The Anti-Senescence Activity of Cytokinin Arabinosides in Wheat and Arabidopsis Is Negatively Correlated with Ethylene Production
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_048/0007323
Ministerstvo Školství, Mládeže a Tělovýchovy :
16-04184S
Czech Science Foundation
IGA_PrF_2018_022, IGA_PrF_2020_010
Palacky University Olomouc
PubMed
33143091
PubMed Central
PMC7662598
DOI
10.3390/ijms21218109
PII: ijms21218109
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, chlorophyll fluorescence, cytokinin derivative, ethylene, oxidative stress, photosystem II, phytohormone, senescence, wheat,
- MeSH
- Arabidopsis účinky léků růst a vývoj metabolismus MeSH
- cytokininy farmakologie MeSH
- ethyleny metabolismus MeSH
- fotosyntéza MeSH
- listy rostlin účinky léků růst a vývoj metabolismus MeSH
- pšenice účinky léků růst a vývoj metabolismus MeSH
- regulátory růstu rostlin farmakologie MeSH
- stárnutí buněk * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- regulátory růstu rostlin MeSH
Leaf senescence, accompanied by chlorophyll breakdown, chloroplast degradation and inhibition of photosynthesis, can be suppressed by an exogenous application of cytokinins. Two aromatic cytokinin arabinosides (6-benzylamino-9-β-d-arabinofuranosylpurines; BAPAs), 3-hydroxy- (3OHBAPA) and 3-methoxy- (3MeOBAPA) derivatives, have recently been found to possess high anti-senescence activity. Interestingly, their effect on the maintenance of chlorophyll content and maximal quantum yield of photosystem II (PSII) in detached dark-adapted leaves differed quantitatively in wheat (Triticum aestivum L. cv. Aranka) and Arabidopsis (Arabidopsisthaliana L. (Col-0)). In this work, we have found that the anti-senescence effects of 3OHBAPA and 3MeOBAPA in wheat and Arabidopsis also differ in other parameters, including the maintenance of carotenoid content and chloroplasts, rate of reduction of primary electron acceptor of PSII (QA) as well as electron transport behind QA, and partitioning of absorbed light energy in light-adapted leaves. In wheat, 3OHBAPA had a higher protective effect than 3MeOBAPA, whereas in Arabidopsis, 3MeOBAPA was the more efficient derivative. We have found that the different anti-senescent activity of 3OHBAPA and 3MeOBAPA was coupled to different ethylene production in the treated leaves: the lower the ethylene production, the higher the anti-senescence activity. 3OHBAPA and 3MeOBAPA also efficiently protected the senescing leaves of wheat and Arabidopsis against oxidative damage induced by both H2O2 and high-light treatment, which could also be connected with the low level of ethylene production.
Zobrazit více v PubMed
Špundová M., Popelková H., Ilík P., Skotnica J., Novotný R., Nauš J. Ultra-structural and functional changes in the chloroplasts of detached barley leaves senescing under dark and light conditions. J. Plant Physiol. 2003;160:1051–1058. doi: 10.1078/0176-1617-00902. PubMed DOI
Janečková H., Husičková A., Ferretti U., Prčina M., Pilařová E., Plačková L., Pospíšil P., Doležal K., Špundová M. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. Plant Cell Environ. 2018;41:1870–1885. doi: 10.1111/pce.13329. PubMed DOI
Janečková H., Husičková A., Lazár D., Ferretti U., Pospíšil P., Špundová M. Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley. Plant Physiol. Biochem. 2019;136:43–51. doi: 10.1016/j.plaphy.2019.01.005. PubMed DOI
Breeze E., Harrison E., McHattie S., Hughes L., Hickman R., Hill C., Kiddle S., Kim Y.S., Penfold C.A., Jenkins D., et al. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell. 2011;23:873–894. doi: 10.1105/tpc.111.083345. PubMed DOI PMC
Holub L., Hanuš J., Hanke D.E., Strnad M. Biological activity of cytokinins derived from ortho- and meta-hydroxybenzyladenine. Plant Growth Regul. 1998;26:109–115. doi: 10.1023/A:1006192619432. DOI
Oh M.H., Kim J.H., Zulfugarov I.S., Moon Y.H., Rhew T.H., Lee C.H. Effects of benzyladenine and abscisic acid on the disassembly process of photosystems in an Arabidopsis delayed-senescence mutant, ore9. J. Plant Biol. 2005;48:170–177. doi: 10.1007/BF03030405. DOI
Vlčková A., Špundová M., Kotabová E., Novotný R., Doležal K., Nauš J. Protective cytokinin action switches to damaging during senescence of detached wheat leaves in continuous light. Physiol. Plant. 2006;126:257–267. doi: 10.1111/j.1399-3054.2006.00593.x. DOI
Zavaleta-Mancera H.A., López-Delgado H., Loza-Tavera H., Mora-Herrera M., Trevilla-García C., Vargas-Suárez M., Ougham H. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J. Plant Physiol. 2007;164:1572–1582. doi: 10.1016/j.jplph.2007.02.003. PubMed DOI
Liu L., Li H., Zeng H., Cai Q., Zhou X., Yin C. Exogenous jasmonic acid and cytokinin antagonistically regulate rice flag leaf senescence by mediating chlorophyll degradation, membrane deterioration, and senescence-associated genes expression. J. Plant Growth Regul. 2016;35:366–376. doi: 10.1007/s00344-015-9539-0. DOI
Weaver L.M., Gan S., Quirino B., Amasino R.M. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol. 1998;37:455–469. doi: 10.1023/A:1005934428906. PubMed DOI
Vylíčilová H., Husičková A., Spíchal L., Srovnal J., Doležal K., Plíhal O., Plíhalová L. C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. Phytochemistry. 2016;122:22–33. doi: 10.1016/j.phytochem.2015.12.001. PubMed DOI
Schippers J.H.M., Schmidt R., Wagstaff C., Jing H.C. Living to die and dying to live: The survival strategy behind leaf senescence. Plant Physiol. 2015;169:914–930. doi: 10.1104/pp.15.00498. PubMed DOI PMC
Koprna R., De Diego N., Dundálková L., Spíchal L. Use of cytokinins as agrochemicals. Bioorg. Med. Chem. 2016;24:484–492. doi: 10.1016/j.bmc.2015.12.022. PubMed DOI
Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., Köllmer I., Schmülling T., Frébort I. Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 2007;26:255–267. doi: 10.1007/s00344-007-9008-5. DOI
Aremu A.O., Bairu M.W., Doležal K., Finnie J.F., Van Staden J. Topolins: A panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult. 2012;108:1–16. doi: 10.1007/s11240-011-0007-7. DOI
Woodward E.J., Marshall C. Effects of plant-growth regulators and nutrient supply on tiller bud outgrowth in barley (Hordeum distichum L.) Ann. Bot. 1998;61:347–354. doi: 10.1093/oxfordjournals.aob.a087563. DOI
Werbrouck S.P.O., Strnad M., Van Ockelen H.A., Debergh P.C. Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol. Plant. 1996;98:291–297. doi: 10.1034/j.1399-3054.1996.980210.x. DOI
Iqbal M., Ashraf M., Jamil A. Seed enhancement with cytokinins: Changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul. 2006;50:29–39. doi: 10.1007/s10725-006-9123-5. DOI
Bairu M.W., Stirk W.A., Doležal K., Van Staden J. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ. Cult. 2007;90:15–23. doi: 10.1007/s11240-007-9233-4. DOI
Rulcová J., Pospíšilová J. Effect of benzylaminopurine on rehydration of bean plants after water stress. Biol. Plant. 2001;44:75–81. doi: 10.1023/A:1017922421606. DOI
Prokopová J., Špundová M., Sedlářová M., Husičková A., Novotný R., Doležal K., Nauš J., Lebeda A. Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiol. Biochem. 2010;48:716–723. doi: 10.1016/j.plaphy.2010.04.003. PubMed DOI
Plíhalová L., Vylíčilová H., Doležal K., Zahajská L., Zatloukal M., Strnad M. Synthesis of aromatic cytokinins for plant biotechnology. N. Biotechnol. 2016;33:614–624. doi: 10.1016/j.nbt.2015.11.009. PubMed DOI
Tarkowská D., Doležal K., Tarkowski P., Åstot C., Holub J., Fuksová K., Schmülling T., Sandberg G., Strnad M. Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus x canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography frit-fast atom bombardment mass spectrometry. Physiol. Plant. 2003;117:579–590. doi: 10.1034/j.1399-3054.2003.00071.x. PubMed DOI
Szüčová L., Spíchal L., Doležal K., Zatloukal M., Greplová J., Galuszka P., Kryštof V., Voller J., Popa I., Massino F.J., et al. Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorg. Med. Chem. 2009;17:1938–1947. doi: 10.1016/j.bmc.2009.01.041. PubMed DOI
Doležal K., Plíhalová L., Vylíčilová H., Zatloukal M., Plíhal O., Voller J., Strnad M., Bryksová M., Vostálová J., Rajnochová Svobodová A., et al. 6-aryl-9-glycosylpurines and use thereof. 10,100,077. U.S. Patent. 2018 Oct 16
Bryksová M., Dabravolski S., Kučerová Z., Zavadil Kokáš F., Špundová M., Plíhalová L., Takáč T., Grúz J., Hudeček M., Hloušková V., et al. Aromatic cytokinin arabinosides promote PAMP-like responses and positively regulate leaf longevity. ACS Chem. Biol. 2020;15:1949–1963. doi: 10.1021/acschembio.0c00306. PubMed DOI
Nisler J., Zatloukal M., Sobotka R., Pilný J., Zdvihalová B., Novák O., Strnad M., Spíchal L. New urea derivatives are effective anti-senescence compounds acting most likely via a cytokinin-independent mechanism. Front. Plant Sci. 2018;9:1225. doi: 10.3389/fpls.2018.01225. PubMed DOI PMC
Strasser R.J., Srivastava A., Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M., Pathre U., Mohanty P., editors. Probing Photosynthesis: Mechanism, Regulation & Adaptation. Taylor & Francis; New York, NY, USA: 2000. pp. 443–480.
Leong T.-Y., Anderson J.M. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis. Photosynth. Res. 1984;5:117–128. doi: 10.1007/BF00028525. PubMed DOI
Lazár D. Parameters of photosynthetic energy partitioning. J. Plant Physiol. 2015;175:131–147. doi: 10.1016/j.jplph.2014.10.021. PubMed DOI
Triantaphylidès C., Havaux M. Singlet oxygen in plants: Production, detoxification and signalling. Trends Plant Sci. 2009;14:219–228. doi: 10.1016/j.tplants.2009.01.008. PubMed DOI
Špundová M., Vlčková A., Doležal K., Habertová A., Nauš J., Strnad M. Proceedings of the 12th International Congress on Photosynthesis. CSIRO Publishing; Collingwood, Victoria, Australia: 2001. Effect of meta-topolin and bohemine derived from benzylaminopurine on PSII function in artificially senescing wheat leaves. S22-012.
Cary J.A., Liu W., Howell S.H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995;107:1075–1082. doi: 10.1104/pp.107.4.1075. PubMed DOI PMC
Zdarska M., Dobisová T., Gelová Z., Pernisová M., Dabravolski S., Hejátko J. Illuminating light, cytokinin, and ethylene signalling crosstalk. J. Exp. Bot. 2015;66:4913–4931. doi: 10.1093/jxb/erv261. PubMed DOI
Ceusters J., Van de Poel B. Ethylene exerts species-specific and age-dependent control of photosynthesis. Plant Physiol. 2018;176:2601–2612. doi: 10.1104/pp.17.01706. PubMed DOI PMC
Wi S.J., Jang S.J., Park K.Y. Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol. Cells. 2010;30:37–49. doi: 10.1007/s10059-010-0086-z. PubMed DOI
Pospíšil P., Prasad A., Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photoch Photobiol. B. 2014;139:11–23. doi: 10.1016/j.jphotobiol.2014.02.008. PubMed DOI
Li Z., Wakao S., Fischer B.B., Niyogi K.K. Sensing and responding to excess light. Annu Rev. Plant Biol. 2009;60:239–260. doi: 10.1146/annurev.arplant.58.032806.103844. PubMed DOI
Pinnola A., Bassi R. Molecular mechanisms involved in plant photoprotection. Biochem. Soc. Trans. 2018;46:467–482. doi: 10.1042/BST20170307. PubMed DOI
Wu A., Allu A.D., Garapati P., Siddiqui H., Dortay H., Zanor M.I., Asensi-Fabado M.A., Munné-Bosch S., Antonio C., Tohge T., et al. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell. 2012;24:482–506. doi: 10.1105/tpc.111.090894. PubMed DOI PMC
Hutin C., Nussaume L., Moise N., Moya I., Kloppstech K., Havaux M. Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc. Natl. Acad. Sci. USA. 2003;100:4921–4926. doi: 10.1073/pnas.0736939100. PubMed DOI PMC
Meyer G., Kloppstech K. A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur. J. Biochem. 1984;138:201–207. doi: 10.1111/j.1432-1033.1984.tb07900.x. PubMed DOI
Binyamin L., Falah M., Portnoy V., Soudry E., Gepstein S. The early light-induced protein is also produced during leaf senescence of Nicotiana tabacum. Planta. 2001;212:591–597. doi: 10.1007/s004250000423. PubMed DOI
Humbeck K., Kloppstech K., Krupinska K. Expression of early-light inducible proteins in flag leaves of field-grown barley. Plant Physiol. 1994;105:1217–1222. doi: 10.1104/pp.105.4.1217. PubMed DOI PMC
Riefler M., Novák O., Strnad M., Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2016;18:40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC
Cortleven A., Nitschke S., Klaumünzer M., Abdelgawad H., Asard H., Grimm B., Riefler M., Schmülling T. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors. Plant Physiol. 2014;164:1470–1483. doi: 10.1104/pp.113.224667. PubMed DOI PMC
Qiu K., Li Z., Yang Z., Chen J., Wu S., Zhu X., Gao S., Gao J., Ren G., Kuai B., et al. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet. 2015;11:e1005399. doi: 10.1371/journal.pgen.1005399. PubMed DOI PMC
Yu J., Zhang Y., Di C., Zhang Q., Zhang K., Wang C., You Q., Yan H., Dai S.Y., Yuan J.S., et al. JAZ7 negatively regulates dark-induced senescence in Arabidopsis. J. Exp. Bot. 2016;67:751–762. doi: 10.1093/jxb/erv487. PubMed DOI PMC
Kim J., Kim J.H., Lyu J.I., Woo H.R., Lim P.O. New insights into the regulation of leaf senescence in Arabidopsis. J. Exp. Bot. 2018;69:787–799. doi: 10.1093/jxb/erx287. PubMed DOI
Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–382. doi: 10.1016/0076-6879(87)48036-1. DOI
Gilmore A.M., Björkman O. Adenine nucleotides and the xanthophyll cycle in leaves—I. Effects of CO2- and temperature-limited photosynthesis on adenylate energy charge and violaxanthin de-epoxidation. Planta. 1994;192:526–536. doi: 10.1007/BF00203591. DOI
Sedlářová M., Petřivalský M., Piterková J., Luhová L., Kočířová J., Lebeda A. Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp. Eur. J. Plant Pathol. 2011;129:267–280. doi: 10.1007/s10658-010-9626-9. DOI
Prasad A., Pospíšil P. Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep. 2013;3:1211. doi: 10.1038/srep01211. PubMed DOI PMC
Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis