

Qiu G., Thakur A., Xu C., Ng S.-P., Lee Y., Wu C.-M.L. Detection of Glioma-Derived Exosomes with the Biotinylated Antibody-Functionalized Titanium Nitride Plasmonic Biosensor. Adv. Funct. Mater. 2018;29:1806761. doi: 10.1002/adfm.201806761. DOI

Qiu G., Gai Z., Tao Y., Schmitt J., Kullak-Ublick G.A., Wang J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano. 2020;14:5268–5277. doi: 10.1021/acsnano.0c02439. PubMed DOI

Cady N.C., Tokranova N., Minor A., Nikvand N., Strle K., Lee W.T., Page W., Guignon E., Pilar A., Gibson G.N. Multiplexed detection and quantification of human antibody response to COVID-19 infection using a plasmon enhanced biosensor platform. Biosens. Bioelectron. 2020;171:112679. doi: 10.1016/j.bios.2020.112679. PubMed DOI PMC

Zeng Y.-P., Hu J., Long Y., Zhang C.-Y. Sensitive Detection of DNA Methyltransferase Using Hairpin Probe-Based Primer Generation Rolling Circle Amplification-Induced Chemiluminescence. Anal. Chem. 2013;85:6143–6150. doi: 10.1021/ac4011292. PubMed DOI

Tian B., Gao F., Fock J., Dufva M., Hansen M.F. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens. Bioelectron. 2020;165:112356. doi: 10.1016/j.bios.2020.112356. PubMed DOI

Bhalla N., Pan Y., Yang Z., Payam A.F. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS Nano. 2020;14:7783–7807. doi: 10.1021/acsnano.0c04421. PubMed DOI PMC

Wei F., Lillehoj P.B., Ho C.-M. DNA Diagnostics: Nanotechnology-Enhanced Electrochemical Detection of Nucleic Acids. Pediatr. Res. 2010;67:458–468. doi: 10.1203/PDR.0b013e3181d361c3. PubMed DOI PMC

Laba K., Lapkowski M., Officer D.L., Wagner P., Data P. Electrochemical and optical aspects of cobalt meso-carbazole substituted porphyrin complexes. Electrochimica Acta. 2019;330:135140. doi: 10.1016/j.electacta.2019.135140. DOI

Lim R.R.X., Bonanni A. The potential of electrochemistry for the detection of coronavirus-induced infections. TrAC Trends Anal. Chem. 2020;133:116081. doi: 10.1016/j.trac.2020.116081. PubMed DOI PMC

Zafar S., Lu M., Jagtiani A. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors. Sci. Rep. 2017;7:41430. doi: 10.1038/srep41430. PubMed DOI PMC

Sarkar D., Liu W., Xie X., Anselmo A.C., Mitragotri S., Banerjee K. MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS Nano. 2014;8:3992–4003. doi: 10.1021/nn5009148. PubMed DOI

Kashefi-Kheyrabadi L., Nguyen H.V., Go A., Baek C., Jang N., Lee J.M., Cho N.-H., Min J., Lee M.-H. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosens. Bioelectron. 2021;195:113649. doi: 10.1016/j.bios.2021.113649. PubMed DOI PMC

Alafeef M., Dighe K., Moitra P., Pan D. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano. 2020;14:17028–17045. doi: 10.1021/acsnano.0c06392. PubMed DOI PMC

Khan M.S., Dighe K., Wang Z., Srivastava I., Daza E., Schwartz-Dual A.S., Ghannam J., Misra S.K., Pan D. Detection of prostate specific antigen (PSA) in human saliva using an ultra-sensitive nanocomposite of graphene nanoplatelets with diblock-co-polymers and Au electrodes. Analyst. 2018;143:1094–1103. doi: 10.1039/C7AN01932G. PubMed DOI

Ishikawa F.N., Curreli M., Olson C.A., Liao H.-I., Sun R., Roberts R.W., Cote R.J., Thompson M.E., Zhou C. Importance of Controlling Nanotube Density for Highly Sensitive and Reliable Biosensors Functional in Physiological Conditions. ACS Nano. 2010;4:6914–6922. doi: 10.1021/nn101198u. PubMed DOI

Miripour Z.S., Sarrami-Forooshani R., Sanati H., Makarem J., Taheri M.S., Shojaeian F., Eskafi A.H., Abbasvandi F., Namdar N., Ghafari H., et al. Real-time diagnosis of reactive oxygen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this pandemic. Biosens. Bioelectron. 2020;165:112435. doi: 10.1016/j.bios.2020.112435. PubMed DOI PMC

Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281–292.e6. doi: 10.1016/j.cell.2020.02.058. PubMed DOI PMC

Gowri A., Kumar N.A., Anand B.S. Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of Covid-19—A minireview. TrAC Trends Anal. Chem. 2021;137:116205. doi: 10.1016/j.trac.2021.116205. PubMed DOI PMC

Li X., Qin Z., Fu H., Li T., Peng R., Li Z., Rini J.M., Liu X. Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Biosens. Bioelectron. 2021;177:112672. doi: 10.1016/j.bios.2020.112672. PubMed DOI PMC

Zhao H., Liu F., Xie W., Zhou T.-C., OuYang J., Jin L., Li H., Zhao C.-Y., Zhang L., Wei J., et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sens. Actuators B Chem. 2020;327:128899. doi: 10.1016/j.snb.2020.128899. PubMed DOI PMC

Zhang F., Abudayyeh O.O., Gootenberg J.S., Sciences C. A Protocol for Detection of COVID-19 Using CRISPR Diagnostics. 2020; pp. 1–8. [(accessed on 2 November 2021)]. Available online: https://www.broadinstitute.org/files/publications/special/COVID-19%20detection%20(updated).pdf.

Cesewski E., Johnson B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020;159:112214. doi: 10.1016/j.bios.2020.112214. PubMed DOI PMC

Long F., Zhang Z., Wang J., Yan L., Zhou B. Cobalt-nickel bimetallic nanoparticles decorated graphene sensitized imprinted electrochemical sensor for determination of octylphenol. Electrochim. Acta. 2015;168:337–345. doi: 10.1016/j.electacta.2015.04.054. DOI

Li S., Ma L., Zhou M., Li Y., Xia Y., Fan X., Cheng C., Luo H. New opportunities for emerging 2D materials in bioelectronics and biosensors. Curr. Opin. Biomed. Eng. 2019;13:32–41. doi: 10.1016/j.cobme.2019.08.016. DOI

Cai L., Zhang Z., Xiao H., Chen S., Fu J. An eco-friendly imprinted polymer based on graphene quantum dots for fluorescent detection of p-nitroaniline. RSC Adv. 2019;9:41383–41391. doi: 10.1039/C9RA08726E. PubMed DOI PMC

Yang X., Zhang F., Hu Y., Chen D., He Z., Xiong L. Gold nanoparticals doping graphene sheets nanocomposites sensitized screen-printed carbon electrode as a disposable platform for voltammetric determination of guaiacol in bamboo juice. Int. J. Electrochem. Sci. 2014;9:5061–5072.

Seo G., Lee G., Kim M.J., Baek S.-H., Choi M., Ku K.B., Lee C.-S., Jun S., Park D., Kim H.G., et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano. 2020;14:5135–5142. doi: 10.1021/acsnano.0c02823. PubMed DOI

Innocenzi P., Stagi L. Carbon-based antiviral nanomaterials: Graphene, C-dots, and fullerenes. A perspective. Chem. Sci. 2020;11:6606–6622. doi: 10.1039/D0SC02658A. PubMed DOI PMC

Raghav P.K., Mohanty S. Are graphene and graphene-derived products capable of preventing COVID-19 infection? Med. Hypotheses. 2020;144:110031. doi: 10.1016/j.mehy.2020.110031. PubMed DOI PMC

Janissen R., Sahoo P.K., Santos C.A., da Silva A.M., von Zuben A.A.G., Souto D.E.P., Costa A.D.T., Celedon P., Zanchin N.I.T., Almeida D.B., et al. InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. Nano Lett. 2017;17:5938–5949. doi: 10.1021/acs.nanolett.7b01803. PubMed DOI

Liu J., Chen X., Wang Q., Xiao M., Zhong D., Sun W., Zhang G., Zhang Z. Ultrasensitive Monolayer MoS2 Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. Nano Lett. 2019;19:1437–1444. doi: 10.1021/acs.nanolett.8b03818. PubMed DOI

Li J., Wu D., Yu Y., Li T., Li K., Xiao M.-M., Li Y., Zhang Z.-Y., Zhang G.-J. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosens. Bioelectron. 2021;183:113206. doi: 10.1016/j.bios.2021.113206. PubMed DOI PMC

Hajian R., Balderston S., Tran T., DeBoer T., Etienne J., Sandhu M., Wauford N.A., Chung J.-Y., Nokes J., Athaiya M., et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 2019;3:427–437. doi: 10.1038/s41551-019-0371-x. PubMed DOI PMC

Mobed A., Shafigh E.S. Biosensors promising bio-device for pandemic screening “COVID-19”. Microchem. J. 2021;164:106094. doi: 10.1016/j.microc.2021.106094. PubMed DOI PMC

Akyildiz I.F., Pierobon M., Balasubramaniam S., Koucheryavy Y. The internet of Bio-Nano things. IEEE Commun. Mag. 2015;53:32–40. doi: 10.1109/MCOM.2015.7060516. DOI

Mostafalu P., Akbari M., Alberti K.A., Xu Q., Khademhosseini A., Sonkusale S.R. A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst. Nanoeng. 2016;2:16039. doi: 10.1038/micronano.2016.39. PubMed DOI PMC

Gohel H.A., Upadhyay H., Lagos L., Cooper K., Sanzetenea A. Predictive maintenance architecture development for nuclear infrastructure using machine learning. Nucl. Eng. Technol. 2020;52:1436–1442. doi: 10.1016/j.net.2019.12.029. DOI

Dimitrov D.V. Medical Internet of Things and Big Data in Healthcare. Healthc. Inform. Res. 2016;22:156–163. doi: 10.4258/hir.2016.22.3.156. PubMed DOI PMC

Gubbi J., Buyya R., Marusic S., Palaniswami M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013;29:1645–1660. doi: 10.1016/j.future.2013.01.010. DOI

Berrouiguet S., Perez-Rodriguez M.M., Larsen M., Baca-García E., Courtet P., Oquendo M. From eHealth to iHealth: Transition to Participatory and Personalized Medicine in Mental Health. J. Med. Internet Res. 2018;20:1–8. doi: 10.2196/jmir.7412. PubMed DOI PMC

McCall B. COVID-19 and artificial intelligence: Protecting health-care workers and curbing the spread. Lancet Digit. Health. 2020;2:e166–e167. doi: 10.1016/S2589-7500(20)30054-6. PubMed DOI PMC

Lukas H., Xu C., Yu Y., Gao W. Emerging Telemedicine Tools for Remote COVID-19 Diagnosis, Monitoring, and Management. ACS Nano. 2020;14:16180–16193. doi: 10.1021/acsnano.0c08494. PubMed DOI

Song J., Pandian V., Mauk M.G., Bau H.H., Cherry S., Tisi L.C., Liu C. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping. Anal. Chem. 2018;90:4823–4831. doi: 10.1021/acs.analchem.8b00283. PubMed DOI PMC

Hollander J.E., Carr B.G. Virtually Perfect? Telemedicine for Covid-19. N. Engl. J. Med. 2020;382:1679–1681. doi: 10.1056/NEJMp2003539. PubMed DOI

Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585. PubMed DOI PMC

Black J.R.M., Bailey C., Przewrocka A., Dijkstra K.K., Swanton C. COVID-19: The case for health-care worker screening to prevent hospital transmission. Lancet. 2020;395:1418–1420. doi: 10.1016/S0140-6736(20)30917-X. PubMed DOI PMC

Ting D.S.W., Carin L., Dzau V., Wong T.Y. Digital technology and COVID-19. Nat. Med. 2020;26:459–461. doi: 10.1038/s41591-020-0824-5. PubMed DOI PMC

Mujawar M., Gohel H., Bhardwaj S., Srinivasan S., Hickman N., Kaushik A. Nano-enabled biosensing systems for intelligent healthcare: Towards COVID-19 management. Mater. Today Chem. 2020;17:100306. doi: 10.1016/j.mtchem.2020.100306. PubMed DOI PMC

Shan B., Broza Y.Y., Li W., Wang Y., Wu S., Liu Z., Wang J., Gui S., Wang L., Zhang Z., et al. Multiplexed Nanomaterial-Based Sensor Array for Detection of COVID-19 in Exhaled Breath. ACS Nano. 2020;14:12125–12132. doi: 10.1021/acsnano.0c05657. PubMed DOI

Leïchlé T., Nicu L., Alava T. MEMS Biosensors and COVID-19: Missed Opportunity. ACS Sensors. 2020;5:3297–3305. doi: 10.1021/acssensors.0c01463. PubMed DOI

Aarogya Setu. [(accessed on 13 January 2021)]; Available online: https://www.aarogyasetu.gov.in/

WhatsApp Coronavirus Information Hub. [(accessed on 13 January 2021)]. Available online: https://www.whatsapp.com/coronavirus/?lang=fb.

Torrente-Rodríguez R.M., Tu J., Yang Y., Min J., Wang M., Song Y., Yu Y., Xu C., Ye C., IsHak W.W., et al. Investigation of Cortisol Dynamics in Human Sweat Using a Graphene-Based Wireless mHealth System. Matter. 2020;2:921–937. doi: 10.1016/j.matt.2020.01.021. PubMed DOI PMC

Pfefferbaum B., North C.S. Mental Health and the COVID-19 Pandemic. N. Engl. J. Med. 2020;383:510–512. doi: 10.1056/NEJMp2008017. PubMed DOI

Zhou X., Snoswell C.L., Harding L.E., Bambling M., Edirippulige S., Bai X., Smith A.C. The Role of Telehealth in Reducing the Mental Health Burden from COVID-19. Telemed. e-Health. 2020;26:377–379. doi: 10.1089/tmj.2020.0068. PubMed DOI

Stojanovic R., Skraba A., Lutovac B. A Headset Like Wearable Device to Track COVID-19 Symptoms; Proceedings of the 2020 9th Mediterranean Conference on Embedded Computing (MECO); Budva, Montenegro. 8–11 June 2020; pp. 1–4. DOI

Tavakoli M., Carriere J., Torabi A. Robotics, Smart Wearable Technologies, and Autonomous Intelligent Systems for Healthcare During the COVID-19 Pandemic: An Analysis of the State of the Art and Future Vision. Adv. Intell. Syst. 2020;2:2000071. doi: 10.1002/aisy.202000071. DOI

Seshadri D.R., Davies E.V., Harlow E.R., Hsu J.J., Knighton S.C., Walker T.A., Voos J.E., Drummond C.K. Wearable Sensors for COVID-19: A Call to Action to Harness Our Digital Infrastructure for Remote Patient Monitoring and Virtual Assessments. Front. Digit. Health. 2020;2:8. doi: 10.3389/fdgth.2020.00008. PubMed DOI PMC

Driggin E., Madhavan M.V., Bikdeli B., Chuich T., Laracy J., Biondi-Zoccai G., Brown T.S., Der-Nigoghossian C., Zidar D.A., Haythe J., et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems during the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020;75:2352–2371. doi: 10.1016/j.jacc.2020.03.031. PubMed DOI PMC

Shirazi S., Mami S., Mohtadi N., Ghaysouri A., Tavan H., Nazari A., Kokhazadeh T., Mollazadeh R. Sudden cardiac death in COVID-19 patients, a report of three cases. Future Cardiol. 2021;17:113–118. doi: 10.2217/fca-2020-0082. PubMed DOI PMC

Teo J. Early Detection of Silent Hypoxia in COVID-19 Pneumonia Using Smartphone Pulse Oximetry. J. Med Syst. 2020;44:134. doi: 10.1007/s10916-020-01587-6. PubMed DOI PMC

Dias D., Paulo Silva Cunha J. Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies. Sensors. 2018;18:2414. doi: 10.3390/s18082414. PubMed DOI PMC

Jeong H., Rogers J.A., Xu S. Continuous on-body sensing for the COVID-19 pandemic: Gaps and opportunities. Sci. Adv. 2020;6:eabd4794. doi: 10.1126/sciadv.abd4794. PubMed DOI PMC

Rabiee N., Bagherzadeh M., Ghasemi A., Zare H. Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic. Int. J. Mol. Sci. 2020;21:5126. doi: 10.3390/ijms21145126. PubMed DOI PMC

Liu W., Liu L., Kou G., Zheng Y., Ding Y., Ni W., Wang Q., Tan L., Wu W., Tang S., et al. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020;58:420–461. doi: 10.1128/JCM.00461-20. PubMed DOI PMC

Campbell D.P. Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems; Interferometric Biosensors. Conf. Proc. Int. Symp. Signals Syst. Electron. 2018. [(accessed on 30 January 2021)]. pp. 169–211. Available online: http://link.springer.com/chapter/10.1007/978-0-387-75113-9_9. DOI

Draz M.S., Lakshminaraasimulu N.K., Krishnakumar S., Battalapalli D., Vasan A., Kanakasabapathy M.K., Sreeram A., Kallakuri S., Thirumalaraju P., Li Y., et al. Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone. ACS Nano. 2018;12:5709–5718. doi: 10.1021/acsnano.8b01515. PubMed DOI PMC

Ganganboina A.B., Khoris I.M., Chowdhury A.D., Li T.-C., Park E.Y. Ultrasensitive Detection of the Hepatitis E Virus by Electrocatalytic Water Oxidation Using Pt-Co3O4 Hollow Cages. ACS Appl. Mater. Interfaces. 2020;12:50212–50221. doi: 10.1021/acsami.0c13247. PubMed DOI

Islam S., Shukla S., Bajpai V.K., Han Y.-K., Huh Y.S., Kumar A., Ghosh A., Gandhi S. A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosens. Bioelectron. 2018;126:792–799. doi: 10.1016/j.bios.2018.11.041. PubMed DOI

Woon W., Leung F., Sun Q. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nanoaerosols. Sep. Purif. Technol. 2020;250:116886. PubMed PMC

Lum J., Wang R., Lassiter K., Srinivasan B., Abi-Ghanem D., Berghman L., Hargis B., Tung S., Lu H., Li Y. Rapid detection of avian influenza H5N1 virus using impedance measurement of immuno-reaction coupled with RBC amplification. Biosens. Bioelectron. 2012;38:67–73. doi: 10.1016/j.bios.2012.04.047. PubMed DOI

Xia Y., Chen Y., Tang Y., Cheng G., Yu X., He H., Cao G., Lu H., Liu Z., Zheng S.-Y. Smartphone-Based Point-of-Care Microfluidic Platform Fabricated with a ZnO Nanorod Template for Colorimetric Virus Detection. ACS Sensors. 2019;4:3298–3307. doi: 10.1021/acssensors.9b01927. PubMed DOI

Yeh Y.-T., Tang Y., Sebastian A., Dasgupta A., Perea-Lopez N., Albert I., Lu H., Terrones M., Zheng S.-Y. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. Sci. Adv. 2016;2:e1601026. doi: 10.1126/sciadv.1601026. PubMed DOI PMC

Dhand R., Li J. Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020;202:651–659. doi: 10.1164/rccm.202004-1263PP. PubMed DOI PMC

Xue Q., Kan X., Pan Z., Li Z., Pan W., Zhou F., Duan X. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. Biosens. Bioelectron. 2021;186:113286. doi: 10.1016/j.bios.2021.113286. PubMed DOI PMC

Wang R., Wang L., Callaway Z.T., Lu H., Huang T.J., Li Y. A nanowell-based QCM aptasensor for rapid and sensitive detection of avian influenza virus. Sens. Actuators B Chem. 2016;240:934–940. doi: 10.1016/j.snb.2016.09.067. DOI

Erofeev A.S., Gorelkin P.V., Kolesov D.V., Kiselev G.A., Dubrovin E., Yaminsky I.V. Label-free sensitive detection of influenza virus using PZT discs with a synthetic sialylglycopolymer receptor layer. R. Soc. Open Sci. 2019;6:190255. doi: 10.1098/rsos.190255. PubMed DOI PMC

Wangchareansak T., Sangma C., Ngernmeesri P., Thitithanyanont A., Lieberzeit P.A. Self-assembled glucosamine monolayers as biomimetic receptors for detecting WGA lectin and influenza virus with a quartz crystal microbalance. Anal. Bioanal. Chem. 2013;405:6471–6478. doi: 10.1007/s00216-013-7057-0. PubMed DOI

Albano D.R.B., Shum K., Tanner J.A., Fung Y.S. BS5.3—Piezoelectric quartz crystal aptamer biosensor for detection and quantification of SARS CoV helicase protein; Proceedings of the 17th International Meeting on Chemical Sensors—IMCS 2018; Vienna, Austria. 15–19 July 2018; pp. 211–213. DOI

Zuo B., Li S., Guo Z., Zhang J., Chen C. Piezoelectric Immunosensor for SARS-Associated Coronavirus in Sputum. Anal. Chem. 2004;76:3536–3540. doi: 10.1021/ac035367b. PubMed DOI

Pandey L.M. Design of engineered surfaces for prospective detection of SARS-CoV-2 using quartz crystal microbalance-based techniques. Expert Rev. Proteom. 2020;17:425–432. doi: 10.1080/14789450.2020.1794831. PubMed DOI

Alhalaili B., Popescu I., Kamoun O., Alzubi F., Alawadhia S., Vidu R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. Sensors. 2020;20:6591. doi: 10.3390/s20226591. PubMed DOI PMC

PathSensors, Inc Announced the Development of a SARS-CoV-2 Biosensor. 2020. [(accessed on 30 January 2021)]. Available online: https://www.smithsdetection.com/press-releases/pathsensors-inc-announced-the-development-of-a-sars-cov-2-biosensor/

Abbott Launches Molecular Point-of-Care Test to Detect Novel Coronavirus in as Little as Five Minutes. 2020. [(accessed on 30 January 2021)]. Available online: https://abbott.mediaroom.com/2020-03-27-Abbott-Launches-Molecular-Point-of-Care-Test-to-Detect-Novel-Coronavirus-in-as-Little-as-Five-Minutes.

Di L., Fu Y., Sun Y., Li J., Liu L., Yao J., Wang G., Wu Y., Lao K., Lee R.W., et al. RNA sequencing by direct tagmentation of RNA/DNA hybrids. Proc. Natl. Acad. Sci. USA. 2020;117:2886–2893. doi: 10.1073/pnas.1919800117. PubMed DOI PMC

Mahari S., Roberts A., Shahdeo D., Gandhi S. eCovSens-Ultrasensitive Novel in-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 Antigen, a Spike Protein Domain 1 of SARS-CoV-2. bioRxiv. 2020:1–20. doi: 10.1101/2020.04.24.059204. DOI

Arya S.K., Saha S., Ramirez-Vick J., Gupta V., Bhansali S., Singh S.P. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Anal. Chim. Acta. 2012;737:1–21. doi: 10.1016/j.aca.2012.05.048. PubMed DOI

Jianrong C., Yuqing M., Nongyue H., Xiaohua W., Sijiao L. Nanotechnology and biosensors. Biotechnol. Adv. 2004;22:505–518. doi: 10.1016/j.biotechadv.2004.03.004. PubMed DOI

Draz M.S., Shafiee H. Applications of gold nanoparticles in virus detection. Theranostics. 2018;8:1985–2017. doi: 10.7150/thno.23856. PubMed DOI PMC

Moitra P., Alafeef M., Dighe K., Frieman M.B., Pan D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano. 2020;14:7617–7627. doi: 10.1021/acsnano.0c03822. PubMed DOI PMC

Kumar V., Mishra S., Sharma R., Agarwal J., Ghoshal U., Khanna T., Sharma L.K., Verma S.K., Tiwari S. Development of RNA-based assay for rapid detection of SARS-CoV-2 in clinical samples. bioRxiv. 2020 doi: 10.1101/2020.06.30.172833. PubMed DOI PMC

Li Z., Yi Y., Luo X., Xiong N., Liu Y., Li S., Sun R., Wang Y., Hu B., Chen W., et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020;92:1518–1524. doi: 10.1002/jmv.25727. PubMed DOI PMC

Ma Q., Wang J., Li Z., Lv X., Liang L., Yuan Q. Recent Progress in Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped Nanoparticles. Small. 2019;15:e1804969. doi: 10.1002/smll.201804969. PubMed DOI

Banerjee R., Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Anal. 2018;143:1970–1996. doi: 10.1039/C8AN00307F. PubMed DOI

Chen Z., Zhang Z., Zhai X., Li Y., Lin L., Zhao H., Bian L., Li P., Yu L., Wu Y., et al. Rapid and Sensitive Detection of anti-SARS-CoV-2 IgG, Using Lanthanide-Doped Nanoparticles-Based Lateral Flow Immunoassay. Anal. Chem. 2020;92:7226–7231. doi: 10.1021/acs.analchem.0c00784. PubMed DOI

Islam A., Ahsan Z. Plausible Approach for Rapid Detection of SARS-CoV-2 Virus by Magnetic Nanoparticle Based Biosensors. Am. J. Nanosci. 2020;6:6. doi: 10.11648/j.ajn.20200602.11. DOI

Barnett J.M., Monnier B.M., Tyler S., West D., Ballantine-Dykes H., Regan E., Wraith P., Kiely J., Luxton R. Initial trail results of a magnetic biosensor for the rapid detection of Porcine Reproductive and Respiratory Virus (PRRSV) infection. Sens. Bio-Sens. Res. 2019;27:100315. doi: 10.1016/j.sbsr.2019.100315. DOI

Zhao Z., Cui H., Song W., Ru X., Zhou W., Yu X. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. bioRxiv. 2020 doi: 10.1101/2020.02.22.961268. PubMed DOI PMC

Wu K., Saha R., Su D., Krishna V.D., Liu J., Cheeran M.C.-J., Wang J.-P. Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19. ACS Appl. Nano Mater. 2020;3:9560–9580. doi: 10.1021/acsanm.0c02048. PubMed DOI

Dixon R.V., Skaria E., Lau W.M., Manning P., Birch-Machin M.A., Moghimi S.M., Ng K.W. Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm. Sin. B. 2021;11:2344–2361. doi: 10.1016/j.apsb.2021.02.010. PubMed DOI PMC

Ates H.C., Yetisen A.K., Güder F., Dincer C. Wearable devices for the detection of COVID-19. Nat. Electron. 2021;4:13–14. doi: 10.1038/s41928-020-00533-1. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors

. 2022 Apr ; 106 (8) : 2827-2853. [epub] 20220406

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...