The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration

. 2019 Jul 19 ; 294 (29) : 11131-11143. [epub] 20190605

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31167780
Odkazy

PubMed 31167780
PubMed Central PMC6643027
DOI 10.1074/jbc.ra119.008434
PII: S0021-9258(20)30242-8
Knihovny.cz E-zdroje

Ferrochelatase (FeCh) is an essential enzyme catalyzing the synthesis of heme. Interestingly, in cyanobacteria, algae, and plants, FeCh possesses a conserved transmembrane chlorophyll a/b binding (CAB) domain that resembles the first and the third helix of light-harvesting complexes, including a chlorophyll-binding motif. Whether the FeCh CAB domain also binds chlorophyll is unknown. Here, using biochemical and radiolabeled precursor experiments, we found that partially inhibited activity of FeCh in the cyanobacterium Synechocystis PCC 6803 leads to overproduction of chlorophyll molecules that accumulate in the thylakoid membrane and, together with carotenoids, bind to FeCh. We observed that pigments bound to purified FeCh are organized in an energy-dissipative conformation and further show that FeCh can exist in vivo as a monomer or a dimer depending on its own activity. However, pigmented FeCh was purified exclusively as a dimer. Separately expressed and purified FeCH CAB domain contained a pigment composition similar to that of full-length FeCh and retained its quenching properties. Phylogenetic analysis suggested that the CAB domain was acquired by a fusion between FeCh and a single-helix, high light-inducible protein early in the evolution of cyanobacteria. Following this fusion, the FeCh CAB domain with a functional chlorophyll-binding motif was retained in all currently known cyanobacterial genomes except for a single lineage of endosymbiotic cyanobacteria. Our findings indicate that FeCh from Synechocystis exists mostly as a pigment-free monomer in cells but can dimerize, in which case its CAB domain creates a functional pigment-binding segment organized in an energy-dissipating configuration.

Zobrazit více v PubMed

Yuan X., Rietzschel N., Kwon H., Walter Nuno A. B., Hanna D. A., Phillips J. D., Raven E. L., Reddi A. R., and Hamza I. (2016) Regulation of intracellular heme trafficking revealed by subcellular reporters. Proc. Natl. Acad. Sci. U.S.A. 113, E5144–E5152 10.1073/pnas.1609865113 PubMed DOI PMC

Ikushiro H., Nagami A., Takai T., Sawai T., Shimeno Y., Hori H., Miyahara I., Kamiya N., and Yano T. (2018) Heme-dependent inactivation of 5-aminolevulinate synthase from Caulobacter crescentus. Sci. Rep. 8, 14228 10.1038/s41598-018-32591-z PubMed DOI PMC

de Armas-Ricard M., Levicán G., Katz A., Moser J., Jahn D., and Orellana O. (2011) Cellular levels of heme affect the activity of dimeric glutamyl-tRNA reductase. Biochem. Biophys. Res. Commun. 405, 134–139 10.1016/j.bbrc.2011.01.013 PubMed DOI

Brzezowski P., Richter A. S., and Grimm B. (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim. Biophys. Acta 1847, 968–985 10.1016/j.bbabio.2015.05.007 PubMed DOI

Papenbrock J., Mishra S., Mock H. P., Kruse E., Schmidt E. K., Petersmann A., Braun H. P., and Grimm B. (2001) Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant J. 28, 41–50 10.1046/j.1365-313X.2001.01126.x PubMed DOI

Sobotka R., McLean S., Žuberová M., Hunter C. N., and Tichý M. (2008) The C-terminal extension of ferrochelatase is critical for enzyme activity and for functioning of the tetrapyrrole pathway in Synechocystis strain PCC 6803. J. Bacteriol. 190, 2086–2095 10.1128/JB.01678-07 PubMed DOI PMC

Papenbrock J., Mock H. P., Tanaka R., Kruse E., and Grimm B. (2000) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol. 122, 1161–1169 10.1104/pp.122.4.1161 PubMed DOI PMC

Papenbrock J., Pfündel E., Mock H. P., and Grimm B. (2000) Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants. Plant J. 22, 155–164 10.1046/j.1365-313x.2000.00724.x PubMed DOI

Crawford T. S., Eaton-Rye J. J., and Summerfield T. C. (2016) Mutation of Gly195 of the ChlH subunit of Mg-chelatase reduces chlorophyll and further disrupts PS II assembly in a Ycf48-deficient strain of Synechocystis sp. PCC 6803. Front. Plant Sci. 7, 1060 PubMed PMC

Xu H., Vavilin D., Funk C., and Vermaas W. (2002) Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 49, 149–160 10.1023/A:1014900806905 PubMed DOI

Sinha R. K., Komenda J., Knoppová J., Sedlářová M., and Pospíšil P. (2012) Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp PCC 6803. Plant Cell Environ. 35, 806–818 10.1111/j.1365-3040.2011.02454.x PubMed DOI

Hey D., Rothbart M., Herbst J., Wang P., Müller J., Wittmann D., Gruhl K., and Grimm B. (2017) LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. Plant Physiol. 174, 1037–1050 10.1104/pp.17.00505 PubMed DOI PMC

Zhou F., Wang C. Y., Gutensohn M., Jiang L., Zhang P., Zhang D., Dudareva N., and Lu S. (2017) A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. Proc. Natl. Acad. Sci. U.S.A. 114, 6866–6871 PubMed PMC

Hey D., and Grimm B. (2018) One-helix protein 2 (OHP2) is required for the stability of OHP1 and assembly factor HCF244 and is functionally linked to PSII biogenesis. Plant Physiol. 177, 1453–1472 PubMed PMC

Myouga F., Takahashi K., Tanaka R., Nagata N., Kiss A. Z., Funk C., Nomura Y., Nakagami H., Jansson S., and Shinozaki K. (2018) Stable accumulation of photosystem II requires one-helix protein 1 (OHP1) of the light harvesting-like family. Plant Physiol. 176, 2277–2291 10.1104/pp.17.01782 PubMed DOI PMC

Engelken J., Brinkmann H., and Adamska I. (2010) Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol. Biol. 10, 233 10.1186/1471-2148-10-233 PubMed DOI PMC

Engelken J., Funk C., and Adamska I. (2012) The extended light-harvesting complex (LHC) protein superfamily: classification and evolutionary dynamics. In Functional Genomics and Evolution of Photosynthetic Systems (Burnap R. L., and Vermaas W. F. J., eds) pp. 265–284, Springer, New York

Heddad M., Engelken J., and Adamska I. (2012) Light stress proteins in viruses, cyanobacteria and photosynthetic eukaryota. In Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation (Eaton-Rye J. J., Tripathy B. C., and Sharkey T. D., eds) pp. 299–317, Springer, New York

Neilson J. A., and Durnford D. G. (2010) Evolutionary distribution of light-harvesting complex-like proteins in photosynthetic eukaryotes. Genome 53, 68–78 10.1139/G09-081 PubMed DOI

Jansson S. (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4, 236–240 10.1016/S1360-1385(99)01419-3 PubMed DOI

Komenda J., and Sobotka R. (2016) Cyanobacterial high-light-inducible proteins: Protectors of chlorophyll-protein synthesis and assembly. Biochim. Biophys. Acta 1857, 288–295 10.1016/j.bbabio.2015.08.011 PubMed DOI

Adamska I., Roobol-Bóza M., Lindahl M., and Andersson B. (1999) Isolation of pigment-binding early light-inducible proteins from pea. Eur. J. Biochem. 260, 453–460 10.1046/j.1432-1327.1999.00178.x PubMed DOI

Reisinger V., Plöscher M., and Eichacker L. A. (2008) Lil3 assembles as chlorophyll-binding protein complex during deetiolation. FEBS Lett. 582, 1547–1551 10.1016/j.febslet.2008.03.042 PubMed DOI

Staleva H., Komenda J., Shukla M. K., Šlouf V., Kaňa R., Polívka T., and Sobotka R. (2015) Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 11, 287–291 10.1038/nchembio.1755 PubMed DOI

Shukla M. K., Llansola-Portoles M. J., Tichý M., Pascal A. A., Robert B., and Sobotka R. (2018) Binding of pigments to the cyanobacterial high-light-inducible protein HliC. Photosyn. Res. 137, 29–39 10.1007/s11120-017-0475-7 PubMed DOI

Standfuss J., Terwisschavan Scheltinga A. C., Lamborghini M., and Kühlbrandt W. (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution. EMBO J. 24, 919–928 10.1038/sj.emboj.7600585 PubMed DOI PMC

Wei X. P., Su X., Cao P., Liu X., Chang W., Li M., Zhang X., and Liu Z. (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 angstrom resolution. Nature 534, 69–74 10.1038/nature18020 PubMed DOI

Funk C., and Vermaas W. (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38, 9397–9404 10.1021/bi990545+ PubMed DOI

Sobotka R., Tichý M., Wilde A., and Hunter C. N. (2011) Functional assignments for the carboxyl-terminal domains of the ferrochelatase from Synechocystis PCC 6803: the CAB domain plays a regulatory role, and region II is essential for catalysis. Plant Physiol. 155, 1735–1747 10.1104/pp.110.167528 PubMed DOI PMC

Storm P., Tibiletti T., Hall M., and Funk C. (2013) Refolding and enzyme kinetic studies on the ferrochelatase of the cyanobacterium Synechocystis sp. PCC 6803. PLoS One 8, e55569 10.1371/journal.pone.0055569 PubMed DOI PMC

Sobotka R., Komenda J., Bumba L., and Tichý M. (2005) Photosystem II assembly in CP47 mutant of Synechocystis sp PCC 6803 is dependent on the level of chlorophyll precursors regulated by ferrochelatase. J. Biol. Chem. 280, 31595–31602 10.1074/jbc.M505976200 PubMed DOI

Shipovskov S., Karlberg T., Fodje M., Hansson M. D., Ferreira G. C., Hansson M., Reimann C. T., and Al-Karadaghi S. (2005) Metallation of the transition-state inhibitor N-methyl mesoporphyrin by ferrochelatase: Implications for the catalytic reaction mechanism. J. Mol. Biol. 352, 1081–1090 10.1016/j.jmb.2005.08.002 PubMed DOI

Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., An X., and Chang W. (2004) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428, 287–292 10.1038/nature02373 PubMed DOI

Kořený L., Sobotka R., Janouškovec J., Keeling P. J., and Oborník M. (2011) Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell 23, 3454–3462 10.1105/tpc.111.089102 PubMed DOI PMC

Yang J., Yan R., Roy A., Xu D., Poisson J., and Zhang Y. (2015) The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 10.1038/nmeth.3213 PubMed DOI PMC

Medlock A., Swartz L., Dailey T. A., Dailey H. A., and Lanzilotta W. N. (2007) Substrate interactions with human ferrochelatase. Proc. Natl. Acad. Sci. U.S.A. 104, 1789–1793 10.1073/pnas.0606144104 PubMed DOI PMC

Dailey H. A., Wu C. K., Horanyi P., Medlock A. E., Najahi-Missaoui W., Burden A. E., Dailey T. A., and Rose J. (2007) Altered orientation of active site residues in variants of human ferrochelatase: evidence for a hydrogen bond network involved in catalysis. Biochemistry 46, 7973–7979 10.1021/bi700151f PubMed DOI PMC

Sánchez-Baracaldo P., Raven J. A., Pisani D., and Knoll A. H. (2017) Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl. Acad. Sci. U.S.A. 114, E7737–E7745 10.1073/pnas.1620089114 PubMed DOI PMC

Kilian O., Steunou A. S., Grossman A. R., and Bhaya D. (2008) A novel two domain-fusion protein in cyanobacteria with similarity to the CAB/ELIP/HLIP superfamily: evolutionary implications and regulation. Mol. Plant 1, 155–166 10.1093/mp/ssm019 PubMed DOI

Rochaix J. D., and Bassi R. (2019) LHC-like proteins involved in stress responses and biogenesis/repair of the photosynthetic apparatus. Biochem. J. 476, 581–593 10.1042/BCJ20180718 PubMed DOI

Niedzwiedzki D. M., Tronina T., Liu H., Staleva H., Komenda J., Sobotka R., Blankenship R. E., and Polívka T. (2016) Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase–HliC/D complex. Biochim. Biophys. Acta 1857, 1430–1439 10.1016/j.bbabio.2016.04.280 PubMed DOI

Rast A., Heinz S., and Nickelsen J. (2015) Biogenesis of thylakoid membranes. Biochim. Biophys. Acta 1847, 821–830 10.1016/j.bbabio.2015.01.007 PubMed DOI

Uniacke J., and Zerges W. (2007) Photosystem II assembly and repair are differentially localized in Chlamydomonas. Plant Cell 19, 3640–3654 10.1105/tpc.107.054882 PubMed DOI PMC

Chidgey J. W., Linhartová M., Komenda J., Jackson P. J., Dickman M. J., Canniffe D. P., Koník P., Pilný J., Hunter C. N., and Sobotka R. (2014) A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26, 1267–1279 10.1105/tpc.114.124495 PubMed DOI PMC

Bučinská L., Kiss É., Koník P., Knoppová J., Komenda J., and Sobotka R. (2018) The ribosome-bound protein Pam68 promotes insertion of chlorophyll into the CP47 subunit of photosystem II. Plant Physiol. 176, 2931–2942 PubMed PMC

Llansola-Portoles M. J., Sobotka R., Kish E., Shukla M. K., Pascal A. A., Polívka T., and Robert B. (2017) Twisting a β-carotene, an adaptive trick from nature for dissipating energy during photoprotection. J. Biol. Chem. 292, 1396–1403 10.1074/jbc.M116.753723 PubMed DOI PMC

Hontani Y., Kloz M., Polívka T., Shukla M. K., Sobotka R., and Kennis J. T. M. (2018) Molecular origin of photoprotection in cyanobacteria probed by watermarked femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 9, 1788–1792 10.1021/acs.jpclett.8b00663 PubMed DOI PMC

Pan X., Li M., Wan T., Wang L., Jia C., Hou Z., Zhao X., Zhang J., and Chang W. (2011) Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat. Struct. Mol. Biol. 18, 309–315 10.1038/nsmb.2008 PubMed DOI

Masoumi A., Heinemann I. U., Rohde M., Koch M., Jahn M., and Jahn D. (2008) Complex formation between protoporphyrinogen IX oxidase and ferrochelatase during haem biosynthesis in Thermosynechococcus elongatus. Microbiology 154, 3707–3714 10.1099/mic.0.2008/018705-0 PubMed DOI

Medlock A. E., Shiferaw M. T., Marcero J. R., Vashisht A. A., Wohlschlegel J. A., Phillips J. D., and Dailey H. A. (2015) Identification of the mitochondrial heme metabolism complex. PLoS One 10, e0135896 10.1371/journal.pone.0135896 PubMed DOI PMC

Christodoulou D., Link H., Fuhrer T., Kochanowski K., Gerosa L., and Sauer U. (2018) Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli's rapid response to oxidative stress. Cell Syst. 6, 569–578.e7 10.1016/j.cels.2018.04.009 PubMed DOI

Czarnecki O., and Grimm B. (2012) Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J. Exp. Bot. 63, 1675–1687 10.1093/jxb/err437 PubMed DOI

Cornah J. E., Terry M. J., and Smith A. G. (2003) Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci. 8, 224–230 10.1016/S1360-1385(03)00064-5 PubMed DOI

Huang L., and Castelfranco P. A. (1990) Regulation of 5-aminolevulinic acid (ALA) synthesis in developing chloroplasts: evidence for functional-heterogeneity of the ALA pool. Plant Physiol. 92, 172–178 10.1104/pp.92.1.172 PubMed DOI PMC

Terry M. J., and Smith A. G. (2013) A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. Front. Plant Sci. 4 10.3389/fpls.2013.00014 PubMed DOI PMC

Scharfenberg M., Mittermayr L., von Roepenack-Lahaye E., Schlicke H., Grimm B., Leister D., and Kleine T. (2015) Functional characterization of the two ferrochelatases in Arabidopsis thaliana. Plant Cell Environ. 38, 280–298 10.1111/pce.12248 PubMed DOI

Sobotka R. (2014) Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria. Photosyn. Res. 119, 223–232 10.1007/s11120-013-9797-2 PubMed DOI

Kopečná J., Cabeza de Vaca I., Adams N. B., Davison P. A., Brindley A. A., Hunter C. N., Guallar V., and Sobotka R. (2015) Porphyrin binding to Gun4 protein, facilitated by a flexible loop, controls metabolite flow through the chlorophyll biosynthetic pathway. J. Biol. Chem. 290, 28477–28488 10.1074/jbc.M115.664987 PubMed DOI PMC

Schottkowski M., Ratke J., Oster U., Nowaczyk M., and Nickelsen J. (2009) Pitt, a novel tetratricopeptide repeat protein involved in light-dependent chlorophyll biosynthesis and thylakoid membrane biogenesis in Synechocystis sp. PCC 6803. Mol. Plant 2, 1289–1297 10.1093/mp/ssp075 PubMed DOI

Xiong W., Shen G., and Bryant D. A. (2017) Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity. Photosyn. Res. 131, 267–280 10.1007/s11120-016-0316-0 PubMed DOI

Zhao L., Cheng D., Huang X., Chen M., Dall'Osto L., Xing J., Gao L., Li L., Wang Y., Bassi R., Peng L., Wang Y., Rochaix J. D., and Huang F. (2017) A light harvesting complex-like protein in maintenance of photosynthetic components in Chlamydomonas. Plant Physiol. 174, 2419–2433 10.1104/pp.16.01465 PubMed DOI PMC

Tanaka R., Rothbart M., Oka S., Takabayashi A., Takahashi K., Shibata M., Myouga F., Motohashi R., Shinozaki K., Grimm B., and Tanaka A. (2010) LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 107, 16721–16725 10.1073/pnas.1004699107 PubMed DOI PMC

Takahashi K., Takabayashi A., Tanaka A., and Tanaka R. (2014) Functional analysis of light-harvesting-like protein 3 (LIL3) and its light-harvesting chlorophyll-binding motif in Arabidopsis. J. Biol. Chem. 289, 987–999 10.1074/jbc.M113.525428 PubMed DOI PMC

Lohscheider J. N., Rojas-Stütz M. C., Rothbart M., Andersson U., Funck D., Mendgen K., Grimm B., and Adamska I. (2015) Altered levels of LIL3 isoforms in Arabidopsis lead to disturbed pigment-protein assembly and chlorophyll synthesis, chlorotic phenotype and impaired photosynthetic performance. Plant Cell Environ 38, 2115–2127 10.1111/pce.12540 PubMed DOI

Mork-Jansson A., Bue A. K., Gargano D., Furnes C., Reisinger V., Arnold J., Kmiec K., and Eichacker L. A. (2015) Lil3 assembles with proteins regulating chlorophyll synthesis in barley. PLoS One 10, e0133145 10.1371/journal.pone.0133145 PubMed DOI PMC

Tichý M., Bečková M., Kopečná J., Noda J., Sobotka R., and Komenda J. (2016) Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front. Plant Sci. 7, 648 PubMed PMC

Schägger H., and von Jagow G. (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223–231 10.1016/0003-2697(91)90094-A PubMed DOI

Komenda J., Lupínková L., and Kopecký J. (2002) Absence of the psbH gene product destabilizes photosystem II complex and bicarbonate binding on its acceptor side in Synechocystis PCC 6803. Eur. J. Biochem. 269, 610–619 10.1046/j.0014-2956.2001.02693.x PubMed DOI

Pilný J., Kopečná J., Noda J., and Sobotka R. (2015) Detection and quantification of heme and chlorophyll precursors using a high performance liquid chromatography (HPLC) system equipped with two fluorescence detectors. Bio-protocol 5, e1390

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., and Madden T. L. (2009) BLAST+: architecture and applications. BMC Bioinformatics 10, 421 10.1186/1471-2105-10-421 PubMed DOI PMC

Katoh K., and Standley D. M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 10.1093/molbev/mst010 PubMed DOI PMC

Shih P. M., Wu D., Latifi A., Axen S. D., Fewer D. P., Talla E., Calteau A., Cai F., Tandeau de Marsac N., Rippka R., Herdman M., Sivonen K., Coursin T., Laurent T., Goodwin L., et al. (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci. U.S.A. 110, 1053–1058 10.1073/pnas.1217107110 PubMed DOI PMC

Mareš J. (2018) Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. Hydrobiologia 811, 19–34 10.1007/s10750-017-3373-2 DOI

Stamatakis A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 10.1093/bioinformatics/btu033 PubMed DOI PMC

Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., and Huelsenbeck J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 10.1093/sysbio/sys029 PubMed DOI PMC

Miller M. A., Schwartz T., Pickett B. E., He S., Klem E. B., Scheuermann R. H., Passarotti M., Kaufman S., and O'Leary M. A. (2015) A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol. Bioinform. Online 11, 43–48 PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Localization of heme biosynthesis in the diatom Phaeodactylum tricornutum and differential expression of multi-copy enzymes

. 2025 ; 16 () : 1537037. [epub] 20250304

The biogenesis and maintenance of PSII: Recent advances and current challenges

. 2024 Oct 03 ; 36 (10) : 3997-4013.

Urea derivative MTU improves stress tolerance and yield in wheat by promoting cyclic electron flow around PSI

. 2023 ; 14 () : 1131326. [epub] 20230307

High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions

. 2022 Jun ; 152 (3) : 317-332. [epub] 20220226

Plant LHC-like proteins show robust folding and static non-photochemical quenching

. 2021 Nov 25 ; 12 (1) : 6890. [epub] 20211125

Gradual Response of Cyanobacterial Thylakoids to Acute High-Light Stress-Importance of Carotenoid Accumulation

. 2021 Jul 28 ; 10 (8) : . [epub] 20210728

Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia

. 2021 Jun 17 ; 22 (12) : . [epub] 20210617

Enigmatic Evolutionary History of Porphobilinogen Deaminase in Eukaryotic Phototrophs

. 2021 Apr 29 ; 10 (5) : . [epub] 20210429

Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria

Purification of Protein-complexes from the Cyanobacterium Synechocystis sp. PCC 6803 Using FLAG-affinity Chromatography

. 2020 May 20 ; 10 (10) : e3616. [epub] 20200520

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace