Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25986883
DOI
10.1016/j.bcp.2015.05.005
PII: S0006-2952(15)00251-8
Knihovny.cz E-zdroje
- Klíčová slova
- Breast cancer, Carbonyl reducing enzymes, Chemotherapy, Doxorubicin, Pharmacokinetic interactions,
- MeSH
- 3-hydroxysteroid dehydrogenasy genetika metabolismus MeSH
- aldehydreduktasa genetika metabolismus MeSH
- alkoholoxidoreduktasy genetika metabolismus MeSH
- biotransformace MeSH
- buňky Hep G2 MeSH
- cyklofosfamid farmakologie MeSH
- docetaxel MeSH
- doxorubicin metabolismus farmakologie MeSH
- fluoruracil farmakologie MeSH
- hydroxyprostaglandindehydrogenasy genetika metabolismus MeSH
- izoenzymy genetika metabolismus MeSH
- játra účinky léků enzymologie MeSH
- kinetika MeSH
- lékové interakce MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- oxidace-redukce MeSH
- protein AKR1C3 MeSH
- protinádorové látky farmakologie MeSH
- protokoly protinádorové kombinované chemoterapie MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- tamoxifen farmakologie MeSH
- taxoidy farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3-hydroxysteroid dehydrogenasy MeSH
- AKR1A1 protein, human MeSH Prohlížeč
- AKR1C3 protein, human MeSH Prohlížeč
- aldehydreduktasa MeSH
- alkoholoxidoreduktasy MeSH
- CBR1 protein, human MeSH Prohlížeč
- cyklofosfamid MeSH
- docetaxel MeSH
- doxorubicin MeSH
- fluoruracil MeSH
- hydroxyprostaglandindehydrogenasy MeSH
- izoenzymy MeSH
- protein AKR1C3 MeSH
- protinádorové látky MeSH
- rekombinantní proteiny MeSH
- tamoxifen MeSH
- taxoidy MeSH
Paclitaxel (PTX), docetaxel (DTX), 5-fluorouracil (5-FU), cyclophosphamide (CYC) or tamoxifen (TMX) are combined with doxorubicin (DOX) in first-line chemotherapy regimens that are indicated for breast cancer patients. Although the efficacies of these drugs in combination treatments have been demonstrated in clinical practice, their possible interference with DOX metabolism has not been described in detail to date. In the present study, we investigated the possible interactions of human carbonyl reducing enzymes with 5-FU, PTX, DTX, CYC and TMX. First, the reducing activities of carbonyl reducing enzymes toward DOX were tested using incubations with purified recombinant enzymes. In the subsequent studies, we investigated the possible effects of the tested anticancer agents on the DOX-reducing activities of the most potent enzymes (AKR1C3, CBR1 and AKR1A1) and on the DOX metabolism driven by MCF7, HepG2 and human liver cytosols. In both of these assays, we observed that CYC and its active metabolites inhibited DOX metabolism. In the final study, we tracked the changes in AKR1C3, CBR1 and AKR1A1 expression levels following exposure to the tested cytostatics in MCF7 and HepG2 cells. Consequently, no significant changes in the expression levels of tested enzymes were detected in either cell line. Based on these findings, it is feasible to presume that inhibition rather than induction plays a role in the interactions of the tested anticancer agents with DOX-reducing enzymes. In conclusion, our results describe important molecular events that occur during combination breast cancer therapies and might modulate pharmacokinetic DOX resistance and/or behaviour.
Citace poskytuje Crossref.org
The toxic effect of cytostatics on primary cilia frequency and multiciliation