Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21963666
PubMed Central
PMC3203424
DOI
10.1105/tpc.111.089102
PII: tpc.111.089102
Knihovny.cz E-zdroje
- MeSH
- acylkoenzym A metabolismus MeSH
- Alveolata metabolismus MeSH
- chlorofyl biosyntéza MeSH
- fotosyntéza * MeSH
- fylogeneze MeSH
- glycin metabolismus MeSH
- molekulární sekvence - údaje MeSH
- protozoální DNA genetika MeSH
- sekvenční analýza DNA MeSH
- tetrapyrroly biosyntéza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acylkoenzym A MeSH
- chlorofyl MeSH
- glycin MeSH
- protozoální DNA MeSH
- succinyl-coenzyme A MeSH Prohlížeč
- tetrapyrroly MeSH
Most photosynthetic eukaryotes synthesize both heme and chlorophyll via a common tetrapyrrole biosynthetic pathway starting from glutamate. This pathway was derived mainly from cyanobacterial predecessor of the plastid and differs from the heme synthesis of the plastid-lacking eukaryotes. Here, we show that the coral-associated alveolate Chromera velia, the closest known photosynthetic relative to Apicomplexa, possesses a tetrapyrrole pathway that is homologous to the unusual pathway of apicomplexan parasites. We also demonstrate that, unlike other eukaryotic phototrophs, Chromera synthesizes chlorophyll from glycine and succinyl-CoA rather than glutamate. Our data shed light on the evolution of the heme biosynthesis in parasitic Apicomplexa and photosynthesis-related biochemical processes in their ancestors.
Zobrazit více v PubMed
Alemu A., Tsegaye W., Golassa L., Abebe G. (2011). Urban malaria and associated risk factors in Jimma town, south-west Ethiopia. Malar. J. 10: 173. PubMed PMC
Camadro J.M., Chambon H., Jolles J., Labbe P. (1986). Purification and properties of coproporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 156: 579–587 PubMed
Castelfranco P.A., Jones O.T.G. (1975). Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol. 55: 485–490 PubMed PMC
Dailey T.A., Woodruff J.H., Dailey H.A. (2005). Examination of mitochondrial protein targeting haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase. Biochem. J. 386: 381–386 PubMed PMC
Emanuelsson O., Brunak S., von Heijne G., Nielsen H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2: 953–971 PubMed
Foth B.J., Ralph S.A., Tonkin C.J., Struck N.S., Fraunholz M., Roos D.S., Cowman A.F., McFadden G.I. (2003). Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299: 705–708 PubMed
Gould S.B., Sommer M.S., Hadfi K., Zauner S., Kroth P.G., Maier U.G. (2006). Protein targeting into the complex plastid of cryptophytes. J. Mol. Evol. 62: 674–681 PubMed
Hall T.A. (1999). BioEdit: User-friendly biological sequence alignmet editor and analysis program for Windows 95/98/NT. Nucleic Acids Res. 41: 95–98
Hirakawa Y., Nagamune K., Ishida K. (2009). Protein targeting into secondary plastids of chlorarachniophytes. Proc. Natl. Acad. Sci. USA 106: 12820–12825 PubMed PMC
Janouškovec J., Horák A., Oborník M., Lukeš J., Keeling P.J. (2010). A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA 107: 10949–10954 PubMed PMC
Jiroutová K., Horák A., Bowler C., Oborník M. (2007). Tryptophan biosynthesis in stramenopiles: eukaryotic winners in the diatom complex chloroplast. J. Mol. Evol. 65: 496–511 PubMed
Kalanon M., McFadden G.I. (2010). Malaria, Plasmodium falciparum and its apicoplast. Biochem. Soc. Trans. 38: 775–782 PubMed
Katoh K., Toh H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9: 286–298 PubMed
Kořený L., Oborník M. (2011). Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol. Evol. 3: 359–364 PubMed PMC
Kroth P.G. (2002). Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int. Rev. Cytol. 221: 191–255 PubMed
Lang M., Apt K.E., Kroth P.G. (1998). Protein transport into “complex” diatom plastids utilizes two different targeting signals. J. Biol. Chem. 273: 30973–30978 PubMed
Lartillot N., Philippe H. (2004). A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21: 1095–1109 PubMed
Mather M.W., Vaidya A.B. (2008). Mitochondria in malaria and related parasites: Ancient, diverse and streamlined. J. Bioenerg. Biomembr. 40: 425–433 PubMed
McFadden G.I. (1999). Plastids and protein targeting. J. Eukaryot. Microbiol. 46: 339–346 PubMed
Mogi T., Kita K. (2010). Diversity in mitochondrial metabolic pathways in parasitic protists Plasmodium and Cryptosporidium. Parasitol. Int. 59: 305–312 PubMed
Moore R.B., et al. (2008). A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451: 959–963 PubMed
Nagaraj V.A., Arumugam R., Chandra N.R., Prasad D., Rangarajan P.N., Padmanaban G. (2009a). Localisation of Plasmodium falciparum uroporphyrinogen III decarboxylase of the heme-biosynthetic pathway in the apicoplast and characterisation of its catalytic properties. Int. J. Parasitol. 39: 559–568 PubMed
Nagaraj V.A., Arumugam R., Prasad D., Rangarajan P.N., Padmanaban G. (2010a). Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. Mol. Biochem. Parasitol. 174: 44–52 PubMed
Nagaraj V.A., Prasad D., Arumugam R., Rangarajan P.N., Padmanaban G. (2010b). Characterization of coproporphyrinogen III oxidase in Plasmodium falciparum cytosol. Parasitol. Int. 59: 121–127 PubMed
Nagaraj V.A., Prasad D., Rangarajan P.N., Padmanaban G. (2009b). Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum. Mol. Biochem. Parasitol. 168: 109–112 PubMed
Nassoury N., Cappadocia M., Morse D. (2003). Plastid ultrastructure defines the protein import pathway in dinoflagellates. J. Cell Sci. 116: 2867–2874 PubMed
Oborník M., Green B.R. (2005). Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol. Biol. Evol. 22: 2343–2353 PubMed
Oborník M., Janouškovec J., Chrudimský T., Lukeš J. (2009). Evolution of the apicoplast and its hosts: From heterotrophy to autotrophy and back again. Int. J. Parasitol. 39: 1–12 PubMed
Oborník M., Vancová M., Lai D.H., Janouškovec J., Keeling P.J., Lukeš J. (2011). Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162: 115–130 PubMed
Osafune T., Schiff J.A. (1983). W10BSmL, a mutant of Euglena gracilis var. bacillaris lacking plastids. Exp. Cell Res. 148: 530–535 PubMed
Panek H., O’Brian M.R. (2002). A whole genome view of prokaryotic haem biosynthesis. Microbiology 148: 2273–2282 PubMed
Papenbrock J., Mock H.P., Kruse E., Grimm B. (1999). Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208: 264–273
Ralph S.A., van Dooren G.G., Waller R.F., Crawford M.J., Fraunholz M.J., Foth B.J., Tonkin C.J., Roos D.S., McFadden G.I. (2004). Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2: 203–216 PubMed
Rao A., Yeleswarapu S.J., Srinivasan R., Bulusu G. (2008). Localization of heme biosynthesis pathway enzymes in Plasmodium falciparum. Indian J. Biochem. Biophys. 45: 365–373 PubMed
Sato S., Clough B., Coates L., Wilson R.J.M. (2004). Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155: 117–125 PubMed
Sato S., Wilson R.J.M. (2003). Proteobacteria-like ferrochelatase in the malaria parasite. Curr. Genet. 42: 292–300 PubMed
Shanmugam D., Wu B., Ramirez U., Jaffe E.K., Roos D.S. (2010). Plastid-associated porphobilinogen synthase from Toxoplasma gondii: Kinetic and structural properties validate therapeutic potential. J. Biol. Chem. 285: 22122–22131 PubMed PMC
Shashidhara L.S., Lim S.H., Shackleton J.B., Robinson C., Smith A.G. (1992). Protein targeting across the three membranes of the Euglena chloroplast envelope. J. Biol. Chem. 267: 12885–12891 PubMed
Schulze J.O., Schubert W.D., Moser J., Jahn D., Heinz D.W. (2006). Evolutionary relationship between initial enzymes of tetrapyrrole biosynthesis. J. Mol. Biol. 358: 1212–1220 PubMed
Templeton T.J., Enomoto S., Chen W.J., Huang C.G., Lancto C.A., Abrahamsen M.S., Zhu G. (2010). A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a Gregarine and Cryptosporidium. Mol. Biol. Evol. 27: 235–248 PubMed PMC
van Dooren G.G., Stimmler L.M., McFadden G.I. (2006). Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol. Rev. 30: 596–630 PubMed
Volland C., Felix F. (1984). biosynthesisIsolation and properties of 5-aminolevulinate synthase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 142: 551–557 PubMed
von Heijne G., Steppuhn J., Herrmann R.G. (1989). Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180: 535–545 PubMed
Waller R.F., Keeling P.J., Donald R.G.K., Striepen B., Handman E., Lang-Unnasch N., Cowman A.F., Besra G.S., Roos D.S., McFadden G.I. (1998). Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 95: 12352–12357 PubMed PMC
Weinstein J.D., Beale S.I. (1983). Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem. 258: 6799–6807 PubMed
Woodson J.D., Perez-Ruiz J.M., Chory J. (2011). Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr. Biol. 21: 897–903 PubMed PMC
Wu B. (2006). Heme Biosynthetic Pathway in Apicomplexan Parasites. PhD dissertation (Philadelphia, PA: University of Pennsylvania)
Zhang L., Guarente L. (1995). Heme binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J. 14: 313–320 PubMed PMC
Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events
Circadian rhythms and circadian clock gene homologs of complex alga Chromera velia
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia
Enigmatic Evolutionary History of Porphobilinogen Deaminase in Eukaryotic Phototrophs
Fatty Acid Biosynthesis in Chromerids
Characterization of Aminoacyl-tRNA Synthetases in Chromerids
Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism
Giardia intestinalis incorporates heme into cytosolic cytochrome b₅
Make it, take it, or leave it: heme metabolism of parasites
GENBANK
HQ222925, HQ222926, HQ222927, HQ222928, HQ222929, HQ222930, HQ222931, HQ222932, HQ222933, HQ222934, HQ222935, HQ245653, HQ245654, HQ245655, HQ245656