Clinical and transcriptomic characterization of patients with chronic lymphocytic leukemia harboring t(14;19): an ERIC study
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Be_CL3VER
Università degli Studi di Padova (University of Padova)
21198
Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
IG-25024
Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
PubMed
40973766
DOI
10.1038/s41375-025-02755-8
PII: 10.1038/s41375-025-02755-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In chronic lymphocytic leukemia (CLL), the role of complex karyotype (CK) for prognostic stratification remains a topic of debate, and the impact of specific cytogenetic abnormalities is still unclear. This study aims to investigate the clinical and biological features of CLL with t(14;19)(q32;q13) (tCLL) involving the BCL3 gene. Patients with tCLL were younger and more commonly presented unmutated IGHV gene, subset #8 stereotypy, trisomy of chromosome 12, and complex karyotype than other patients without t(14;19) (oCLL). The presence of t(14;19) was associated with a shorter time to treatment and overall survival compared to oCLL. Gene expression analysis revealed a unique transcriptome profile in tCLL, characterized by the upregulation of BCL3 and the activation of B-cell receptor, PI3K-Akt. Conversely, apoptosis-related pathways were suppressed in tCLL. While the BTK gene was upregulated, the BCL2L11 gene, coding for the pro-apoptotic protein BIM, was downregulated. Notably, patients with tCLL were characterized by a trend (p = 0.058) for a longer time to the next treatment with BTK inhibitors (BTKi) compared to those treated with a venetoclax-based (Ven-based) regimen. We underscore the adverse outcomes of tCLL, its distinct molecular features and gene expression patterns. Therefore, our data suggest that identifying tCLL could help tailor therapeutic approaches.
1st Department of Propaedeutic University of Athens Athens Greece
Department 1 of Internal Medicine University of Cologne Cologne Germany
Department of Biology University of Padua Padova Italy
Department of Molecular Medicine University of Padua Padova Italy
Department of Translational and Precision Medicine Hematology unit 'Sapienza' University Rome Italy
Division of Experimental Oncology IRCCS Ospedale San Raffaele Milano Italy
Hematology Department and HCT Unit G Papanicolaou Hospital Thessaloniki Greece
Hematology Unit Department of Medicine University of Padua Padova Italy
Hôpital Pitié Salpêtrière Service d'Hématologie Biologique Paris France
Immunology and Molecular Oncology Unit Veneto Institute of Oncology IOV IRCSS Padova Italy
Institute of Applied Biosciences Center for Research and Technology Hellas Thessaloniki Greece
Laboratoire d'hématologie Hopital Avicenne Assistance Publique Hôpitaux de Paris Paris France
Medical School Università Vita Salute San Raffaele Milano Italy
MLL Munich Leukemia Laboratory Munich Germany
Servicio de Genética Hospital Universitario de Navarra Pamplona Spain
Servicio de Hematología y Oncología Médica Hospital Clinico Universitario de Valencia Valencia Spain
The Ohio State University Comprehensive Cancer Center Columbus OH USA
Zobrazit více v PubMed
Eichhorst B, Ghia P, Niemann CU, Kater AP, Gregor M, Hallek M, et al. ESMO Clinical Practice Guideline interim update on new targeted therapies in the first line and at relapse of chronic lymphocytic leukaemia. Ann Oncol. 2024;35:762–8. PubMed DOI
Wierda WG, Brown J, Abramson JS, Awan F, Bilgrami SF, Bociek G, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma, version 2.2024, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2024;22:175–204. PubMed DOI
Rigolin GM, Saccenti E, Guardalben E, Cavallari M, Formigaro L, Zagatti B, et al. In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. Br J Haematol. 2018;181:229–33. PubMed DOI
Serafin A, Cellini A, Cavarretta CA, Ruocco V, Angotzi F, Zatta I, et al. Exploring the prognostic role of complex karyotype in chronic lymphocytic leukaemia patients treated with venetoclax-based regimens. Br J Haematol. 2024;205:189–93. PubMed DOI
Visentin A, Bonaldi L, Rigolin GM, Mauro FR, Martines A, Frezzato F, et al. The complex karyotype landscape in chronic lymphocytic leukemia allows the refinement of the risk of Richter syndrome transformation. Haematologica. 2022;107:868–76. PubMed DOI
Visentin A, Bonaldi L, Rigolin GM, Mauro FR, Martines A, Frezzato F, et al. The combination of complex karyotype subtypes and IGHV mutational status identifies new prognostic and predictive groups in chronic lymphocytic leukaemia. Br J Cancer. 2019;121:150–6. PubMed DOI PMC
Baliakas P, Jeromin S, Iskas M, Puiggros A, Plevova K, Nguyen-Khac F, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133:1205–16. PubMed DOI PMC
Baliakas P, Espinet B, Mellink C, Jarosova M, Athanasiadou A, Ghia P, et al. Cytogenetics in chronic lymphocytic leukemia: ERIC perspectives and recommendations. Hemasphere. 2022;6:e707. PubMed DOI PMC
Ramos-Campoy S, Puiggros A, Beà S, Bougeon S, Larráyoz MJ, Costa D, et al. Chromosome banding analysis and genomic microarrays are both useful but not equivalent methods for genomic complexity risk stratification in chronic lymphocytic leukemia patients. Haematologica. 2022;107:593–603. PubMed DOI
Kittai AS, Miller C, Goldstein D, Huang Y, Abruzzo LV, Beckwith K, et al. The impact of increasing karyotypic complexity and evolution on survival in patients with CLL treated with ibrutinib. Blood. 2021;138:2372–82. PubMed DOI
Thompson PA, O’Brien SM, Wierda WG, Ferrajoli A, Stingo F, Smith SC, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121:3612–21. PubMed DOI
Fürstenau M, Thus YJ, Robrecht S, Mellink CHM, van der Kevie-Kersemaekers A-M, Dubois J, et al. High karyotypic complexity is an independent prognostic factor in patients with CLL treated with venetoclax combinations. Blood. 2023;142:446–59. PubMed DOI
Michaux L, Mecucci C, Stul M, Wlodarska I, Hernandez JM, Meeus P, et al. BCL3 rearrangement and t(14;19)(q32;q13) in lymphoproliferative disorders. Genes Chromosom Cancer. 1996;15:38–47. PubMed DOI
Carbo-Meix A, Guijarro F, Wang L, Grau M, Royo R, Frigola G, et al. BCL3-rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases. Haematol. 2023. https://doi.org/10.3324/haematol.2023.283209 .
Chapiro E, Radford-Weiss I, Bastard C, Luquet I, Lefebvre C, Callet-Bauchu E, et al. The most frequent t(14;19)(q32;q13)-positive B-cell malignancy corresponds to an aggressive subgroup of atypical chronic lymphocytic leukemia. Leukemia. 2008;22:2123–7. PubMed DOI
Nguyen-Khac F, Chapiro E, Lesty C, Grelier A, Luquet I, Radford-Weiss I, et al. Specific chromosomal IG translocations have different prognoses in chronic lymphocytic leukemia. Am J Blood Res. 2011;1:13–21. PubMed PMC
Martín-Subero JI, Ibbotson R, Klapper W, Michaux L, Callet-Bauchu E, Berger F, et al. A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia. 2007;21:1532–44. PubMed DOI
Kelly RJ, Wright D, Patil K, Chapple M, Jalihal SS, Barrans SL, et al. t(14;19)(q32;q13) incidence and significance in B-cell lymphoproliferative disorders. Br J Haematol. 2008;141:561–3. PubMed DOI
Busschots AM, Mecucci C, Stul M, Vandenberghe E, Michaux J-L, Noel H, et al. Translocation (14;19)(q32;q13.1) in a young patient who developed a large cell lymphoma after an initial diagnosis of CLL. Leuk Lymphoma. 1991;5:281–6. PubMed DOI
Fang H, Reichard KK, Rabe KG, Hanson CA, Call TG, Ding W, et al. IGH translocations in chronic lymphocytic leukemia: clinicopathologic features and clinical outcomes. Am J Hematol. 2019;94:338–45. PubMed DOI PMC
Rossi D, Deambrogi C, Monti S, Cresta S, De Paoli L, Fangazio M, et al. correspondence: BCL3 translocation in CLL with typical phenotype: assessment of frequency, association with cytogenetic subgroups, and prognostic significance. Br J Haematol. 2010;150:702–4. PubMed DOI
Palmer S, Chen YH. Bcl-3, a multifaceted modulator of NF-κB-mediated gene transcription. Immunol Res. 2008;42:210–8. PubMed DOI
Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: a double-edged sword in immune cells and inflammation. Front Immunol. 2022;13:847699. PubMed DOI PMC
Ong ST, Hackbarth ML, Degenstein LC, Baunoch DA, Anastasi J, McKeithan TW. Lymphadenopathy, splenomegaly, and altered immunoglobulin production in BCL3 transgenic mice. Oncogene. 1998;16:2333–43. PubMed DOI
Zhang X, Paun A, Claudio E, Wang H, Siebenlist U. The tumor promoter and NF-κB modulator Bcl-3 regulates splenic B cell development. J Immunol. 2013;191:5984–92. PubMed DOI
Chatzikonstantinou T, Scarfò L, Karakatsoulis G, Minga E, Chamou D, Iacoboni G, et al. Other malignancies in the history of CLL: an international multicenter study conducted by ERIC, the European Research Initiative on CLL, in HARMONY. EClinicalMedicine. 2023;65:102307. PubMed DOI PMC
Gaffo E, Boldrin E, Dal Molin A, Bresolin S, Bonizzato A, Trentin L, et al. Circular RNA differential expression in blood cell populations and exploration of circRNA deregulation in pediatric acute lymphoblastic leukemia. Sci Rep. 2019;9:14670. PubMed DOI PMC
Gaffo E, Buratin A, Dal Molin A. Bortoluzzi S. Sensitive, reliable and robust circRNA detection from RNA-seq with CirComPara2. Brief Bioinforma. 2022;23:bbab418. DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. PubMed DOI PMC
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15. PubMed DOI PMC
Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20:278. PubMed DOI PMC
Love MI, Soneson C, Hickey PF, Johnson LK, Pierce NT, Shepherd L, et al. Tximeta: Reference sequence checksums for provenance identification in RNA-seq. PLoS Comput Biol. 2020;16:e1007664. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed DOI PMC
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3. PubMed DOI PMC
Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. 2016. Springer International Publishing: Imprint: Springer: Cham, 2016. https://doi.org/10.1007/978-3-319-24277-4 .
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50. PubMed DOI PMC
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40. PubMed DOI PMC
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25. PubMed DOI PMC
Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-S, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25:75–82. PubMed DOI
Liska O, Bohár B, Hidas A, Korcsmáros T, Papp B, Fazekas D, et al. TFLink: an integrated gateway to access transcription factor–target gene interactions for multiple species. Database. 2022;2022:baac083. PubMed DOI PMC
Papakonstantinou N, Ntoufa S, Tsagiopoulou M, Moysiadis T, Bhoi S, Malousi A, et al. Integrated epigenomic and transcriptomic analysis reveals TP63 as a novel player in clinically aggressive chronic lymphocytic leukemia. Int J Cancer. 2019;144:2695–706. PubMed DOI
Vardi A, Agathangelidis A, Sutton L-A, Chatzouli M, Scarfò L, Mansouri L, et al. IgG-switched CLL has a distinct immunogenetic signature from the common MD variant: ontogenetic implications. Clin Cancer Res. 2014;20:323–30. PubMed DOI
Ebrahimi N, Abdulwahid A-HRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, et al. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci. 2024;81:106. PubMed DOI PMC
Vitale C, Griggio V, Perutelli F, Coscia M. CAR-modified cellular therapies in chronic lymphocytic leukemia: is the uphill road getting less steep?. HemaSphere. 2023;7:e988. PubMed DOI PMC
Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129:3419–27. PubMed DOI PMC
Visentin A, Frazzetto S, Trentin L, Chiarenza A. Innovative combinations, cellular therapies and bispecific antibodies for chronic lymphocytic leukemia: a narrative review. Cancers. 2024;16:1290. PubMed DOI PMC
Shapiro M, Herishanu Y, Katz B-Z, Dezorella N, Sun C, Kay S, et al. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017;102:874–82. PubMed DOI PMC
Arruga F, Rubin M, Papazoglou D, Iannello A, Ioannou N, Moia R, et al. The immunomodulatory molecule TIGIT is expressed by chronic lymphocytic leukemia cells and contributes to anergy. Haematol. 2023;108:2101–15. DOI
Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377:2545–54. PubMed DOI PMC
Müller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E, et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 2001;15:267–85. PubMed DOI PMC
Jitschin R, Hofmann AD, Bruns H, Gießl A, Bricks J, Berger J, et al. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood. 2014;123:2663–72. PubMed DOI
Pagano MA, Frezzato F, Visentin A, Trentin L, Brunati AM. Protein phosphorylation and redox status: an as yet elusive dyad in chronic lymphocytic leukemia. Cancers. 2022;14:4881. PubMed DOI PMC
Woodgett JR. Judging a protein by more than its name: GSK-3. Sci STKE. 2001;2001:re12. PubMed DOI
Viatour P, Dejardin E, Warnier M, Lair F, Claudio E, Bureau F, et al. GSK3-mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity. Mol Cell. 2004;16:35–45. PubMed DOI
He S, Zeng S, Zhou Z-W, He Z-X, Zhou S-F. Hsa-microRNA-181a is a regulator of a number of cancer genes and a biomarker for endometrial carcinoma in patients: a bioinformatic and clinical study and the therapeutic implication. Drug Des Devel Ther. 2015;9:1103–75. PubMed PMC
Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126:1203–17. PubMed DOI
Marisetty A, Wei J, Kong L-Y, Ott M, Fang D, Sabbagh A, et al. MiR-181 family modulates osteopontin in glioblastoma multiforme. Cancers (Basel). 2020;12:3813. PubMed DOI
Ouyang Y-B, Lu Y, Yue S, Giffard RG. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion. 2012;12:213–9. PubMed DOI
Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP. TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest. 2013;123:150–63. PubMed DOI
Roncaglia E, Gaffo E, Calabretto G, Fürstenau M, Rogers KA, Baliakas P, et al. Circular RNA signature of aggressive CLL with t(14;19)(q32;q13). An ERIC study. J Hematol Oncol. 2025;18:74. PubMed DOI PMC
Al-Sawaf O, Zhang C, Jin HY, Robrecht S, Choi Y, Balasubramanian S, et al. Transcriptomic profiles and 5-year results from the randomized CLL14 study of venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab in chronic lymphocytic leukemia. Nat Commun. 2023;14:2147. PubMed DOI PMC
Seaton G, Smith H, Brancale A, Westwell AD, Clarkson R. Multifaceted roles for BCL3 in cancer: a proto-oncogene comes of age. Mol Cancer. 2024;23:7. PubMed DOI PMC
Visentin A, Frezzato F, Severin F, Imbergamo S, Pravato S, Romano Gargarella L, et al. Lights and shade of next-generation Pi3k inhibitors in chronic lymphocytic leukemia. OTT. 2020;ume 13:9679–88. DOI
Saamarthy K, Ahlqvist K, Daams R, Balagunaseelan N, Rinaldo-Matthis A, Kazi JU, et al. Discovery of a small molecule that inhibits Bcl-3-mediated cyclin D1 expression in melanoma cells. BMC Cancer. 2024;24:103. PubMed DOI PMC
Soukupová J, Bordoni C, Turnham DJ, Yang WW, Seaton G, Gruca A, et al. The discovery of a novel antimetastatic Bcl3 inhibitor. Mol Cancer Ther. 2021;20:775–86. PubMed DOI
Daams R, Tran TTP, Jemaà M, Sime W, Mickeviciute R, Ek S, et al. Enhancing cell death in B-cell malignancies through targeted inhibition of Bcl-3. Cell Death Dis. 2024;15:690. PubMed DOI PMC