Urea derivative MTU improves stress tolerance and yield in wheat by promoting cyclic electron flow around PSI
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36959950
PubMed Central
PMC10028069
DOI
10.3389/fpls.2023.1131326
Knihovny.cz E-zdroje
- Klíčová slova
- 1-(2-methoxyethyl)-3-(1,2,3-thiadiazol-5yl)urea, MTU, cyclic electron flow, drought stress, heat stress, photosystem I, stress tolerance, wheat,
- Publikační typ
- časopisecké články MeSH
Increasing crop productivity under optimal conditions and mitigating yield losses under stressful conditions is a major challenge in contemporary agriculture. We have recently identified an effective anti-senescence compound (MTU, [1-(2-methoxyethyl)-3-(1,2,3-thiadiazol-5yl)urea]) in in vitro studies. Here, we show that MTU delayed both age- and stress-induced senescence of wheat plants (Triticum aestivum L.) by enhancing the abundance of PSI supercomplex with LHCa antennae (PSI-LHCa) and promoting the cyclic electron flow (CEF) around PSI. We suppose that this rarely-observed phenomenon blocks the disintegration of photosynthetic apparatus and maintains its activity as was reflected by the faster growth rate of wheat in optimal conditions and under drought and heat stress. Our multiyear field trial analysis further shows that the treatment with 0.4 g ha-1 of MTU enhanced average grain yields of field-grown wheat and barley (Hordeum vulgare L.) by 5-8%. Interestingly, the analysis of gene expression and hormone profiling confirms that MTU acts without the involvement of cytokinins or other phytohormones. Moreover, MTU appears to be the only chemical reported to date to affect PSI stability and activity. Our results indicate a central role of PSI and CEF in the onset of senescence with implications in yield management at least for cereal species.
Centre Algatech Institute of Microbiology Czech Academy of Sciences Třeboň Czechia
Department of Biochemistry Faculty of Science Palacký University Olomouc Czechia
Department of Biophysics Faculty of Science Palacký University Olomouc Czechia
Department of Chemical Biology Faculty of Science Palacký University Olomouc Czechia
Isotope Laboratory Institute of Experimental Botany Czech Academy of Sciences Prague Czechia
School of Biosciences Nottingham University Loughborough United Kingdom
Zobrazit více v PubMed
Abeles F. B., Dunn L. J., Morgens P., Callahan A., Dinterman R. E., Schmidt J. (1988). Induction of 33-kD and 60-kD peroxidases during ethyleneinduced senescence of cucumber cotyledons. Plant Physiol. 87, 609–615. doi: 10.1104/pp.87.3.609 PubMed DOI PMC
Aro E. M., Suorsa M., Rokka A., Allahverdiyeva Y., Paakkarinen V., Saleem A., et al. . (2005). Dynamics of photosystem II: A proteomic approach to thylakoid protein complexes. J. Exp. Bot. 56, 347–356. PubMed
Asad M. A. U., Wang F., Ye Y., Guan X., Zhou L., Han Z., et al. . (2021). Contribution of ABA metabolism and ROS generation to sugar starvation-induced senescence of rice leaves. Plant Growth Regul. 95, 241–257.
Boursiac Y., Léran S., Corratgé-Faillie C., Gojon A., Krouk G., Lacombe B. (2013). ABA transport and transporters. Trends Plant Sci. 18, 325–333. PubMed
Bowsher C., Steer M. W., Tobin A. K. (2008). Plant biochemistry (London: Garland Science; ). doi: 10.4324/9780203833483 DOI
Buchanan-Wollaston V., Page T., Harrison E., Breeze E., Lim P. O., Nam H. G., et al. . (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in arabidopsis. Plant J. 42, 567–585. doi: 10.1111/j.1365-313X.2005.02399.x PubMed DOI
Carmo-Silva E., John Andralojc P., Scales J. C., Driever S. M., Mead A., Lawson T., et al. . (2017). Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. J. Exp. Bot. 68, 3473–3486. PubMed PMC
Colebrook E. H., Thomas S. G., Phillips A. L., Hedden P. (2014). The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Bot. 217, 67–75. PubMed
Cortleven A., Nitschke S., Klaumünzer M., Abdelgawad H., Asard H., Grimm B., et al. . (2014). A novel protective function for cytokinin in the light stress response is mediated by the arabidopsis histidine kinase 2 and arabidopsis histidine kinase 3 receptors. Plant Physiol. 164, 1470–1483. PubMed PMC
Cutler S. R., Rodriguez P. L., Finkelstein R. R., Abrams S. R. (2010). Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679. PubMed
Dietzel L., Bräutigam K., Steiner S., Schüffler K., Lepetit B., Grimm B., et al. . (2011). Photosystem II supercomplex remodeling serves as an entry mechanism for state transitions in arabidopsis. Plant Cell 23, 2964–2977. PubMed PMC
Dobrev P. I., Kamínek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr A 950, 21–29. PubMed
Domínguez F., Cejudo F. J. (2021). Chloroplast dismantling in leaf senescence. J. Exp. Bot. 72, 5905–5918. PubMed PMC
El Hafid R., Smith D. H., Karrou M., Samir K. (1998). Physiological responses of spring durum wheat cultivars to early-season drought in a Mediterranean environment. Ann. Bot-London. 81, 363–370.
Ferrante A., Hunter D. A., Hackett P. W., Reid M. S. (2002). Thidiazuron -a potent inhibitor of leaf senescence in alstroemeria. Postharvest Biol. Technol. 25, 333–338. doi: 10.1016/S0925-5214(01)00195-8 DOI
Floková K., Tarkowská D., Miersch O., Strnad M., Wasternack C., Novák O. (2014). UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105, 147–157. PubMed
Foyer C. H., Noctor G. (2005). Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28, 1056–1071.
Gan S. (2003). Mitotic and postmitotic senescence in plants. Sci. SAGE KE 38, RE7. PubMed
Gan S., Amasino R. M. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986–1988. PubMed
Gan S., Amasino R. M. (1997). Making sense of senescence: Molecular genetic regulation of leaf senescence. Plant Physiol. 113, 313–319. PubMed PMC
Golding A. J., Finazzi G., Johnson G. N. (2004). Reduction of the thylakoid electron transport chain by stromal reductants–evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220, 356–363. PubMed
Golding A. J., Johnson G. N. (2003). Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218, 107–114. PubMed
Guo Y., Gan S. S. (2012). Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ. 35, 644–655. PubMed
He Y., Fu J., Yu C., Wang X., Jiang Q., Hong J., et al. . (2015). Increasing cyclic electron flow is related to na+ sequestration into vacuoles for salt tolerance in soybean. J. Exp. Bot. 66, 6877–6889. PubMed PMC
Hörtensteiner S. (2006). Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57, 55–77. PubMed
Huang G. T., Ma S. L., Bai L. P., Zhang L., Ma H., Jia P., et al. . (2012). Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep. 39, 969–987. PubMed
Janečková H., Husičková A., Lazár D., Ferretti U., Pospíšil P., Špundová M. (2019). Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley. Plant Physiol. Biochem. 136, 43–51. PubMed
Jing H. C., Sturre M. J., Hille J., Dijkwel P. P. (2002). Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant J. 32, 51–63. doi: 10.1046/j.1365-313X.2002.01400.x PubMed DOI
Johnson G. N. (2011). Physiology of PSI cyclic electron transport in higher plants. Biochim. Biophys. Acta 1807, 384–389. PubMed
Kim J., Woo H. R., Nam H. G. (2016). Toward systems understanding of leaf senescence: An integrated multi-omics perspective on leaf senescence research. Mol. Plant 9, 813–825. PubMed
Klughammer C., Schreiber U. (2008). Saturation pulse method for assessment of energy conversion in PSI. PAM Appl. Notes 1, 11–14.
Krieger-Liszkay A., Krupinska K., Shimakawa G. (2019). The impact of photosynthesis on initiation of leaf senescence. Physiol. Plantarum 166, 148–164. PubMed
Kučerová Z., Rác M., Mikulík J., Plíhal O., Pospíšil P., Bryksová M., et al. . (2020). The anti-senescence activity of cytokinin arabinosides in wheat and arabidopsis is negatively correlated with ethylene production. Int. J. Mol. Sci. 21, 8109. PubMed PMC
Lafarge T. A., Broad I. J., Hammer G. L. (2002). Tillering in grain sorghum over a wide range of population densities: Identification of a common hierarchy for tiller emergence, leaf area development and fertility. Ann. Bot. 90, 87–98. PubMed PMC
Lehtimaki N., Lintala M., Allahverdiyeva Y., Aro E. M., Mulo P. (2010). Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer. J. Plant Physiol. 167, 1018–1022. PubMed
Li R., Liu P., Dong S., Zhang J., Zhao B. (2019). Increased maize plant population induced leaf senescence, suppressed root growth, nitrogen uptake, and grain yield. Agron. J. 111, 1581–1591.
Lohman K. N., Gan S., John M. C., Amasino R. M. (1994). Molecular analysis of natural leaf senescence in arabidopsis thaliana. Physiol. Plant 92, 322–328. doi: 10.1111/j.1399-3054.1994.tb05343.x DOI
Long T. A., Okegawa Y., Shikanai T., Schmidt G. W., Covert S. F. (2008). Conserved role of proton gradient regulation 5 in the regulation of PSI cyclic electron transport. Planta 228, 907–918. PubMed
Makino A., Osmond B. (1991). Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol. 96, 355–362. PubMed PMC
Matile P., Hörtensteiner S., Thomas H. (1999).Chlorophyll degradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 67–95. doi: 10.1146/annurev.arplant.50.1.67 PubMed DOI
Miersch I., Heise J., Zelmer I., Humbeck K. (2000). Differential degradation of the photosynthetic apparatus during leaf senescence in barley (Hordeum vulgare l.). Plant Biol. 2, 618–623.
Munns R., Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. PubMed
Nisler J., Zatloukal M., Sobotka R., Pilný J., Zdvihalová B., Novák O., et al. . (2018). New urea derivatives are effective anti-senescence compounds acting most likely via a cytokinin-independent mechanism. Front. Plant Sci. 9, 1225. PubMed PMC
Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69, 2214–2224. PubMed
Pagliano C., Barera S., Chimirri F., Saracco G., Barber J. (2012). Comparison of the a and b isomeric forms of the detergent n-dodecyl-D-maltoside for solubilizing photosynthetic complexes from pea thylakoid membranes. Biochim. Biophys. Acta 1817, 1506–1515. PubMed
Pazderník M., Mareš J., Pilný J., Sobotka R. (2019). The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J. Biol. Chem. 294, 11131–11143. PubMed PMC
Peterson R. B., Zelitch I. (1982). Relationship between net CO2 assimilation and dry weight accumulation in field-grown tobacco. Plant Physiol. 70, 677–685. PubMed PMC
Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. PubMed PMC
Potters G., Pasternak T. P., Guisez Y., Palme K. J., Jansen M. A. K. (2007). Stress-induced morphogenic responses: Growing out of trouble? Trends Plant Sci. 12, 98–105. PubMed
Reguera M., Peleg Z., Blumwald E. (2012). Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim. Biophys. Acta 1819, 186–194. PubMed
Richards R. A., Rebetzke G. J., Watt M., Condon A. G., Spielmeyer W., Dolferus R. (2010). Breeding for improved water productivity in temperate cereals: Phenotyping, quantitative trait loci, markers and the selection environment. Func Plant Biol. 37, 85–97.
Schöttler M. A., Tóth S. Z. (2014). Photosynthetic complex stoichiometry dynamics in higher plants: Environmental acclimation and photosynthetic flux control. Front. Plant Sci. 5, 188. PubMed PMC
Song Y., Miao Y., Song C. P. (2014). Behind the scenes: The roles of reactive oxygen species in guard cells. New Phytol. 201, 1121–1140. PubMed
Suorsa M. (2015). Cyclic electron flow provides acclimatory plasticity for the photosynthetic machinery under various environmental conditions and developmental stages. Front. Plant Sci. 28. PubMed PMC
Talla S. K., Panigrahy M., Kappara S., Nirosha P., Neelamraju S., Ramanan R. (2016). Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot. 67, 1839–1851. PubMed PMC
Tang Y., Wen X., Lu C. (2005). Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Phys. Biochem. 43, 193–201. PubMed
Tarkowská D., Novák O., Oklestkova J., Strnad M. (2016). The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESI–MS/MS. Anal. Bioanal Chem. 408, 6799–6812. PubMed
Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. (2013). Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. Talanta 112, 85–94. PubMed
van Tol N., Rolloos M., Augustijn D., Alia A., de Groot H. J., Hooykaas P. J. J., et al. . (2017). An arabidopsis mutant with high operating efficiency of photosystem II and low chlorophyll fluorescence. Sci. Rep. 7, 3314. PubMed PMC
Vardhini B. V., Anjum N. A. (2015). Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front. Environ. Sci. 2, 67.
Woo H. R., Kim H. J., Nam H. G., Lim P. O. (2013). Plant leaf senescence and death - regulation by multiple layers of control and implications for aging in general. J. Cell Sci. 126, 4823–4833. PubMed
Yamaguchi S. (2008). Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59, 225–251. PubMed
Yang W., Liu X. D., Chi X. J., Wu C. A., Li Y. Z., Song L. L., et al. . (2011). Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233, 219–229. PubMed
Zivcak M., Kalaji H. M., Shao H., Olsovska K., Brestic M. (2014). Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J. Photochem. Photobiol B 137, 107–115. PubMed