Tepotinib Inhibits Several Drug Efflux Transporters and Biotransformation Enzymes: The Role in Drug-Drug Interactions and Targeting Cytostatic Resistance In Vitro and Ex Vivo
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-20414Y
Czech Science Foundation
334120/C
Grant Agency of Charles University
102121/C
Grant Agency of Charles University
SVV/2021/260 549
Charles University
Faculty of Science, VT2019-2021
University of Hradec Králové
85009748
European Funds for Regional Development
PubMed
34769363
PubMed Central
PMC8584989
DOI
10.3390/ijms222111936
PII: ijms222111936
Knihovny.cz E-zdroje
- Klíčová slova
- ABC transporter, cytochrome P450, drug interaction, multidrug resistance, non-small cell lung cancer, tepotinib,
- MeSH
- ABC transportéry antagonisté a inhibitory MeSH
- chemorezistence účinky léků MeSH
- cytostatické látky farmakologie MeSH
- lékové interakce * MeSH
- lidé MeSH
- mnohočetná léková rezistence účinky léků MeSH
- nádory plic farmakoterapie metabolismus patologie MeSH
- nemalobuněčný karcinom plic farmakoterapie metabolismus patologie MeSH
- piperidiny farmakologie MeSH
- protinádorové látky farmakologie MeSH
- pyridaziny farmakologie MeSH
- pyrimidiny farmakologie MeSH
- techniky in vitro MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportéry MeSH
- cytostatické látky MeSH
- piperidiny MeSH
- protinádorové látky MeSH
- pyridaziny MeSH
- pyrimidiny MeSH
- tepotinib MeSH Prohlížeč
Tepotinib is a novel tyrosine kinase inhibitor recently approved for the treatment of non-small cell lung cancer (NSCLC). In this study, we evaluated the tepotinib's potential to perpetrate pharmacokinetic drug interactions and modulate multidrug resistance (MDR). Accumulation studies showed that tepotinib potently inhibits ABCB1 and ABCG2 efflux transporters, which was confirmed by molecular docking. In addition, tepotinib inhibited several recombinant cytochrome P450 (CYP) isoforms with varying potency. In subsequent drug combination experiments, tepotinib synergistically reversed daunorubicin and mitoxantrone resistance in cells with ABCB1 and ABCG2 overexpression, respectively. Remarkably, MDR-modulatory properties were confirmed in ex vivo explants derived from NSCLC patients. Furthermore, we demonstrated that anticancer effect of tepotinib is not influenced by the presence of ABC transporters associated with MDR, although monolayer transport assays designated it as ABCB1 substrate. Finally, tested drug was observed to have negligible effect on the expression of clinically relevant drug efflux transporters and CYP enzymes. In conclusion, our findings provide complex overview on the tepotinib's drug interaction profile and suggest a promising novel therapeutic strategy for future clinical investigations.
Zobrazit více v PubMed
Holohan C., van Schaeybroeck S., Longley D.B., Johnston P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer. 2013;13:714–726. doi: 10.1038/nrc3599. PubMed DOI
Muller F., Fromm M.F. Transporter-mediated drug-drug interactions. Pharmacogenomics. 2011;12:1017–1037. doi: 10.2217/pgs.11.44. PubMed DOI
Polasek T.M., Lin F.P., Miners J.O., Doogue M.P. Perpetrators of pharmacokinetic drug-drug interactions arising from altered cytochrome P450 activity: A criteria-based assessment. Br. J. Clin. Pharmacol. 2011;71:727–736. doi: 10.1111/j.1365-2125.2011.03903.x. PubMed DOI PMC
Robey R.W., Pluchino K.M., Hall M.D., Fojo A.T., Bates S.E., Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer. 2018;18:452–464. doi: 10.1038/s41568-018-0005-8. PubMed DOI PMC
Hofman J., Vagiannis D., Chen S., Guo L. Roles of CYP3A4, CYP3A5 and CYP2C8 drug-metabolizing enzymes in cellular cytostatic resistance. Chem. Biol. Interact. 2021;340:109448. doi: 10.1016/j.cbi.2021.109448. PubMed DOI
Markham A. Tepotinib: First Approval. Drugs. 2020;80:829–833. doi: 10.1007/s40265-020-01317-9. PubMed DOI
Mathieu L.N., Larkins E., Akinboro O., Roy P., Amatya A.K., Fiero M.H., Mishra-Kalyani P.S., Helms W.S., Myers C.E., Skinner A.M., et al. FDA Approval Summary: Capmatinib and Tepotinib for the Treatment of Metastatic NSCLC Harboring MET Exon 14 Skipping Mutations or Alterations. Clin. Cancer Res. 2021;21:1566. doi: 10.1158/1078-0432.CCR-21-1566. PubMed DOI
Mayne C.G., Arcario M.J., Mahinthichaichan P., Baylon J.L., Vermaas J.V., Navidpour L., Wen P.C., Thangapandian S., Tajkhorshid E. The cellular membrane as a mediator for small molecule interaction with membrane proteins. Biochim. Biophys. Acta. 2016;1858:2290–2304. doi: 10.1016/j.bbamem.2016.04.016. PubMed DOI PMC
Vagiannis D., Novotna E., Skarka A., Kammerer S., Kupper J.H., Chen S., Guo L., Staud F., Hofman J. Ensartinib (X-396) Effectively Modulates Pharmacokinetic Resistance Mediated by ABCB1 and ABCG2 Drug Efflux Transporters and CYP3A4 Biotransformation Enzyme. Cancers. 2020;12:813. doi: 10.3390/cancers12040813. PubMed DOI PMC
European Medicines Agency Guideline on the Investigation of Drug Interactions. 2012. [(accessed on 4 February 2021)]. CPMP/EWP/560/95/Rev. 1 Corr. 2** Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf.
Falchook G.S., Kurzrock R., Amin H.M., Xiong W., Fu S., Piha-Paul S.A., Janku F., Eskandari G., Catenacci D.V., Klevesath M., et al. First-in-Man Phase I Trial of the Selective MET Inhibitor Tepotinib in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2020;26:1237–1246. doi: 10.1158/1078-0432.CCR-19-2860. PubMed DOI
Johne A., Scheible H., Becker A., van Lier J.J., Wolna P., Meyring M. Open-label, single-center, phase I trial to investigate the mass balance and absolute bioavailability of the highly selective oral MET inhibitor tepotinib in healthy volunteers. Investig. New Drugs. 2020;38:1507–1519. doi: 10.1007/s10637-020-00926-1. PubMed DOI PMC
Food and Drug Administration In Vitro Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. [(accessed on 10 February 2021)];2020 Available online: https://www.fda.gov/media/134582/download.
Yalkinoglu Ö., Heuer J., Becker A., Krebs-Brown A., Strotmann R. 480P Drug-drug interaction profile of tepotinib with CYP3A and P-gp substrates. Ann. Oncol. 2019;30:mdz244.042. doi: 10.1093/annonc/mdz244.042. DOI
Wu Z.X., Teng Q.X., Cai C.Y., Wang J.Q., Lei Z.N., Yang Y., Fan Y.F., Zhang J.Y., Li J., Chen Z.S. Tepotinib reverses ABCB1-mediated multidrug resistance in cancer cells. Biochem. Pharmacol. 2019;166:120–127. doi: 10.1016/j.bcp.2019.05.015. PubMed DOI
Bayat Mokhtari R., Homayouni T.S., Baluch N., Morgatskaya E., Kumar S., Das B., Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;8:38022–38043. doi: 10.18632/oncotarget.16723. PubMed DOI PMC
Cygalova L.H., Hofman J., Ceckova M., Staud F. Transplacental pharmacokinetics of glyburide, rhodamine 123, and BODIPY FL prazosin: Effect of drug efflux transporters and lipid solubility. J. Pharmacol. Exp. Ther. 2009;331:1118–1125. doi: 10.1124/jpet.109.160564. PubMed DOI
Hofman J., Sorf A., Vagiannis D., Sucha S., Novotna E., Kammerer S., Kupper J.H., Ceckova M., Staud F. Interactions of Alectinib with Human ATP-Binding Cassette Drug Efflux Transporters and Cytochrome P450 Biotransformation Enzymes: Effect on Pharmacokinetic Multidrug Resistance. Drug Metab. Dispos. 2019;47:699–709. doi: 10.1124/dmd.119.086975. PubMed DOI
Hofman J., Sorf A., Vagiannis D., Sucha S., Kammerer S., Kupper J.H., Chen S., Guo L., Ceckova M., Staud F. Brivanib Exhibits Potential for Pharmacokinetic Drug-Drug Interactions and the Modulation of Multidrug Resistance through the Inhibition of Human ABCG2 Drug Efflux Transporter and CYP450 Biotransformation Enzymes. Mol. Pharm. 2019;16:4436–4450. doi: 10.1021/acs.molpharmaceut.9b00361. PubMed DOI
Vagiannis D., Yu Z., Novotna E., Morell A., Hofman J. Entrectinib reverses cytostatic resistance through the inhibition of ABCB1 efflux transporter, but not the CYP3A4 drug-metabolizing enzyme. Biochem. Pharmacol. 2020;178:114061. doi: 10.1016/j.bcp.2020.114061. PubMed DOI
Wu R. In: Growth of Human Lung Tumor Cells in Culture. Culture of Human Tumor Cells. Pfragner R., Freshney R.I., editors. Wiley-Liss Inc.; Hoboken, NJ, USA: 2004. pp. 1–21.
Chou T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI
Hofman J., Malcekova B., Skarka A., Novotna E., Wsol V. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3. Toxicol. Appl. Pharmacol. 2014;278:238–248. doi: 10.1016/j.taap.2014.04.027. PubMed DOI
Hofman J., Skarka A., Havrankova J., Wsol V. Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases. Biochem. Pharmacol. 2015;96:168–178. doi: 10.1016/j.bcp.2015.05.005. PubMed DOI
Irwin J.J., Sterling T., Mysinger M.M., Bolstad E.S., Coleman R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012;52:1757–1768. doi: 10.1021/ci3001277. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Alam A., Kowal J., Broude E., Roninson I., Locher K.P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science. 2019;363:753–756. doi: 10.1126/science.aav7102. PubMed DOI PMC
Kim Y., Chen J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science. 2018;359:915–919. doi: 10.1126/science.aar7389. PubMed DOI
Jackson S.M., Manolaridis I., Kowal J., Zechner M., Taylor N.M.I., Bause M., Bauer S., Bartholomaeus R., Bernhardt G., Koenig B., et al. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 2018;25:333–340. doi: 10.1038/s41594-018-0049-1. PubMed DOI
Manolaridis I., Jackson S.M., Taylor N.M.I., Kowal J., Stahlberg H., Locher K.P. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature. 2018;563:426–430. doi: 10.1038/s41586-018-0680-3. PubMed DOI PMC
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC