Complex k-uniform tilings by a simple bitopic precursor self-assembled on Ag(001) surface

. 2020 Apr 20 ; 11 (1) : 1856. [epub] 20200420

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32312971
Odkazy

PubMed 32312971
PubMed Central PMC7170884
DOI 10.1038/s41467-020-15727-6
PII: 10.1038/s41467-020-15727-6
Knihovny.cz E-zdroje

The realization of complex long-range ordered structures in a Euclidean plane presents a significant challenge en route to the utilization of their unique physical and chemical properties. Recent progress in on-surface supramolecular chemistry has enabled the engineering of regular and semi-regular tilings, expressing translation symmetric, quasicrystalline, and fractal geometries. However, the k-uniform tilings possessing several distinct vertices remain largely unexplored. Here, we show that these complex geometries can be prepared from a simple bitopic molecular precursor - 4,4'-biphenyl dicarboxylic acid (BDA) - by its controlled chemical transformation on the Ag(001) surface. The realization of 2- and 3-uniform tilings is enabled by partially carboxylated BDA mediating the seamless connection of two distinct binding motifs in a single long-range ordered molecular phase. These results define the basic self-assembly criteria, opening way to the utilization of complex supramolecular tilings.

Zobrazit více v PubMed

Grunbaum, B. & Shephard, G. C. Tilings and Patterns: Second Edition. (Dover Publications Inc., 2016).

Kepler, J. Harmonices Mundi. (Johann Planck, 1619).

Blunt MO, et al. Random tiling and topological defects in a two-dimensional molecular network. Science. 2008;322:1077–1081. doi: 10.1126/science.1163338. PubMed DOI

Stannard A, et al. Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings. Nat. Chem. 2012;4:112–117. doi: 10.1038/nchem.1199. PubMed DOI

Zhou H, et al. Frustrated 2D molecular crystallization. J. Am. Chem. Soc. 2007;129:13774–13775. doi: 10.1021/ja0742535. PubMed DOI

Whitelam S, Tamblyn I, Beton PH, Garrahan JP. Random and ordered phases of off-lattice rhombus tiles. Phys. Rev. Lett. 2012;108:032702. doi: 10.1103/PhysRevLett.108.035702. PubMed DOI

Ungar G, Zeng X. Frank-Kasper, quasicrystalline and related phases in liquid crystals. Soft Matter. 2005;1:95–106. doi: 10.1039/b502443a. PubMed DOI

Whitelam S. Examples of molecular self-assembly at surfaces. Adv. Mater. 2015;27:5720–5725. doi: 10.1002/adma.201405573. PubMed DOI

Ernst K-H. Stereochemistry of 2D molecular crystallization. Chim. Int. J. Chem. 2014;68:49–53. doi: 10.2533/chimia.2014.49. PubMed DOI

Pfeiffer CR, Pearce N, Champness NR. Complexity of two-dimensional self-assembled arrays at surfaces. Chem. Commun. 2017;53:11528–11539. doi: 10.1039/C7CC06110B. PubMed DOI

Zhang F, Liu Y, Yan H. Complex archimedean tiling self-assembled from DNA nanostructures. J. Am. Chem. Soc. 2013;135:7458–7461. doi: 10.1021/ja4035957. PubMed DOI

Zhang F, et al. Self-assembly of complex DNA tessellations by using low-symmetry multi-arm DNA tiles. Angew. Chem. Int. Ed. 2016;55:8860–8863. doi: 10.1002/anie.201601944. PubMed DOI

Asari T, Arai S, Takano A, Matsushita Y. Archimedean tiling structures from ABA/CD block copolymer blends having intermolecular association with hydrogen bonding. Macromolecules. 2006;39:2232–2237. doi: 10.1021/ma0524880. DOI

Takano A, et al. A mesoscopic archimedean tiling having a new complexity in an ABC star polymer. J. Polym. Sci. Part B Polym. Phys. 2005;43:2427–2432. doi: 10.1002/polb.20537. DOI

Basnarkov L, Urumov V. Diffusion on archimedean lattices. Phys. Rev. E. 2006;73:046116. doi: 10.1103/PhysRevE.73.046116. PubMed DOI

Dolinšek J. Electrical and thermal transport properties of icosahedral and decagonal quasicrystals. Chem. Soc. Rev. 2012;41:6730–6744. doi: 10.1039/c2cs35036j. PubMed DOI

Graner F, Jiang Y, Janiaud E, Flament C. Equilibrium states and ground state of two-dimensional fluid foams. Phys. Rev. E. 2000;63:011402. doi: 10.1103/PhysRevE.63.011402. PubMed DOI

Wolpert L. The evolution of cellular development. Rep. Prog. Phys. 1993;56:733–789. doi: 10.1088/0034-4885/56/6/002. DOI

Harrison A. First catch your hare: the design and synthesis of frustrated magnets. J. Phys. Condens. Matter. 2004;16:S553–S572. doi: 10.1088/0953-8984/16/11/001. DOI

Stelson AC, Britton WA, Liddell Watson CM. Photonic crystal properties of self-assembled Archimedean tilings. J. Appl. Phys. 2017;121:023101. doi: 10.1063/1.4973472. DOI

Ueda K, Dotera T, Gemma T. Photonic band structure calculations of two-dimensional Archimedean tiling patterns. Phys. Rev. B. 2007;75:195122. doi: 10.1103/PhysRevB.75.195122. DOI

Kempkes SN, et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 2019;15:127–131. doi: 10.1038/s41567-018-0328-0. PubMed DOI PMC

Tsai AP, Yoshimura M. Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol. Appl. Catal. A. 2001;214:237–241. doi: 10.1016/S0926-860X(01)00500-2. DOI

Ecija D, et al. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. Proc. Natl Acad. Sci. USA. 2013;110:6678–6681. doi: 10.1073/pnas.1222713110. PubMed DOI PMC

Zhang Y, et al. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nat. Chem. 2018;10:296–304. doi: 10.1038/nchem.2924. PubMed DOI

Cheng F, et al. Two-dimensional tessellation by molecular tiles constructed from halogen-halogen and halogen-metal networks. Nat. Commun. 2018;9:4871. doi: 10.1038/s41467-018-07323-6. PubMed DOI PMC

Schlickum U, et al. Chiral kagomé lattice from simple ditopic molecular bricks. J. Am. Chem. Soc. 2008;130:11778–11782. doi: 10.1021/ja8028119. PubMed DOI

Shi Z, Lin N. Porphyrin-based two-dimensional coordination kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 2009;131:5376–5377. doi: 10.1021/ja900499b. PubMed DOI

Mao J, et al. Tunability of supramolecular kagome lattices of magnetic phthalocyanines using graphene-based moiré patterns as templates. J. Am. Chem. Soc. 2009;131:14136–14137. doi: 10.1021/ja904907z. PubMed DOI

Feng L, et al. Supramolecular tessellations at surfaces by vertex design. ACS Nano. 2019;13:10603–10611. doi: 10.1021/acsnano.9b04801. PubMed DOI

Shang J, et al. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 2015;7:389–393. doi: 10.1038/nchem.2211. PubMed DOI

Sarkar R, et al. One-step multicomponent self-assembly of a first-generation sierpiński triangle: from fractal design to chemical reality. Angew. Chem. Int. Ed. 2014;53:12182–12185. doi: 10.1002/anie.201407285. PubMed DOI

Li C, et al. Construction of Sierpinski triangles up to the fifth order. J. Am. Chem. Soc. 2017;139:13749–13753. doi: 10.1021/jacs.7b05720. PubMed DOI

Zhang X, et al. Controlling molecular growth between fractals and crystals on surfaces. ACS Nano. 2015;9:11909–11915. doi: 10.1021/acsnano.5b04427. PubMed DOI

Newkome GR. Nanoassembly of a fractal polymer: a molecular ‘sierpinski hexagonal gasket’. Science. 2006;312:1782–1785. doi: 10.1126/science.1125894. PubMed DOI

Urgel JI, et al. Quasicrystallinity expressed in two-dimensional coordination networks. Nat. Chem. 2016;8:657–662. doi: 10.1038/nchem.2507. PubMed DOI

Zeng X, et al. Supramolecular dendritic liquid quasicrystals. Nature. 2004;428:157–160. doi: 10.1038/nature02368. PubMed DOI

Wasio NA, et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature. 2014;507:86–89. doi: 10.1038/nature12993. PubMed DOI

Coates S, Smerdon JA, McGrath R, Sharma HR. A molecular overlayer with the Fibonacci square grid structure. Nat. Commun. 2018;9:3435. doi: 10.1038/s41467-018-05950-7. PubMed DOI PMC

Kley CS, et al. Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces. J. Am. Chem. Soc. 2012;134:6072–6075. doi: 10.1021/ja211749b. PubMed DOI

Franke M, et al. Temperature-dependent reactions of phthalic acid on Ag(100) J. Phys. Chem. C. 2015;119:23580–23585. doi: 10.1021/acs.jpcc.5b07858. DOI

Mikhael J, Roth J, Helden L, Bechinger C. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature. 2008;454:501–504. doi: 10.1038/nature07074. PubMed DOI

Payer D, et al. Ionic hydrogen bonds controlling two-dimensional supramolecular systems at a metal surface. Chem. Eur. J. 2007;13:3900–3906. doi: 10.1002/chem.200601325. PubMed DOI

Bouju X, Mattioli C, Franc G, Pujol A, Gourdon A. Bicomponent supramolecular architectures at the vacuum−solid interface. Chem. Rev. 2017;117:1407–1444. doi: 10.1021/acs.chemrev.6b00389. PubMed DOI

Lipton-Duffin J, Abyazisani M, Macleod J. Periodic and nonperiodic chiral self-assembled networks from 1,3,5-benzenetricarboxylic acid on Ag(111) Chem. Commun. 2018;54:8316–8319. doi: 10.1039/C8CC04380A. PubMed DOI

Li J, Gottardi S, Solianyk L, Moreno-López JC, Stöhr M. 1,3,5-benzenetribenzoic acid on Cu(111) and Graphene/Cu(111): a comparative STM study. J. Phys. Chem. C. 2016;120:18093–18098. doi: 10.1021/acs.jpcc.6b05541. PubMed DOI PMC

Schmitt T, Hammer L, Schneider MA. Evidence for on-site carboxylation in the self-assembly of 4,4 ′ - biphenyl dicarboxylic acid on Cu(111) J. Phys. Chem. C. 2016;120:1043–1048. doi: 10.1021/acs.jpcc.5b10394. DOI

Kormoš, L., Procházka, P., Makoveev, A. O. & Čechal, J. Complex k-uniform tilings by a simple bitopic precursor self-assembled on Ag(001): experimental dataset. Zenodo Repository10.5281/zenodo.3693324 (2020) PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...