Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites

. 2011 Sep ; 23 (9) : 3454-62. [epub] 20110930

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21963666

Most photosynthetic eukaryotes synthesize both heme and chlorophyll via a common tetrapyrrole biosynthetic pathway starting from glutamate. This pathway was derived mainly from cyanobacterial predecessor of the plastid and differs from the heme synthesis of the plastid-lacking eukaryotes. Here, we show that the coral-associated alveolate Chromera velia, the closest known photosynthetic relative to Apicomplexa, possesses a tetrapyrrole pathway that is homologous to the unusual pathway of apicomplexan parasites. We also demonstrate that, unlike other eukaryotic phototrophs, Chromera synthesizes chlorophyll from glycine and succinyl-CoA rather than glutamate. Our data shed light on the evolution of the heme biosynthesis in parasitic Apicomplexa and photosynthesis-related biochemical processes in their ancestors.

Zobrazit více v PubMed

Alemu A., Tsegaye W., Golassa L., Abebe G. (2011). Urban malaria and associated risk factors in Jimma town, south-west Ethiopia. Malar. J. 10: 173. PubMed PMC

Camadro J.M., Chambon H., Jolles J., Labbe P. (1986). Purification and properties of coproporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 156: 579–587 PubMed

Castelfranco P.A., Jones O.T.G. (1975). Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol. 55: 485–490 PubMed PMC

Dailey T.A., Woodruff J.H., Dailey H.A. (2005). Examination of mitochondrial protein targeting haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase. Biochem. J. 386: 381–386 PubMed PMC

Emanuelsson O., Brunak S., von Heijne G., Nielsen H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2: 953–971 PubMed

Foth B.J., Ralph S.A., Tonkin C.J., Struck N.S., Fraunholz M., Roos D.S., Cowman A.F., McFadden G.I. (2003). Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299: 705–708 PubMed

Gould S.B., Sommer M.S., Hadfi K., Zauner S., Kroth P.G., Maier U.G. (2006). Protein targeting into the complex plastid of cryptophytes. J. Mol. Evol. 62: 674–681 PubMed

Hall T.A. (1999). BioEdit: User-friendly biological sequence alignmet editor and analysis program for Windows 95/98/NT. Nucleic Acids Res. 41: 95–98

Hirakawa Y., Nagamune K., Ishida K. (2009). Protein targeting into secondary plastids of chlorarachniophytes. Proc. Natl. Acad. Sci. USA 106: 12820–12825 PubMed PMC

Janouškovec J., Horák A., Oborník M., Lukeš J., Keeling P.J. (2010). A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA 107: 10949–10954 PubMed PMC

Jiroutová K., Horák A., Bowler C., Oborník M. (2007). Tryptophan biosynthesis in stramenopiles: eukaryotic winners in the diatom complex chloroplast. J. Mol. Evol. 65: 496–511 PubMed

Kalanon M., McFadden G.I. (2010). Malaria, Plasmodium falciparum and its apicoplast. Biochem. Soc. Trans. 38: 775–782 PubMed

Katoh K., Toh H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9: 286–298 PubMed

Kořený L., Oborník M. (2011). Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol. Evol. 3: 359–364 PubMed PMC

Kroth P.G. (2002). Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int. Rev. Cytol. 221: 191–255 PubMed

Lang M., Apt K.E., Kroth P.G. (1998). Protein transport into “complex” diatom plastids utilizes two different targeting signals. J. Biol. Chem. 273: 30973–30978 PubMed

Lartillot N., Philippe H. (2004). A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21: 1095–1109 PubMed

Mather M.W., Vaidya A.B. (2008). Mitochondria in malaria and related parasites: Ancient, diverse and streamlined. J. Bioenerg. Biomembr. 40: 425–433 PubMed

McFadden G.I. (1999). Plastids and protein targeting. J. Eukaryot. Microbiol. 46: 339–346 PubMed

Mogi T., Kita K. (2010). Diversity in mitochondrial metabolic pathways in parasitic protists Plasmodium and Cryptosporidium. Parasitol. Int. 59: 305–312 PubMed

Moore R.B., et al. (2008). A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451: 959–963 PubMed

Nagaraj V.A., Arumugam R., Chandra N.R., Prasad D., Rangarajan P.N., Padmanaban G. (2009a). Localisation of Plasmodium falciparum uroporphyrinogen III decarboxylase of the heme-biosynthetic pathway in the apicoplast and characterisation of its catalytic properties. Int. J. Parasitol. 39: 559–568 PubMed

Nagaraj V.A., Arumugam R., Prasad D., Rangarajan P.N., Padmanaban G. (2010a). Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. Mol. Biochem. Parasitol. 174: 44–52 PubMed

Nagaraj V.A., Prasad D., Arumugam R., Rangarajan P.N., Padmanaban G. (2010b). Characterization of coproporphyrinogen III oxidase in Plasmodium falciparum cytosol. Parasitol. Int. 59: 121–127 PubMed

Nagaraj V.A., Prasad D., Rangarajan P.N., Padmanaban G. (2009b). Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum. Mol. Biochem. Parasitol. 168: 109–112 PubMed

Nassoury N., Cappadocia M., Morse D. (2003). Plastid ultrastructure defines the protein import pathway in dinoflagellates. J. Cell Sci. 116: 2867–2874 PubMed

Oborník M., Green B.R. (2005). Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol. Biol. Evol. 22: 2343–2353 PubMed

Oborník M., Janouškovec J., Chrudimský T., Lukeš J. (2009). Evolution of the apicoplast and its hosts: From heterotrophy to autotrophy and back again. Int. J. Parasitol. 39: 1–12 PubMed

Oborník M., Vancová M., Lai D.H., Janouškovec J., Keeling P.J., Lukeš J. (2011). Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162: 115–130 PubMed

Osafune T., Schiff J.A. (1983). W10BSmL, a mutant of Euglena gracilis var. bacillaris lacking plastids. Exp. Cell Res. 148: 530–535 PubMed

Panek H., O’Brian M.R. (2002). A whole genome view of prokaryotic haem biosynthesis. Microbiology 148: 2273–2282 PubMed

Papenbrock J., Mock H.P., Kruse E., Grimm B. (1999). Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208: 264–273

Ralph S.A., van Dooren G.G., Waller R.F., Crawford M.J., Fraunholz M.J., Foth B.J., Tonkin C.J., Roos D.S., McFadden G.I. (2004). Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2: 203–216 PubMed

Rao A., Yeleswarapu S.J., Srinivasan R., Bulusu G. (2008). Localization of heme biosynthesis pathway enzymes in Plasmodium falciparum. Indian J. Biochem. Biophys. 45: 365–373 PubMed

Sato S., Clough B., Coates L., Wilson R.J.M. (2004). Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155: 117–125 PubMed

Sato S., Wilson R.J.M. (2003). Proteobacteria-like ferrochelatase in the malaria parasite. Curr. Genet. 42: 292–300 PubMed

Shanmugam D., Wu B., Ramirez U., Jaffe E.K., Roos D.S. (2010). Plastid-associated porphobilinogen synthase from Toxoplasma gondii: Kinetic and structural properties validate therapeutic potential. J. Biol. Chem. 285: 22122–22131 PubMed PMC

Shashidhara L.S., Lim S.H., Shackleton J.B., Robinson C., Smith A.G. (1992). Protein targeting across the three membranes of the Euglena chloroplast envelope. J. Biol. Chem. 267: 12885–12891 PubMed

Schulze J.O., Schubert W.D., Moser J., Jahn D., Heinz D.W. (2006). Evolutionary relationship between initial enzymes of tetrapyrrole biosynthesis. J. Mol. Biol. 358: 1212–1220 PubMed

Templeton T.J., Enomoto S., Chen W.J., Huang C.G., Lancto C.A., Abrahamsen M.S., Zhu G. (2010). A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a Gregarine and Cryptosporidium. Mol. Biol. Evol. 27: 235–248 PubMed PMC

van Dooren G.G., Stimmler L.M., McFadden G.I. (2006). Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol. Rev. 30: 596–630 PubMed

Volland C., Felix F. (1984). biosynthesisIsolation and properties of 5-aminolevulinate synthase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 142: 551–557 PubMed

von Heijne G., Steppuhn J., Herrmann R.G. (1989). Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180: 535–545 PubMed

Waller R.F., Keeling P.J., Donald R.G.K., Striepen B., Handman E., Lang-Unnasch N., Cowman A.F., Besra G.S., Roos D.S., McFadden G.I. (1998). Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 95: 12352–12357 PubMed PMC

Weinstein J.D., Beale S.I. (1983). Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem. 258: 6799–6807 PubMed

Woodson J.D., Perez-Ruiz J.M., Chory J. (2011). Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr. Biol. 21: 897–903 PubMed PMC

Wu B. (2006). Heme Biosynthetic Pathway in Apicomplexan Parasites. PhD dissertation (Philadelphia, PA: University of Pennsylvania)

Zhang L., Guarente L. (1995). Heme binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J. 14: 313–320 PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events

Circadian rhythms and circadian clock gene homologs of complex alga Chromera velia

. 2023 ; 14 () : 1226027. [epub] 20231208

Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia

. 2021 Jun 17 ; 22 (12) : . [epub] 20210617

Enigmatic Evolutionary History of Porphobilinogen Deaminase in Eukaryotic Phototrophs

. 2021 Apr 29 ; 10 (5) : . [epub] 20210429

Fatty Acid Biosynthesis in Chromerids

. 2020 Jul 24 ; 10 (8) : . [epub] 20200724

There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives

. 2019 Aug 19 ; 9 (8) : . [epub] 20190819

Characterization of Aminoacyl-tRNA Synthetases in Chromerids

. 2019 Jul 31 ; 10 (8) : . [epub] 20190731

The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration

. 2019 Jul 19 ; 294 (29) : 11131-11143. [epub] 20190605

Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism

. 2019 Jul 08 ; 9 (7) : . [epub] 20190708

Subcellular Compartments Interplay for Carbon and Nitrogen Allocation in Chromera velia and Vitrella brassicaformis

. 2019 Jul 01 ; 11 (7) : 1765-1779.

Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans

. 2017 Oct 16 ; 7 (1) : 13214. [epub] 20171016

Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement

. 2016 ; 11 (11) : e0166338. [epub] 20161118

Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

. 2015 Jul 15 ; 4 () : e06974. [epub] 20150715

Giardia intestinalis incorporates heme into cytosolic cytochrome b₅

. 2014 Feb ; 13 (2) : 231-9. [epub] 20131202

Make it, take it, or leave it: heme metabolism of parasites

. 2013 Jan ; 9 (1) : e1003088. [epub] 20130117

Zobrazit více v PubMed

GENBANK
HQ222925, HQ222926, HQ222927, HQ222928, HQ222929, HQ222930, HQ222931, HQ222932, HQ222933, HQ222934, HQ222935, HQ245653, HQ245654, HQ245655, HQ245656

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace