Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30008796
PubMed Central
PMC6020546
DOI
10.1155/2018/1874651
Knihovny.cz E-zdroje
- MeSH
- elektrofyziologické techniky kardiologické * MeSH
- entropie * MeSH
- fibrilace síní diagnóza MeSH
- katetrizační ablace MeSH
- lidé MeSH
- srdeční elektrofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Most cardiac arrhythmias can be classified as atrial flutter, focal atrial tachycardia, or atrial fibrillation. They have been usually treated using drugs, but catheter ablation has proven more effective. This is an invasive method devised to destroy the heart tissue that disturbs correct heart rhythm. In order to accurately localise the focus of this disturbance, the acquisition and processing of atrial electrograms form the usual mapping technique. They can be single potentials, double potentials, or complex fractionated atrial electrogram (CFAE) potentials, and last ones are the most effective targets for ablation. The electrophysiological substrate is then localised by a suitable signal processing method. Sample Entropy is a statistic scarcely applied to electrograms but can arguably become a powerful tool to analyse these time series, supported by its results in other similar biomedical applications. However, the lack of an analysis of its dependence on the perturbations usually found in electrogram data, such as missing samples or spikes, is even more marked. This paper applied SampEn to the segmentation between non-CFAE and CFAE records and assessed its class segmentation power loss at different levels of these perturbations. The results confirmed that SampEn was able to significantly distinguish between non-CFAE and CFAE records, even under very unfavourable conditions, such as 50% of missing data or 10% of spikes.
Zobrazit více v PubMed
Ahmed S., Claughton A., Gould P. A. Atrial flutter—diagnosis, management and treatment. In: Breijo-Marquez F. R., editor. Abnormal Heart Rhythms. chapter 1. Rijeka, Croatia: InTech; 2015. DOI
Kirchhof P., Calkins H. Catheter ablation in patients with persistent atrial fibrillation. European Heart Journal. 2017;38(1):20–26. doi: 10.1093/eurheartj/ehw260. PubMed DOI PMC
Nademanee K., Lockwood E., Oketani N., Gidney B. Catheter ablation of atrial fibrillation guided by complex fractionated atrial electrogram mapping of atrial fibrillation substrate. Journal of Cardiology. 2009;55(1):1–12. doi: 10.1016/j.jjcc.2009.11.002. PubMed DOI
Ng J., Goldberger J. J. Understanding and interpreting dominant frequency analysis of AF electrograms. Journal of Cardiovascular Electrophysiology. 2007;18(6):680–685. doi: 10.1111/j.1540-8167.2007.00832.x. PubMed DOI
Kottkamp H., Hindricks G. Complex fractionated atrial electrograms in atrial fibrillation: A promising target for ablation, but why, when, and how? Heart Rhythm. 2007;4(8):1021–1023. doi: 10.1016/j.hrthm.2007.05.011. PubMed DOI
Křemen V., Lhotská L., Macaš M., et al. A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiological Measurement. 2008;29(12):1371–1381. doi: 10.1088/0967-3334/29/12/002. PubMed DOI
Nademanee K., McKenzie J., Kosar E., et al. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology. 2004;43(11):2044–2053. doi: 10.1016/j.jacc.2003.12.054. PubMed DOI
Scherr D., Dalal D., Cheema A., et al. Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm. 2007;4(8):1013–1020. doi: 10.1016/j.hrthm.2007.04.021. PubMed DOI
Almeida T. P., Chu G. S., Salinet J. L., et al. Minimizing discordances in automated classification of fractionated electrograms in human persistent atrial fibrillation. Medical & Biological Engineering & Computing. 2016;54(11):1695–1706. doi: 10.1007/s11517-016-1456-2. PubMed DOI PMC
Molina-Picó A., Cuesta-Frau D., Aboy M., Crespo C., Miró-Martínez P., Oltra-Crespo S. Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine. 2011;53(2):97–106. doi: 10.1016/j.artmed.2011.06.007. PubMed DOI
Cuesta–Frau D., Miró–Martínez P., Jordán Núñez J., Oltra–Crespo S., Molina Picó A. Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine. 2017;87:141–151. doi: 10.1016/j.compbiomed.2017.05.028. PubMed DOI
Padhye N. S. Multiple timescale statistical filter for corrupt RR-series. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439); 2003; Cancun, Mexico. pp. 2432–2434. DOI
Demont-Guignard S., Benquet P., Gerber U., Wendling F. Analysis of intracerebral EEG recordings of epileptic spikes: Insights from a neural network model. IEEE Transactions on Biomedical Engineering. 2009;56(12):2782–2795. doi: 10.1109/TBME.2009.2028015. PubMed DOI PMC
Xu G., Wang J., Zhang Q., Zhu J. An automatic EEG spike detection algorithm using morphological filter. Proceedings of the IEEE International Conference on Automation Science and Engineering; October 2006; Shanghai, China. pp. 170–175. DOI
Molina-Picó A., Cuesta-Frau D., Miró-Martínez P., Oltra-Crespo S., Aboy M. Influence of QRS complex detection errors on entropy algorithms. Application to heart rate variability discrimination. Computer Methods and Programs in Biomedicine. 2013;110(1):2–11. doi: 10.1016/j.cmpb.2012.10.014. PubMed DOI
Ganesan P., Cherry E. M., Pertsov A. M., Ghoraani B. Characterization of Electrograms from Multipolar Diagnostic Catheters during Atrial Fibrillation. BioMed Research International. 2015;2015:9. doi: 10.1155/2015/272954.272954 PubMed DOI PMC
Roldán E. M., Molina-Picó A., Cuesta-Frau D., Martínez P. M., Crespo S. O. Characterization of entropy measures against data loss: application to EEG records. Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; August 2011; Boston, Mass, USA. pp. 6110–6113. PubMed DOI
Cirugeda-Roldán E. M., Molina-Picó A., Cuesta-Frau D., Oltra-Crespo S., Miró-Martínez P. Comparative study between Sample Entropy and Detrended Fluctuation Analysis performance on EEG records under data loss. Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); August 2012; San Diego, Calif, USA. pp. 4233–4236. PubMed DOI
Lake D. E., Richman J. S., Griffin M. P., Moorman J. R. Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2002;283(3):R789–R797. doi: 10.1152/ajpregu.00069.2002. PubMed DOI
Kim K. K., Baek H. J., Lim Y. G., Park K. S. Effect of missing RR-interval data on nonlinear heart rate variability analysis. Computer Methods and Programs in Biomedicine. 2012;106(3):210–218. doi: 10.1016/j.cmpb.2010.11.011. PubMed DOI
Richman J. S., Moorman J. R. Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology—Heart and Circulatory Physiology. 2000;278(6):H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI
Cirugeda-Roldán E., Novak D., Kremen V., et al. Characterization of complex fractionated atrial electrograms by sample entropy: An international multi-center study. Entropy. 2015;17(11):7493–7509. doi: 10.3390/e17117493. DOI
Porter M., Spear W., Akar J. G., et al. Prospective study of atrial fibrillation termination during ablation guided by automated detection of fractionated electrograms. Journal of Cardiovascular Electrophysiology. 2008;19(6):613–620. doi: 10.1111/j.1540-8167.2008.01189.x. PubMed DOI
Konings K. T. S., Kirchhof C. J. H. J., Smeets J. R. L. M., Wellens H. J. J., Penn O. C., Allessie M. A. High-density mapping of electrically induced atrial fibrillation in humans. Circulation. 1994;89(4):1665–1680. doi: 10.1161/01.CIR.89.4.1665. PubMed DOI
Fay M. P., Proschan M. A. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys. 2010;4:1–39. doi: 10.1214/09-SS051. PubMed DOI PMC
Richman J. S. Sample entropy statistics and testing for order in complex physiological signals. Communications in Statistics—Theory and Methods. 2007;36(5):1005–1019. doi: 10.1080/03610920601036481. DOI
Pincus S. M., Gladstone I. M., Ehrenkranz R. A. A regularity statistic for medical data analysis. Journal of Clinical Monitoring and Computing. 1991;7(4):335–345. doi: 10.1007/BF01619355. PubMed DOI
Alcaraz R., Rieta J. J. Non-invasive organization variation assessment in the onset and termination of paroxysmal atrial fibrillation. Computer Methods and Programs in Biomedicine. 2009;93(2):148–154. doi: 10.1016/j.cmpb.2008.09.001. PubMed DOI
Alcaraz R., Abásolo D., Hornero R., Rieta J. J. Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine. 2010;99(1):124–132. doi: 10.1016/j.cmpb.2010.02.009. PubMed DOI
Costa M., Goldberger A. L., Peng C.-K. Multiscale entropy analysis of complex physiologic time series. Physical Review Letters. 2002;89(6) doi: 10.1103/PhysRevLett.89.068102.068102 PubMed DOI