Clinical and transcriptomic characterization of patients with chronic lymphocytic leukemia harboring t(14;19): an ERIC study

. 2025 Sep 19 ; () : . [epub] 20250919

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40973766

Grantová podpora
Be_CL3VER Università degli Studi di Padova (University of Padova)
21198 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
IG-25024 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)

Odkazy

PubMed 40973766
DOI 10.1038/s41375-025-02755-8
PII: 10.1038/s41375-025-02755-8
Knihovny.cz E-zdroje

In chronic lymphocytic leukemia (CLL), the role of complex karyotype (CK) for prognostic stratification remains a topic of debate, and the impact of specific cytogenetic abnormalities is still unclear. This study aims to investigate the clinical and biological features of CLL with t(14;19)(q32;q13) (tCLL) involving the BCL3 gene. Patients with tCLL were younger and more commonly presented unmutated IGHV gene, subset #8 stereotypy, trisomy of chromosome 12, and complex karyotype than other patients without t(14;19) (oCLL). The presence of t(14;19) was associated with a shorter time to treatment and overall survival compared to oCLL. Gene expression analysis revealed a unique transcriptome profile in tCLL, characterized by the upregulation of BCL3 and the activation of B-cell receptor, PI3K-Akt. Conversely, apoptosis-related pathways were suppressed in tCLL. While the BTK gene was upregulated, the BCL2L11 gene, coding for the pro-apoptotic protein BIM, was downregulated. Notably, patients with tCLL were characterized by a trend (p = 0.058) for a longer time to the next treatment with BTK inhibitors (BTKi) compared to those treated with a venetoclax-based (Ven-based) regimen. We underscore the adverse outcomes of tCLL, its distinct molecular features and gene expression patterns. Therefore, our data suggest that identifying tCLL could help tailor therapeutic approaches.

1st Department of Propaedeutic University of Athens Athens Greece

Computational Genomics Group Department of Oncology Surgery and Gastroenterology University of Padua Padova Italy

Department 1 of Internal Medicine University of Cologne Cologne Germany

Department of Biology University of Padua Padova Italy

Department of Hematology Cancer Center Amsterdam and Lymphoma and Myeloma Center Amsterdam The Netherlands Amsterdam Netherlands

Department of Hematology Vall d'Hebron Institute of Oncology Hospital Universitari Vall d'Hebron Barcelona Spain

Department of Immunology Genetics and Pathology and Clinical Genomics Uppsala Science for Life Laboratory Uppsala University Uppsala Sweden

Department of Internal Medicine Hematology and Oncology University Hospital Brno and Faculty of Medicine Masaryk University Brno Czech Republic

Department of Molecular Medicine University of Padua Padova Italy

Department of Translational and Precision Medicine Hematology unit 'Sapienza' University Rome Italy

Division of Experimental Oncology IRCCS Ospedale San Raffaele Milano Italy

Federal State Budgetary Educational Institution of Higher Education Academician 1 P Pavlov 1st St Petersburg State Medical University of the Ministry of Healthcare of Russian Federation St Petersburg Russian Federation

Hematology Department and HCT Unit G Papanicolaou Hospital Thessaloniki Greece

Hematology Section Department of Medical Sciences Azienda Ospedaliera Universitaria Arcispedale S Anna University of Ferrara Ferrara Italy

Hematology Unit Department of Medicine University of Padua Padova Italy

Hôpital Pitié Salpêtrière Service d'Hématologie Biologique Paris France

Immunology and Molecular Oncology Unit Veneto Institute of Oncology IOV IRCSS Padova Italy

Institute of Applied Biosciences Center for Research and Technology Hellas Thessaloniki Greece

Laboratoire d'hématologie Hopital Avicenne Assistance Publique Hôpitaux de Paris Paris France

Medical School Università Vita Salute San Raffaele Milano Italy

MLL Munich Leukemia Laboratory Munich Germany

Molecular Cytogenetics Laboratory Pathology Department Hospital del Mar; Translational Research on Hematological Neoplasms Group Cancer Research Program Hospital del Mar Research Institute Barcelona Spain

Molecular Pathology University Hospitals Dorset Royal Bournemouth Hospital Bournemouth United Kingdom

Servicio de Genética Hospital Universitario de Navarra Pamplona Spain

Servicio de Hematología y Oncología Médica Hospital Clinico Universitario de Valencia Valencia Spain

State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases Haihe Laboratory of Cell Ecosystem Institute of Hematology and Blood Diseases Hospital Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin Institutes of Health Science Tianjin China

The Ohio State University Comprehensive Cancer Center Columbus OH USA

Ulm University Ulm Germany

Zobrazit více v PubMed

Eichhorst B, Ghia P, Niemann CU, Kater AP, Gregor M, Hallek M, et al. ESMO Clinical Practice Guideline interim update on new targeted therapies in the first line and at relapse of chronic lymphocytic leukaemia. Ann Oncol. 2024;35:762–8. PubMed DOI

Wierda WG, Brown J, Abramson JS, Awan F, Bilgrami SF, Bociek G, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma, version 2.2024, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2024;22:175–204. PubMed DOI

Rigolin GM, Saccenti E, Guardalben E, Cavallari M, Formigaro L, Zagatti B, et al. In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. Br J Haematol. 2018;181:229–33. PubMed DOI

Serafin A, Cellini A, Cavarretta CA, Ruocco V, Angotzi F, Zatta I, et al. Exploring the prognostic role of complex karyotype in chronic lymphocytic leukaemia patients treated with venetoclax-based regimens. Br J Haematol. 2024;205:189–93. PubMed DOI

Visentin A, Bonaldi L, Rigolin GM, Mauro FR, Martines A, Frezzato F, et al. The complex karyotype landscape in chronic lymphocytic leukemia allows the refinement of the risk of Richter syndrome transformation. Haematologica. 2022;107:868–76. PubMed DOI

Visentin A, Bonaldi L, Rigolin GM, Mauro FR, Martines A, Frezzato F, et al. The combination of complex karyotype subtypes and IGHV mutational status identifies new prognostic and predictive groups in chronic lymphocytic leukaemia. Br J Cancer. 2019;121:150–6. PubMed DOI PMC

Baliakas P, Jeromin S, Iskas M, Puiggros A, Plevova K, Nguyen-Khac F, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133:1205–16. PubMed DOI PMC

Baliakas P, Espinet B, Mellink C, Jarosova M, Athanasiadou A, Ghia P, et al. Cytogenetics in chronic lymphocytic leukemia: ERIC perspectives and recommendations. Hemasphere. 2022;6:e707. PubMed DOI PMC

Ramos-Campoy S, Puiggros A, Beà S, Bougeon S, Larráyoz MJ, Costa D, et al. Chromosome banding analysis and genomic microarrays are both useful but not equivalent methods for genomic complexity risk stratification in chronic lymphocytic leukemia patients. Haematologica. 2022;107:593–603. PubMed DOI

Kittai AS, Miller C, Goldstein D, Huang Y, Abruzzo LV, Beckwith K, et al. The impact of increasing karyotypic complexity and evolution on survival in patients with CLL treated with ibrutinib. Blood. 2021;138:2372–82. PubMed DOI

Thompson PA, O’Brien SM, Wierda WG, Ferrajoli A, Stingo F, Smith SC, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121:3612–21. PubMed DOI

Fürstenau M, Thus YJ, Robrecht S, Mellink CHM, van der Kevie-Kersemaekers A-M, Dubois J, et al. High karyotypic complexity is an independent prognostic factor in patients with CLL treated with venetoclax combinations. Blood. 2023;142:446–59. PubMed DOI

Michaux L, Mecucci C, Stul M, Wlodarska I, Hernandez JM, Meeus P, et al. BCL3 rearrangement and t(14;19)(q32;q13) in lymphoproliferative disorders. Genes Chromosom Cancer. 1996;15:38–47. PubMed DOI

Carbo-Meix A, Guijarro F, Wang L, Grau M, Royo R, Frigola G, et al. BCL3-rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases. Haematol. 2023. https://doi.org/10.3324/haematol.2023.283209 .

Chapiro E, Radford-Weiss I, Bastard C, Luquet I, Lefebvre C, Callet-Bauchu E, et al. The most frequent t(14;19)(q32;q13)-positive B-cell malignancy corresponds to an aggressive subgroup of atypical chronic lymphocytic leukemia. Leukemia. 2008;22:2123–7. PubMed DOI

Nguyen-Khac F, Chapiro E, Lesty C, Grelier A, Luquet I, Radford-Weiss I, et al. Specific chromosomal IG translocations have different prognoses in chronic lymphocytic leukemia. Am J Blood Res. 2011;1:13–21. PubMed PMC

Martín-Subero JI, Ibbotson R, Klapper W, Michaux L, Callet-Bauchu E, Berger F, et al. A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia. 2007;21:1532–44. PubMed DOI

Kelly RJ, Wright D, Patil K, Chapple M, Jalihal SS, Barrans SL, et al. t(14;19)(q32;q13) incidence and significance in B-cell lymphoproliferative disorders. Br J Haematol. 2008;141:561–3. PubMed DOI

Busschots AM, Mecucci C, Stul M, Vandenberghe E, Michaux J-L, Noel H, et al. Translocation (14;19)(q32;q13.1) in a young patient who developed a large cell lymphoma after an initial diagnosis of CLL. Leuk Lymphoma. 1991;5:281–6. PubMed DOI

Fang H, Reichard KK, Rabe KG, Hanson CA, Call TG, Ding W, et al. IGH translocations in chronic lymphocytic leukemia: clinicopathologic features and clinical outcomes. Am J Hematol. 2019;94:338–45. PubMed DOI PMC

Rossi D, Deambrogi C, Monti S, Cresta S, De Paoli L, Fangazio M, et al. correspondence: BCL3 translocation in CLL with typical phenotype: assessment of frequency, association with cytogenetic subgroups, and prognostic significance. Br J Haematol. 2010;150:702–4. PubMed DOI

Palmer S, Chen YH. Bcl-3, a multifaceted modulator of NF-κB-mediated gene transcription. Immunol Res. 2008;42:210–8. PubMed DOI

Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: a double-edged sword in immune cells and inflammation. Front Immunol. 2022;13:847699. PubMed DOI PMC

Ong ST, Hackbarth ML, Degenstein LC, Baunoch DA, Anastasi J, McKeithan TW. Lymphadenopathy, splenomegaly, and altered immunoglobulin production in BCL3 transgenic mice. Oncogene. 1998;16:2333–43. PubMed DOI

Zhang X, Paun A, Claudio E, Wang H, Siebenlist U. The tumor promoter and NF-κB modulator Bcl-3 regulates splenic B cell development. J Immunol. 2013;191:5984–92. PubMed DOI

Chatzikonstantinou T, Scarfò L, Karakatsoulis G, Minga E, Chamou D, Iacoboni G, et al. Other malignancies in the history of CLL: an international multicenter study conducted by ERIC, the European Research Initiative on CLL, in HARMONY. EClinicalMedicine. 2023;65:102307. PubMed DOI PMC

Gaffo E, Boldrin E, Dal Molin A, Bresolin S, Bonizzato A, Trentin L, et al. Circular RNA differential expression in blood cell populations and exploration of circRNA deregulation in pediatric acute lymphoblastic leukemia. Sci Rep. 2019;9:14670. PubMed DOI PMC

Gaffo E, Buratin A, Dal Molin A. Bortoluzzi S. Sensitive, reliable and robust circRNA detection from RNA-seq with CirComPara2. Brief Bioinforma. 2022;23:bbab418. DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. PubMed DOI PMC

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15. PubMed DOI PMC

Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20:278. PubMed DOI PMC

Love MI, Soneson C, Hickey PF, Johnson LK, Pierce NT, Shepherd L, et al. Tximeta: Reference sequence checksums for provenance identification in RNA-seq. PLoS Comput Biol. 2020;16:e1007664. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed DOI PMC

Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3. PubMed DOI PMC

Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. 2016. Springer International Publishing: Imprint: Springer: Cham, 2016. https://doi.org/10.1007/978-3-319-24277-4 .

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50. PubMed DOI PMC

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40. PubMed DOI PMC

Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25. PubMed DOI PMC

Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-S, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25:75–82. PubMed DOI

Liska O, Bohár B, Hidas A, Korcsmáros T, Papp B, Fazekas D, et al. TFLink: an integrated gateway to access transcription factor–target gene interactions for multiple species. Database. 2022;2022:baac083. PubMed DOI PMC

Papakonstantinou N, Ntoufa S, Tsagiopoulou M, Moysiadis T, Bhoi S, Malousi A, et al. Integrated epigenomic and transcriptomic analysis reveals TP63 as a novel player in clinically aggressive chronic lymphocytic leukemia. Int J Cancer. 2019;144:2695–706. PubMed DOI

Vardi A, Agathangelidis A, Sutton L-A, Chatzouli M, Scarfò L, Mansouri L, et al. IgG-switched CLL has a distinct immunogenetic signature from the common MD variant: ontogenetic implications. Clin Cancer Res. 2014;20:323–30. PubMed DOI

Ebrahimi N, Abdulwahid A-HRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, et al. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci. 2024;81:106. PubMed DOI PMC

Vitale C, Griggio V, Perutelli F, Coscia M. CAR-modified cellular therapies in chronic lymphocytic leukemia: is the uphill road getting less steep?. HemaSphere. 2023;7:e988. PubMed DOI PMC

Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129:3419–27. PubMed DOI PMC

Visentin A, Frazzetto S, Trentin L, Chiarenza A. Innovative combinations, cellular therapies and bispecific antibodies for chronic lymphocytic leukemia: a narrative review. Cancers. 2024;16:1290. PubMed DOI PMC

Shapiro M, Herishanu Y, Katz B-Z, Dezorella N, Sun C, Kay S, et al. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017;102:874–82. PubMed DOI PMC

Arruga F, Rubin M, Papazoglou D, Iannello A, Ioannou N, Moia R, et al. The immunomodulatory molecule TIGIT is expressed by chronic lymphocytic leukemia cells and contributes to anergy. Haematol. 2023;108:2101–15. DOI

Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377:2545–54. PubMed DOI PMC

Müller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E, et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 2001;15:267–85. PubMed DOI PMC

Jitschin R, Hofmann AD, Bruns H, Gießl A, Bricks J, Berger J, et al. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood. 2014;123:2663–72. PubMed DOI

Pagano MA, Frezzato F, Visentin A, Trentin L, Brunati AM. Protein phosphorylation and redox status: an as yet elusive dyad in chronic lymphocytic leukemia. Cancers. 2022;14:4881. PubMed DOI PMC

Woodgett JR. Judging a protein by more than its name: GSK-3. Sci STKE. 2001;2001:re12. PubMed DOI

Viatour P, Dejardin E, Warnier M, Lair F, Claudio E, Bureau F, et al. GSK3-mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity. Mol Cell. 2004;16:35–45. PubMed DOI

He S, Zeng S, Zhou Z-W, He Z-X, Zhou S-F. Hsa-microRNA-181a is a regulator of a number of cancer genes and a biomarker for endometrial carcinoma in patients: a bioinformatic and clinical study and the therapeutic implication. Drug Des Devel Ther. 2015;9:1103–75. PubMed PMC

Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126:1203–17. PubMed DOI

Marisetty A, Wei J, Kong L-Y, Ott M, Fang D, Sabbagh A, et al. MiR-181 family modulates osteopontin in glioblastoma multiforme. Cancers (Basel). 2020;12:3813. PubMed DOI

Ouyang Y-B, Lu Y, Yue S, Giffard RG. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion. 2012;12:213–9. PubMed DOI

Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP. TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest. 2013;123:150–63. PubMed DOI

Roncaglia E, Gaffo E, Calabretto G, Fürstenau M, Rogers KA, Baliakas P, et al. Circular RNA signature of aggressive CLL with t(14;19)(q32;q13). An ERIC study. J Hematol Oncol. 2025;18:74. PubMed DOI PMC

Al-Sawaf O, Zhang C, Jin HY, Robrecht S, Choi Y, Balasubramanian S, et al. Transcriptomic profiles and 5-year results from the randomized CLL14 study of venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab in chronic lymphocytic leukemia. Nat Commun. 2023;14:2147. PubMed DOI PMC

Seaton G, Smith H, Brancale A, Westwell AD, Clarkson R. Multifaceted roles for BCL3 in cancer: a proto-oncogene comes of age. Mol Cancer. 2024;23:7. PubMed DOI PMC

Visentin A, Frezzato F, Severin F, Imbergamo S, Pravato S, Romano Gargarella L, et al. Lights and shade of next-generation Pi3k inhibitors in chronic lymphocytic leukemia. OTT. 2020;ume 13:9679–88. DOI

Saamarthy K, Ahlqvist K, Daams R, Balagunaseelan N, Rinaldo-Matthis A, Kazi JU, et al. Discovery of a small molecule that inhibits Bcl-3-mediated cyclin D1 expression in melanoma cells. BMC Cancer. 2024;24:103. PubMed DOI PMC

Soukupová J, Bordoni C, Turnham DJ, Yang WW, Seaton G, Gruca A, et al. The discovery of a novel antimetastatic Bcl3 inhibitor. Mol Cancer Ther. 2021;20:775–86. PubMed DOI

Daams R, Tran TTP, Jemaà M, Sime W, Mickeviciute R, Ek S, et al. Enhancing cell death in B-cell malignancies through targeted inhibition of Bcl-3. Cell Death Dis. 2024;15:690. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...