Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Complex endosymbiosis, Plastid replacement, Reductive evolution,
- MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- plastidy genetika metabolismus MeSH
- Rhodophyta * genetika MeSH
- rostliny genetika MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
Zobrazit více v PubMed
Oborník M (2019) In the beginning was the word: how terminology drives our understanding of endosymbiotic organelles. Microb Cell 6:134–141. https://doi.org/10.15698/mic2019.02.669 PubMed DOI PMC
Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607. https://doi.org/10.1146/annurev-arplant-050312-120144 PubMed DOI
Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418. https://doi.org/10.1016/j.cub.2008.02.051 PubMed DOI
Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86. https://doi.org/10.1126/science.1101156 PubMed DOI
Burki F, Kaplan M, Tikhonenkov DV et al (2016) Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B 283:20152802. https://doi.org/10.1098/rspb.2015.2802 PubMed DOI PMC
Petersen J, Ludewig AK, Michael V et al (2014) Chromera velia, endosymbioses and the rhodoplex hypothesis – plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genom Biol Evol 6:666–684. https://doi.org/10.1093/gbe/evu043 DOI
Derelle R, Torruella G, Klimeš V et al (2015) Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A 112:E693–E699. https://doi.org/10.1073/pnas.1420657112 PubMed DOI PMC
Hurst GDD (2017) Extended genomes: symbiosis and evolution. Interface Focus 7:20170001. https://doi.org/10.1098/rsfs.2017.0001 PubMed DOI PMC
Sibbald SJ, Cenci U, Colp M et al (2017) Diversity and evolution of Paramoeba spp. and their kinetoplastid endosymbionts. J Euk Microbiol 64:598–607. https://doi.org/10.1111/jeu.12394 PubMed DOI
Schön ME, Zlatogursky VV, Singh RP et al (2021) Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun 12:6651. https://doi.org/10.1038/s41467-021-26918-0 PubMed DOI PMC
Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Euk Microbiol 46:347–366. https://doi.org/10.1111/j.1550-7408.1999.tb04614.x PubMed DOI
Stiller JW (2014) Toward an empirical framework for interpreting plastid evolution. J Phycol 50:462–471. https://doi.org/10.1111/jpy.12178 PubMed DOI
Füssy Z, Oborník M (2017) Chromerids and their plastids. Adv Bot Res 84:187–218. https://doi.org/10.1016/bs.abr.2017.07.001 DOI
Dorrell RG, Bowler C (2017) Secondary plastids of stramenopiles. Adv Bot Res 84:57–103. https://doi.org/10.1016/bs.abr.2017.06.003 DOI
Falkowski PG, Katz ME, Knoll AH et al (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360. https://doi.org/10.1126/science.1095964 PubMed DOI
Baurain D, Brinkmann H, Petersen J et al (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709. https://doi.org/10.1093/molbev/msq059 PubMed DOI
Wegener Parfrey L, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A 108:13624–13629. https://doi.org/10.1073/pnas.1110633108 DOI
Curtis BA, Tanifuji G, Burki F et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65. https://doi.org/10.1038/nature11681 PubMed DOI
Dorrell RRG, Howe CJC (2015) Integration of plastids with their hosts: lessons learned from dinoflagellates. Proc Natl Acad Sci U S A 112:201421380. https://doi.org/10.1073/pnas.1421380112 DOI
Oborník M, Lukeš J (2015) The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Annu Rev Microbiol 69:129–144. https://doi.org/10.1146/annurev-micro-091014-104449 PubMed DOI
Stiller JW, Schreiber J, Yue J et al (2014) The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun 5:5764. https://doi.org/10.1038/ncomms6764 PubMed DOI
Bodył A (2018) Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis. Biol Rev 93:201–222. https://doi.org/10.1111/brv.12340 PubMed DOI
Novák Vanclová AMG, Dorrell R (2023) Complex plastids across the eukaryotes: an overview of inherited and convergently evolved characters. In: Kroth P, Schwartzbach S, Oborník M (eds) Endosymbiotic organelle acquisition: solutions to the problem of protein localization and membrane passage. Springer, Cham
Dorrell RG, Gile G, McCallum G et al (2017) Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6:e23717. https://doi.org/10.7554/eLife.23717 PubMed DOI PMC
Dorrell RG, Villain A, Perez-Lamarque B et al (2021) Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc Natl Acad Sci U S A 118:e2009974118. https://doi.org/10.1073/pnas.2009974118 PubMed DOI PMC
Janouškovec J, Horák A, Oborník M et al (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 107:10949–10954. https://doi.org/10.1073/pnas.1003335107 PubMed DOI PMC
Ševčíková T, Horák A, Klimeš V et al (2015) Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 5:10134. https://doi.org/10.1038/srep10134 PubMed DOI PMC
Sobotka R, Esson HJ, Koník P et al (2017) Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 7:13214. https://doi.org/10.1038/s41598-017-13575-x PubMed DOI PMC
Moore RB, Oborník M, Janouškovec J et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963. https://doi.org/10.1038/nature06635 PubMed DOI
Oborník M, Modrý D, Lukeš M et al (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163:306–323. https://doi.org/10.1016/j.protis.2011.09.001 PubMed DOI
Krishnan A, Soldati-Favre D (2021) Amino acid metabolism in apicomplexan parasites. Metabolites 11:61. https://doi.org/10.3390/metabo11020061 PubMed DOI PMC
Waller RF, Kořený L (2017) Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Adv Bot Res 85:105–143. https://doi.org/10.1016/bs.abr.2017.07.004 DOI
Sarai C, Tanifuji G, Nakayama T et al (2020) Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A 117:5364–5375. https://doi.org/10.1073/pnas.1911884117 PubMed DOI PMC
Novák Vanclová AMG, Nef C, Vancl A et al (2022) Divergent and diversified proteome content across a serially acquired plastid lineage. biorXiv. https://doi.org/10.1101/2022.11.30.518497 DOI
Park MG, Kim M, Kim S (2014) The acquisition of plastids/phototrophy in heterotrophic dinoflagellates. Acta Protozool 53:39–50. https://doi.org/10.4467/16890027AP.14.005.1442 DOI
Yamada N, Sym SD, Horiguchi T (2017) Identification of highly divergent diatom-derived chloroplasts in dinoflagellates, including a description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae). Mol Biol Evol 34:1335–1351. https://doi.org/10.1093/molbev/msx054 PubMed DOI
Jan M, Liu Z, Rochaix J-D, Sun X (2022) Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. Front Plant Sci 13:980237. https://doi.org/10.3389/fpls.2022.980237 PubMed DOI PMC
McFadden GI (2014) Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harbor Persp Biol 6:a016105. https://doi.org/10.1101/cshperspect.a016105 DOI
Dorrell RG, Howe CJ (2012) What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci 125:1865–1875. https://doi.org/10.1242/jcs.102285 PubMed DOI
Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48. https://doi.org/10.1016/j.mib.2014.09.008 PubMed DOI
Gross J, Bhattacharya D (2009) Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat Rev Genet 10:495–505. https://doi.org/10.1038/nrg2649 PubMed DOI
Tyra HM, Linka M, Weber APM, Bhattacharya D (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212. https://doi.org/10.1186/gb-2007-8-10-r212 PubMed DOI PMC
Basak I, Moeller SG (2013) Emerging facets of plastid division regulation. Planta 237:389–398 PubMed DOI
Archibald JM (2015) Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci U S A 112:10147–10153. https://doi.org/10.1073/pnas.1421374112 PubMed DOI PMC
Konupková A, Tomečková L, Pašuthová K et al (2023) Easier lost than found? What we know about plastid genome reduction. In: Kroth P, Schwartzbach S, Oborník M (eds) Endosymbiotic organelle acquisition: solutions to the problem of protein localization and membrane passage. Springer, Cham
Collén J, Porcel B, Carré W et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252. https://doi.org/10.1073/pnas.1221259110 PubMed DOI PMC
Fristedt R (2017) Chloroplast function revealed through analysis of GreenCut2 genes. J Exp Bot 68:2111–2120. https://doi.org/10.1093/jxb/erx082 PubMed DOI
Terashima M, Specht M, Hippler M (2011) The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 57:151–168. https://doi.org/10.1007/s00294-011-0339-1 PubMed DOI
Gruber A, Rocap G, Kroth PG et al (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528. https://doi.org/10.1111/tpj.12734 PubMed DOI PMC
Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signal. BioEssays 29:1048–1058. https://doi.org/10.1002/bies.20638 PubMed DOI
Sun Y, Jarvis RP (2023) Chloroplast proteostasis: import, sorting, ubiquitination, and proteolysis. Annu Rev Plant Biol 74:259–283. https://doi.org/10.1146/annurev-arplant-070122 PubMed DOI
Patron NJ, Waller RF, Archibald JM, Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348:1015–1024. https://doi.org/10.1016/j.jmb.2005.03.030 PubMed DOI
Durnford DG, Gray MW (2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Euk Cell 5:2079–2091. https://doi.org/10.1128/EC.00222-06 DOI
Felsner G, Sommer MS, Gruenheit N et al (2011) ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genom Biol Evol 3:140–150. https://doi.org/10.1093/gbe/evq074 DOI
Hehenberger E, Burki F, Kolisko M, Keeling PJ (2016) Functional relationship between a dinoflagellate host and its diatom endosymbiont. Mol Biol Evol 33:2376–2390. https://doi.org/10.1093/molbev/msw109 PubMed DOI
Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182. https://doi.org/10.1016/S1360-1385(00)01598-3 PubMed DOI
Facchinelli F, Weber APM (2011) The metabolite transporters of the plastid envelope: an update. Front Plant Sci 2:1–18. https://doi.org/10.3389/fpls.2011.00050 DOI
Mulkidjanian AY, Koonin EV, Makarova KS et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103:13126–13131. https://doi.org/10.1073/pnas.0605709103 PubMed DOI PMC
Smith SRS, Gillard JTF, Kustka ABAAB et al (2016) Transcriptional orchestration of the global cellular response of a model pennate diatom to diel light cycling under iron limitation. PLoS Genet 12:e1006490. https://doi.org/10.1371/journal.pgen.1006490 PubMed DOI PMC
Bailleul B, Berne N, Murik O et al (2015) Energetic coupling between plastids and mitochondria drives CO PubMed DOI
Füssy Z, Faitová T, Oborník M (2019) Subcellular compartments interplay for carbon and nitrogen allocation in Chromera velia and Vitrella brassicaformis. Genom Biol Evol 11:1765–1779. https://doi.org/10.1093/gbe/evz123 DOI
Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311. https://doi.org/10.1016/S0168-9525(98)01494-2 PubMed DOI
Larkum AWD, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195. https://doi.org/10.1016/j.tplants.2007.03.011 PubMed DOI
Oborník M, Green BR (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22:2343–2353. https://doi.org/10.1093/molbev/msi230 PubMed DOI
Kořený L, Oborník M (2011) Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genom Biol Evol 3:359–364. https://doi.org/10.1093/gbe/evr029 DOI
Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18. https://doi.org/10.1007/s002940050241 PubMed DOI
Cihlář J, Füssy Z, Horák A, Oborník M (2016) Evolution of the tetrapyrrole biosynthetic pathway in secondary algae: conservation, redundancy and replacement. PLoS One 11:e0166338. https://doi.org/10.1371/journal.pone.0166338 PubMed DOI PMC
Wolf YI, Koonin EV (2013) Genome reduction as the dominant mode of evolution. BioEssays 35:829–837. https://doi.org/10.1002/bies.201300037 PubMed DOI PMC
Howe CJ, Barbrook AC, Koumandou VL et al (2003) Evolution of the chloroplast genome. Philos Trans R Soc B 358:99–107. https://doi.org/10.1098/rstb.2002.1176 DOI
Dagan T, Blekhman R, Graur D (2006) The “domino theory” of gene death: gradual and mass gene extinction events in three lineages of obligate symbiotic bacterial pathogens. Mol Biol Evol 23:310–316. https://doi.org/10.1093/molbev/msj036 PubMed DOI
Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400:155–159. https://doi.org/10.1038/22099 PubMed DOI
Oborník M (2019) Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules 9:266. https://doi.org/10.3390/biom9070266 PubMed DOI PMC
Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517. https://doi.org/10.1146/annurev.arplant.59.032607.092915 PubMed DOI
Waller RF, Gornik SG, Kořený L, Pain A (2016) Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol 9:e1116653. https://doi.org/10.1080/19420889.2015.1116653 PubMed DOI
Kořený L, Sobotka R, Janouškovec J et al (2011) Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell 23:3454–3462. https://doi.org/10.1105/tpc.111.089102 PubMed DOI PMC
Gawryluk RMR, Tikhonenkov DV, Hehenberger E et al (2019) Non-photosynthetic predators are sister to red algae. Nature 572:240–243. https://doi.org/10.1038/s41586-019-1398-6 PubMed DOI
Richtová J, Sheiner L, Gruber A et al (2021) Using diatom and apicomplexan models to study the heme pathway of Chromera velia. Int J Mol Sci 22:6495. https://doi.org/10.3390/ijms22126495 PubMed DOI PMC
Nuismer SL, Otto SP (2004) Host-parasite interactions and the evolution of ploidy. Proc Natl Acad Sci U S A 101:11036–11039. https://doi.org/10.1073/pnas.0403151101 PubMed DOI PMC
Blouin NA, Lane CE (2016) Red algae provide fertile ground for exploring parasite evolution. Persp Phycol 3:11–19. https://doi.org/10.1127/pip/2015/0027 DOI
Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A (2015) When the lights go out: the evolutionary fate of free-living colorless green algae. New Phytol 206:972–982 PubMed DOI PMC
Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54:111–121. https://doi.org/10.1007/s00294-008-0208-8 PubMed DOI
Záhonová K, Füssy Z, Oborník M et al (2016) RuBisCO in non-photosynthetic alga Euglena longa: divergent features, transcriptomic analysis and regulation of complex formation. PLoS One 11:e0158790. https://doi.org/10.1371/journal.pone.0158790 PubMed DOI PMC
Füssy Z, Záhonová K, Tomčala A et al (2020) The cryptic plastid of Euglena longa defines a new type of non-photosynthetic plastid organelle. mSphere 5:e00675–e00620 PubMed DOI PMC
Abrahamsen MS, Templeton TJ, Enomoto S et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445. https://doi.org/10.1126/science.1094786 PubMed DOI
Toso MA, Omoto CK (2007) Gregarina niphandrodes may lack both a plastid genome and organelle. J Euk Microbiol 54:66–72. https://doi.org/10.1111/j.1550-7408.2006.00229.x PubMed DOI
Gornik SG, Febrimarsa CAM et al (2015) Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A 112:5767–5772. https://doi.org/10.1073/pnas.1423400112 PubMed DOI PMC
Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc B 365:749–763. https://doi.org/10.1098/rstb.2009.0273 DOI
Janouškovec J, Tikhonenkov DV, Burki F et al (2015) Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci U S A 112:10200–10207. https://doi.org/10.1073/pnas.1423790112 PubMed DOI PMC
Janouškovec J, Gavelis GS, Burki F et al (2017) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci U S A 114:E171–E180. https://doi.org/10.1073/pnas.1614842114 PubMed DOI
Oborník M (2022) Organellar evolution: a path from benefit to dependence. Microorganisms 10:122 PubMed DOI PMC
McFadden GI, Reith ME, Munholland J, Lang-Unnasch N (1996) Plastid in human parasites. Nature 381:482–482 PubMed DOI
Oborník M, Janouškovec J, Chrudimský T, Lukeš J (2009) Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol 39:1–12. https://doi.org/10.1016/j.ijpara.2008.07.010 PubMed DOI
Mukherjee A, Sadhukhan GC (2016) Anti-malarial drug design by targeting apicoplasts: new perspectives. J Pharmacopunct 19:7–15. https://doi.org/10.3831/KPI.2016.19.001 DOI
Kořený L, Sobotka R, Kovářová J et al (2012) Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc Natl Acad Sci U S A 109:3808–3813. https://doi.org/10.1073/pnas.1201089109 PubMed DOI PMC
Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF (2007) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117. https://doi.org/10.1016/j.protis.2006.09.004 PubMed DOI
Slamovits CH, Keeling PJ (2008) Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol Biol Evol 25:1297–1306. https://doi.org/10.1093/molbev/msn075 PubMed DOI
Kayama M, Maciszewski K, Yabuki A et al (2020) Highly reduced plastid genomes of the non-photosynthetic dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-Glu-based organellar heme biosynthesis. Front Plant Sci 11:602455. https://doi.org/10.3389/fpls.2020.602455 PubMed DOI PMC
Dorrell RG, Azuma T, Nomura M et al (2019) Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 116:6914–6923. https://doi.org/10.1073/pnas.1819976116 PubMed DOI PMC
Kamikawa R, Moog D, Zauner S et al (2017) A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol Biol Evol 34:2355–2366. https://doi.org/10.1093/molbev/msx172 PubMed DOI
Pradel G, Schlitzer M (2010) Antibiotics in malaria therapy and their effect on the parasite apicoplast. Curr Mol Med 10:335–349. https://doi.org/10.2174/156652410791065273 PubMed DOI
Kennedy K, Crisafulli EM, Ralph SA (2019) Delayed death by plastid inhibition in apicomplexan parasites. Trends Parasitol 35:747–759. https://doi.org/10.1016/j.pt.2019.07.010 PubMed DOI