Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38502496

A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.

Zobrazit více v PubMed

Oborník M (2019) In the beginning was the word: how terminology drives our understanding of endosymbiotic organelles. Microb Cell 6:134–141. https://doi.org/10.15698/mic2019.02.669 PubMed DOI PMC

Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607. https://doi.org/10.1146/annurev-arplant-050312-120144 PubMed DOI

Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418. https://doi.org/10.1016/j.cub.2008.02.051 PubMed DOI

Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86. https://doi.org/10.1126/science.1101156 PubMed DOI

Burki F, Kaplan M, Tikhonenkov DV et al (2016) Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B 283:20152802. https://doi.org/10.1098/rspb.2015.2802 PubMed DOI PMC

Petersen J, Ludewig AK, Michael V et al (2014) Chromera velia, endosymbioses and the rhodoplex hypothesis – plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genom Biol Evol 6:666–684. https://doi.org/10.1093/gbe/evu043 DOI

Derelle R, Torruella G, Klimeš V et al (2015) Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A 112:E693–E699. https://doi.org/10.1073/pnas.1420657112 PubMed DOI PMC

Hurst GDD (2017) Extended genomes: symbiosis and evolution. Interface Focus 7:20170001. https://doi.org/10.1098/rsfs.2017.0001 PubMed DOI PMC

Sibbald SJ, Cenci U, Colp M et al (2017) Diversity and evolution of Paramoeba spp. and their kinetoplastid endosymbionts. J Euk Microbiol 64:598–607. https://doi.org/10.1111/jeu.12394 PubMed DOI

Schön ME, Zlatogursky VV, Singh RP et al (2021) Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun 12:6651. https://doi.org/10.1038/s41467-021-26918-0 PubMed DOI PMC

Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Euk Microbiol 46:347–366. https://doi.org/10.1111/j.1550-7408.1999.tb04614.x PubMed DOI

Stiller JW (2014) Toward an empirical framework for interpreting plastid evolution. J Phycol 50:462–471. https://doi.org/10.1111/jpy.12178 PubMed DOI

Füssy Z, Oborník M (2017) Chromerids and their plastids. Adv Bot Res 84:187–218. https://doi.org/10.1016/bs.abr.2017.07.001 DOI

Dorrell RG, Bowler C (2017) Secondary plastids of stramenopiles. Adv Bot Res 84:57–103. https://doi.org/10.1016/bs.abr.2017.06.003 DOI

Falkowski PG, Katz ME, Knoll AH et al (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360. https://doi.org/10.1126/science.1095964 PubMed DOI

Baurain D, Brinkmann H, Petersen J et al (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709. https://doi.org/10.1093/molbev/msq059 PubMed DOI

Wegener Parfrey L, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A 108:13624–13629. https://doi.org/10.1073/pnas.1110633108 DOI

Curtis BA, Tanifuji G, Burki F et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65. https://doi.org/10.1038/nature11681 PubMed DOI

Dorrell RRG, Howe CJC (2015) Integration of plastids with their hosts: lessons learned from dinoflagellates. Proc Natl Acad Sci U S A 112:201421380. https://doi.org/10.1073/pnas.1421380112 DOI

Oborník M, Lukeš J (2015) The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Annu Rev Microbiol 69:129–144. https://doi.org/10.1146/annurev-micro-091014-104449 PubMed DOI

Stiller JW, Schreiber J, Yue J et al (2014) The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun 5:5764. https://doi.org/10.1038/ncomms6764 PubMed DOI

Bodył A (2018) Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis. Biol Rev 93:201–222. https://doi.org/10.1111/brv.12340 PubMed DOI

Novák Vanclová AMG, Dorrell R (2023) Complex plastids across the eukaryotes: an overview of inherited and convergently evolved characters. In: Kroth P, Schwartzbach S, Oborník M (eds) Endosymbiotic organelle acquisition: solutions to the problem of protein localization and membrane passage. Springer, Cham

Dorrell RG, Gile G, McCallum G et al (2017) Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6:e23717. https://doi.org/10.7554/eLife.23717 PubMed DOI PMC

Dorrell RG, Villain A, Perez-Lamarque B et al (2021) Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc Natl Acad Sci U S A 118:e2009974118. https://doi.org/10.1073/pnas.2009974118 PubMed DOI PMC

Janouškovec J, Horák A, Oborník M et al (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 107:10949–10954. https://doi.org/10.1073/pnas.1003335107 PubMed DOI PMC

Ševčíková T, Horák A, Klimeš V et al (2015) Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 5:10134. https://doi.org/10.1038/srep10134 PubMed DOI PMC

Sobotka R, Esson HJ, Koník P et al (2017) Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 7:13214. https://doi.org/10.1038/s41598-017-13575-x PubMed DOI PMC

Moore RB, Oborník M, Janouškovec J et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963. https://doi.org/10.1038/nature06635 PubMed DOI

Oborník M, Modrý D, Lukeš M et al (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163:306–323. https://doi.org/10.1016/j.protis.2011.09.001 PubMed DOI

Krishnan A, Soldati-Favre D (2021) Amino acid metabolism in apicomplexan parasites. Metabolites 11:61. https://doi.org/10.3390/metabo11020061 PubMed DOI PMC

Waller RF, Kořený L (2017) Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Adv Bot Res 85:105–143. https://doi.org/10.1016/bs.abr.2017.07.004 DOI

Sarai C, Tanifuji G, Nakayama T et al (2020) Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A 117:5364–5375. https://doi.org/10.1073/pnas.1911884117 PubMed DOI PMC

Novák Vanclová AMG, Nef C, Vancl A et al (2022) Divergent and diversified proteome content across a serially acquired plastid lineage. biorXiv. https://doi.org/10.1101/2022.11.30.518497 DOI

Park MG, Kim M, Kim S (2014) The acquisition of plastids/phototrophy in heterotrophic dinoflagellates. Acta Protozool 53:39–50. https://doi.org/10.4467/16890027AP.14.005.1442 DOI

Yamada N, Sym SD, Horiguchi T (2017) Identification of highly divergent diatom-derived chloroplasts in dinoflagellates, including a description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae). Mol Biol Evol 34:1335–1351. https://doi.org/10.1093/molbev/msx054 PubMed DOI

Jan M, Liu Z, Rochaix J-D, Sun X (2022) Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. Front Plant Sci 13:980237. https://doi.org/10.3389/fpls.2022.980237 PubMed DOI PMC

McFadden GI (2014) Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harbor Persp Biol 6:a016105. https://doi.org/10.1101/cshperspect.a016105 DOI

Dorrell RG, Howe CJ (2012) What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci 125:1865–1875. https://doi.org/10.1242/jcs.102285 PubMed DOI

Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48. https://doi.org/10.1016/j.mib.2014.09.008 PubMed DOI

Gross J, Bhattacharya D (2009) Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat Rev Genet 10:495–505. https://doi.org/10.1038/nrg2649 PubMed DOI

Tyra HM, Linka M, Weber APM, Bhattacharya D (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212. https://doi.org/10.1186/gb-2007-8-10-r212 PubMed DOI PMC

Basak I, Moeller SG (2013) Emerging facets of plastid division regulation. Planta 237:389–398 PubMed DOI

Archibald JM (2015) Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci U S A 112:10147–10153. https://doi.org/10.1073/pnas.1421374112 PubMed DOI PMC

Konupková A, Tomečková L, Pašuthová K et al (2023) Easier lost than found? What we know about plastid genome reduction. In: Kroth P, Schwartzbach S, Oborník M (eds) Endosymbiotic organelle acquisition: solutions to the problem of protein localization and membrane passage. Springer, Cham

Collén J, Porcel B, Carré W et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252. https://doi.org/10.1073/pnas.1221259110 PubMed DOI PMC

Fristedt R (2017) Chloroplast function revealed through analysis of GreenCut2 genes. J Exp Bot 68:2111–2120. https://doi.org/10.1093/jxb/erx082 PubMed DOI

Terashima M, Specht M, Hippler M (2011) The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 57:151–168. https://doi.org/10.1007/s00294-011-0339-1 PubMed DOI

Gruber A, Rocap G, Kroth PG et al (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528. https://doi.org/10.1111/tpj.12734 PubMed DOI PMC

Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signal. BioEssays 29:1048–1058. https://doi.org/10.1002/bies.20638 PubMed DOI

Sun Y, Jarvis RP (2023) Chloroplast proteostasis: import, sorting, ubiquitination, and proteolysis. Annu Rev Plant Biol 74:259–283. https://doi.org/10.1146/annurev-arplant-070122 PubMed DOI

Patron NJ, Waller RF, Archibald JM, Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348:1015–1024. https://doi.org/10.1016/j.jmb.2005.03.030 PubMed DOI

Durnford DG, Gray MW (2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Euk Cell 5:2079–2091. https://doi.org/10.1128/EC.00222-06 DOI

Felsner G, Sommer MS, Gruenheit N et al (2011) ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genom Biol Evol 3:140–150. https://doi.org/10.1093/gbe/evq074 DOI

Hehenberger E, Burki F, Kolisko M, Keeling PJ (2016) Functional relationship between a dinoflagellate host and its diatom endosymbiont. Mol Biol Evol 33:2376–2390. https://doi.org/10.1093/molbev/msw109 PubMed DOI

Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182. https://doi.org/10.1016/S1360-1385(00)01598-3 PubMed DOI

Facchinelli F, Weber APM (2011) The metabolite transporters of the plastid envelope: an update. Front Plant Sci 2:1–18. https://doi.org/10.3389/fpls.2011.00050 DOI

Mulkidjanian AY, Koonin EV, Makarova KS et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103:13126–13131. https://doi.org/10.1073/pnas.0605709103 PubMed DOI PMC

Smith SRS, Gillard JTF, Kustka ABAAB et al (2016) Transcriptional orchestration of the global cellular response of a model pennate diatom to diel light cycling under iron limitation. PLoS Genet 12:e1006490. https://doi.org/10.1371/journal.pgen.1006490 PubMed DOI PMC

Bailleul B, Berne N, Murik O et al (2015) Energetic coupling between plastids and mitochondria drives CO PubMed DOI

Füssy Z, Faitová T, Oborník M (2019) Subcellular compartments interplay for carbon and nitrogen allocation in Chromera velia and Vitrella brassicaformis. Genom Biol Evol 11:1765–1779. https://doi.org/10.1093/gbe/evz123 DOI

Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311. https://doi.org/10.1016/S0168-9525(98)01494-2 PubMed DOI

Larkum AWD, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195. https://doi.org/10.1016/j.tplants.2007.03.011 PubMed DOI

Oborník M, Green BR (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22:2343–2353. https://doi.org/10.1093/molbev/msi230 PubMed DOI

Kořený L, Oborník M (2011) Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genom Biol Evol 3:359–364. https://doi.org/10.1093/gbe/evr029 DOI

Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18. https://doi.org/10.1007/s002940050241 PubMed DOI

Cihlář J, Füssy Z, Horák A, Oborník M (2016) Evolution of the tetrapyrrole biosynthetic pathway in secondary algae: conservation, redundancy and replacement. PLoS One 11:e0166338. https://doi.org/10.1371/journal.pone.0166338 PubMed DOI PMC

Wolf YI, Koonin EV (2013) Genome reduction as the dominant mode of evolution. BioEssays 35:829–837. https://doi.org/10.1002/bies.201300037 PubMed DOI PMC

Howe CJ, Barbrook AC, Koumandou VL et al (2003) Evolution of the chloroplast genome. Philos Trans R Soc B 358:99–107. https://doi.org/10.1098/rstb.2002.1176 DOI

Dagan T, Blekhman R, Graur D (2006) The “domino theory” of gene death: gradual and mass gene extinction events in three lineages of obligate symbiotic bacterial pathogens. Mol Biol Evol 23:310–316. https://doi.org/10.1093/molbev/msj036 PubMed DOI

Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400:155–159. https://doi.org/10.1038/22099 PubMed DOI

Oborník M (2019) Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules 9:266. https://doi.org/10.3390/biom9070266 PubMed DOI PMC

Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517. https://doi.org/10.1146/annurev.arplant.59.032607.092915 PubMed DOI

Waller RF, Gornik SG, Kořený L, Pain A (2016) Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol 9:e1116653. https://doi.org/10.1080/19420889.2015.1116653 PubMed DOI

Kořený L, Sobotka R, Janouškovec J et al (2011) Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell 23:3454–3462. https://doi.org/10.1105/tpc.111.089102 PubMed DOI PMC

Gawryluk RMR, Tikhonenkov DV, Hehenberger E et al (2019) Non-photosynthetic predators are sister to red algae. Nature 572:240–243. https://doi.org/10.1038/s41586-019-1398-6 PubMed DOI

Richtová J, Sheiner L, Gruber A et al (2021) Using diatom and apicomplexan models to study the heme pathway of Chromera velia. Int J Mol Sci 22:6495. https://doi.org/10.3390/ijms22126495 PubMed DOI PMC

Nuismer SL, Otto SP (2004) Host-parasite interactions and the evolution of ploidy. Proc Natl Acad Sci U S A 101:11036–11039. https://doi.org/10.1073/pnas.0403151101 PubMed DOI PMC

Blouin NA, Lane CE (2016) Red algae provide fertile ground for exploring parasite evolution. Persp Phycol 3:11–19. https://doi.org/10.1127/pip/2015/0027 DOI

Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A (2015) When the lights go out: the evolutionary fate of free-living colorless green algae. New Phytol 206:972–982 PubMed DOI PMC

Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54:111–121. https://doi.org/10.1007/s00294-008-0208-8 PubMed DOI

Záhonová K, Füssy Z, Oborník M et al (2016) RuBisCO in non-photosynthetic alga Euglena longa: divergent features, transcriptomic analysis and regulation of complex formation. PLoS One 11:e0158790. https://doi.org/10.1371/journal.pone.0158790 PubMed DOI PMC

Füssy Z, Záhonová K, Tomčala A et al (2020) The cryptic plastid of Euglena longa defines a new type of non-photosynthetic plastid organelle. mSphere 5:e00675–e00620 PubMed DOI PMC

Abrahamsen MS, Templeton TJ, Enomoto S et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445. https://doi.org/10.1126/science.1094786 PubMed DOI

Toso MA, Omoto CK (2007) Gregarina niphandrodes may lack both a plastid genome and organelle. J Euk Microbiol 54:66–72. https://doi.org/10.1111/j.1550-7408.2006.00229.x PubMed DOI

Gornik SG, Febrimarsa CAM et al (2015) Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A 112:5767–5772. https://doi.org/10.1073/pnas.1423400112 PubMed DOI PMC

Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc B 365:749–763. https://doi.org/10.1098/rstb.2009.0273 DOI

Janouškovec J, Tikhonenkov DV, Burki F et al (2015) Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci U S A 112:10200–10207. https://doi.org/10.1073/pnas.1423790112 PubMed DOI PMC

Janouškovec J, Gavelis GS, Burki F et al (2017) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci U S A 114:E171–E180. https://doi.org/10.1073/pnas.1614842114 PubMed DOI

Oborník M (2022) Organellar evolution: a path from benefit to dependence. Microorganisms 10:122 PubMed DOI PMC

McFadden GI, Reith ME, Munholland J, Lang-Unnasch N (1996) Plastid in human parasites. Nature 381:482–482 PubMed DOI

Oborník M, Janouškovec J, Chrudimský T, Lukeš J (2009) Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol 39:1–12. https://doi.org/10.1016/j.ijpara.2008.07.010 PubMed DOI

Mukherjee A, Sadhukhan GC (2016) Anti-malarial drug design by targeting apicoplasts: new perspectives. J Pharmacopunct 19:7–15. https://doi.org/10.3831/KPI.2016.19.001 DOI

Kořený L, Sobotka R, Kovářová J et al (2012) Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc Natl Acad Sci U S A 109:3808–3813. https://doi.org/10.1073/pnas.1201089109 PubMed DOI PMC

Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF (2007) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117. https://doi.org/10.1016/j.protis.2006.09.004 PubMed DOI

Slamovits CH, Keeling PJ (2008) Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol Biol Evol 25:1297–1306. https://doi.org/10.1093/molbev/msn075 PubMed DOI

Kayama M, Maciszewski K, Yabuki A et al (2020) Highly reduced plastid genomes of the non-photosynthetic dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-Glu-based organellar heme biosynthesis. Front Plant Sci 11:602455. https://doi.org/10.3389/fpls.2020.602455 PubMed DOI PMC

Dorrell RG, Azuma T, Nomura M et al (2019) Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 116:6914–6923. https://doi.org/10.1073/pnas.1819976116 PubMed DOI PMC

Kamikawa R, Moog D, Zauner S et al (2017) A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol Biol Evol 34:2355–2366. https://doi.org/10.1093/molbev/msx172 PubMed DOI

Pradel G, Schlitzer M (2010) Antibiotics in malaria therapy and their effect on the parasite apicoplast. Curr Mol Med 10:335–349. https://doi.org/10.2174/156652410791065273 PubMed DOI

Kennedy K, Crisafulli EM, Ralph SA (2019) Delayed death by plastid inhibition in apicomplexan parasites. Trends Parasitol 35:747–759. https://doi.org/10.1016/j.pt.2019.07.010 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...