A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18946155
DOI
10.1088/0967-3334/29/12/002
PII: S0967-3334(08)91613-0
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- automatizace MeSH
- elektrokardiografie statistika a číselné údaje MeSH
- fibrilace síní patofyziologie MeSH
- interpretace statistických dat MeSH
- katetrizační ablace MeSH
- lidé středního věku MeSH
- lidé MeSH
- pilotní projekty MeSH
- počítačové zpracování signálu MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Complex fractionated atrial electrograms (CFAEs) may represent the electrophysiological substrate for atrial fibrillation (AF). Progress in signal processing algorithms to identify sites of CFAEs is crucial for the development of AF ablation strategies. A novel algorithm for automated description of fractionation of atrial electrograms (A-EGMs) based on the wavelet transform has been proposed. The algorithm was developed and validated using a representative set of 1.5 s A-EGM (n = 113) ranked by three experts into four categories: 1-organized atrial activity; 2-mild; 3-intermediate; 4-high degree of fractionation. A tight relationship between a fractionation index and expert classification of A-EGMs (Spearman correlation rho = 0.87) was documented with a sensitivity of 82% and specificity of 90% for the identification of highly fractionated A-EGMs. This operator-independent description of A-EGM complexity may be easily incorporated into mapping systems to facilitate CFAE identification and to guide AF substrate ablation.
Citace poskytuje Crossref.org
Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation