The Anti-Senescence Activity of Cytokinin Arabinosides in Wheat and Arabidopsis Is Negatively Correlated with Ethylene Production

. 2020 Oct 30 ; 21 (21) : . [epub] 20201030

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33143091

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_048/0007323 Ministerstvo Školství, Mládeže a Tělovýchovy :
16-04184S Czech Science Foundation
IGA_PrF_2018_022, IGA_PrF_2020_010 Palacky University Olomouc

Leaf senescence, accompanied by chlorophyll breakdown, chloroplast degradation and inhibition of photosynthesis, can be suppressed by an exogenous application of cytokinins. Two aromatic cytokinin arabinosides (6-benzylamino-9-β-d-arabinofuranosylpurines; BAPAs), 3-hydroxy- (3OHBAPA) and 3-methoxy- (3MeOBAPA) derivatives, have recently been found to possess high anti-senescence activity. Interestingly, their effect on the maintenance of chlorophyll content and maximal quantum yield of photosystem II (PSII) in detached dark-adapted leaves differed quantitatively in wheat (Triticum aestivum L. cv. Aranka) and Arabidopsis (Arabidopsisthaliana L. (Col-0)). In this work, we have found that the anti-senescence effects of 3OHBAPA and 3MeOBAPA in wheat and Arabidopsis also differ in other parameters, including the maintenance of carotenoid content and chloroplasts, rate of reduction of primary electron acceptor of PSII (QA) as well as electron transport behind QA, and partitioning of absorbed light energy in light-adapted leaves. In wheat, 3OHBAPA had a higher protective effect than 3MeOBAPA, whereas in Arabidopsis, 3MeOBAPA was the more efficient derivative. We have found that the different anti-senescent activity of 3OHBAPA and 3MeOBAPA was coupled to different ethylene production in the treated leaves: the lower the ethylene production, the higher the anti-senescence activity. 3OHBAPA and 3MeOBAPA also efficiently protected the senescing leaves of wheat and Arabidopsis against oxidative damage induced by both H2O2 and high-light treatment, which could also be connected with the low level of ethylene production.

Zobrazit více v PubMed

Špundová M., Popelková H., Ilík P., Skotnica J., Novotný R., Nauš J. Ultra-structural and functional changes in the chloroplasts of detached barley leaves senescing under dark and light conditions. J. Plant Physiol. 2003;160:1051–1058. doi: 10.1078/0176-1617-00902. PubMed DOI

Janečková H., Husičková A., Ferretti U., Prčina M., Pilařová E., Plačková L., Pospíšil P., Doležal K., Špundová M. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. Plant Cell Environ. 2018;41:1870–1885. doi: 10.1111/pce.13329. PubMed DOI

Janečková H., Husičková A., Lazár D., Ferretti U., Pospíšil P., Špundová M. Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley. Plant Physiol. Biochem. 2019;136:43–51. doi: 10.1016/j.plaphy.2019.01.005. PubMed DOI

Breeze E., Harrison E., McHattie S., Hughes L., Hickman R., Hill C., Kiddle S., Kim Y.S., Penfold C.A., Jenkins D., et al. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell. 2011;23:873–894. doi: 10.1105/tpc.111.083345. PubMed DOI PMC

Holub L., Hanuš J., Hanke D.E., Strnad M. Biological activity of cytokinins derived from ortho- and meta-hydroxybenzyladenine. Plant Growth Regul. 1998;26:109–115. doi: 10.1023/A:1006192619432. DOI

Oh M.H., Kim J.H., Zulfugarov I.S., Moon Y.H., Rhew T.H., Lee C.H. Effects of benzyladenine and abscisic acid on the disassembly process of photosystems in an Arabidopsis delayed-senescence mutant, ore9. J. Plant Biol. 2005;48:170–177. doi: 10.1007/BF03030405. DOI

Vlčková A., Špundová M., Kotabová E., Novotný R., Doležal K., Nauš J. Protective cytokinin action switches to damaging during senescence of detached wheat leaves in continuous light. Physiol. Plant. 2006;126:257–267. doi: 10.1111/j.1399-3054.2006.00593.x. DOI

Zavaleta-Mancera H.A., López-Delgado H., Loza-Tavera H., Mora-Herrera M., Trevilla-García C., Vargas-Suárez M., Ougham H. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J. Plant Physiol. 2007;164:1572–1582. doi: 10.1016/j.jplph.2007.02.003. PubMed DOI

Liu L., Li H., Zeng H., Cai Q., Zhou X., Yin C. Exogenous jasmonic acid and cytokinin antagonistically regulate rice flag leaf senescence by mediating chlorophyll degradation, membrane deterioration, and senescence-associated genes expression. J. Plant Growth Regul. 2016;35:366–376. doi: 10.1007/s00344-015-9539-0. DOI

Weaver L.M., Gan S., Quirino B., Amasino R.M. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol. 1998;37:455–469. doi: 10.1023/A:1005934428906. PubMed DOI

Vylíčilová H., Husičková A., Spíchal L., Srovnal J., Doležal K., Plíhal O., Plíhalová L. C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. Phytochemistry. 2016;122:22–33. doi: 10.1016/j.phytochem.2015.12.001. PubMed DOI

Schippers J.H.M., Schmidt R., Wagstaff C., Jing H.C. Living to die and dying to live: The survival strategy behind leaf senescence. Plant Physiol. 2015;169:914–930. doi: 10.1104/pp.15.00498. PubMed DOI PMC

Koprna R., De Diego N., Dundálková L., Spíchal L. Use of cytokinins as agrochemicals. Bioorg. Med. Chem. 2016;24:484–492. doi: 10.1016/j.bmc.2015.12.022. PubMed DOI

Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., Köllmer I., Schmülling T., Frébort I. Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 2007;26:255–267. doi: 10.1007/s00344-007-9008-5. DOI

Aremu A.O., Bairu M.W., Doležal K., Finnie J.F., Van Staden J. Topolins: A panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult. 2012;108:1–16. doi: 10.1007/s11240-011-0007-7. DOI

Woodward E.J., Marshall C. Effects of plant-growth regulators and nutrient supply on tiller bud outgrowth in barley (Hordeum distichum L.) Ann. Bot. 1998;61:347–354. doi: 10.1093/oxfordjournals.aob.a087563. DOI

Werbrouck S.P.O., Strnad M., Van Ockelen H.A., Debergh P.C. Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol. Plant. 1996;98:291–297. doi: 10.1034/j.1399-3054.1996.980210.x. DOI

Iqbal M., Ashraf M., Jamil A. Seed enhancement with cytokinins: Changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul. 2006;50:29–39. doi: 10.1007/s10725-006-9123-5. DOI

Bairu M.W., Stirk W.A., Doležal K., Van Staden J. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ. Cult. 2007;90:15–23. doi: 10.1007/s11240-007-9233-4. DOI

Rulcová J., Pospíšilová J. Effect of benzylaminopurine on rehydration of bean plants after water stress. Biol. Plant. 2001;44:75–81. doi: 10.1023/A:1017922421606. DOI

Prokopová J., Špundová M., Sedlářová M., Husičková A., Novotný R., Doležal K., Nauš J., Lebeda A. Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiol. Biochem. 2010;48:716–723. doi: 10.1016/j.plaphy.2010.04.003. PubMed DOI

Plíhalová L., Vylíčilová H., Doležal K., Zahajská L., Zatloukal M., Strnad M. Synthesis of aromatic cytokinins for plant biotechnology. N. Biotechnol. 2016;33:614–624. doi: 10.1016/j.nbt.2015.11.009. PubMed DOI

Tarkowská D., Doležal K., Tarkowski P., Åstot C., Holub J., Fuksová K., Schmülling T., Sandberg G., Strnad M. Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus x canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography frit-fast atom bombardment mass spectrometry. Physiol. Plant. 2003;117:579–590. doi: 10.1034/j.1399-3054.2003.00071.x. PubMed DOI

Szüčová L., Spíchal L., Doležal K., Zatloukal M., Greplová J., Galuszka P., Kryštof V., Voller J., Popa I., Massino F.J., et al. Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorg. Med. Chem. 2009;17:1938–1947. doi: 10.1016/j.bmc.2009.01.041. PubMed DOI

Doležal K., Plíhalová L., Vylíčilová H., Zatloukal M., Plíhal O., Voller J., Strnad M., Bryksová M., Vostálová J., Rajnochová Svobodová A., et al. 6-aryl-9-glycosylpurines and use thereof. 10,100,077. U.S. Patent. 2018 Oct 16

Bryksová M., Dabravolski S., Kučerová Z., Zavadil Kokáš F., Špundová M., Plíhalová L., Takáč T., Grúz J., Hudeček M., Hloušková V., et al. Aromatic cytokinin arabinosides promote PAMP-like responses and positively regulate leaf longevity. ACS Chem. Biol. 2020;15:1949–1963. doi: 10.1021/acschembio.0c00306. PubMed DOI

Nisler J., Zatloukal M., Sobotka R., Pilný J., Zdvihalová B., Novák O., Strnad M., Spíchal L. New urea derivatives are effective anti-senescence compounds acting most likely via a cytokinin-independent mechanism. Front. Plant Sci. 2018;9:1225. doi: 10.3389/fpls.2018.01225. PubMed DOI PMC

Strasser R.J., Srivastava A., Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M., Pathre U., Mohanty P., editors. Probing Photosynthesis: Mechanism, Regulation & Adaptation. Taylor & Francis; New York, NY, USA: 2000. pp. 443–480.

Leong T.-Y., Anderson J.M. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis. Photosynth. Res. 1984;5:117–128. doi: 10.1007/BF00028525. PubMed DOI

Lazár D. Parameters of photosynthetic energy partitioning. J. Plant Physiol. 2015;175:131–147. doi: 10.1016/j.jplph.2014.10.021. PubMed DOI

Triantaphylidès C., Havaux M. Singlet oxygen in plants: Production, detoxification and signalling. Trends Plant Sci. 2009;14:219–228. doi: 10.1016/j.tplants.2009.01.008. PubMed DOI

Špundová M., Vlčková A., Doležal K., Habertová A., Nauš J., Strnad M. Proceedings of the 12th International Congress on Photosynthesis. CSIRO Publishing; Collingwood, Victoria, Australia: 2001. Effect of meta-topolin and bohemine derived from benzylaminopurine on PSII function in artificially senescing wheat leaves. S22-012.

Cary J.A., Liu W., Howell S.H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995;107:1075–1082. doi: 10.1104/pp.107.4.1075. PubMed DOI PMC

Zdarska M., Dobisová T., Gelová Z., Pernisová M., Dabravolski S., Hejátko J. Illuminating light, cytokinin, and ethylene signalling crosstalk. J. Exp. Bot. 2015;66:4913–4931. doi: 10.1093/jxb/erv261. PubMed DOI

Ceusters J., Van de Poel B. Ethylene exerts species-specific and age-dependent control of photosynthesis. Plant Physiol. 2018;176:2601–2612. doi: 10.1104/pp.17.01706. PubMed DOI PMC

Wi S.J., Jang S.J., Park K.Y. Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol. Cells. 2010;30:37–49. doi: 10.1007/s10059-010-0086-z. PubMed DOI

Pospíšil P., Prasad A., Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photoch Photobiol. B. 2014;139:11–23. doi: 10.1016/j.jphotobiol.2014.02.008. PubMed DOI

Li Z., Wakao S., Fischer B.B., Niyogi K.K. Sensing and responding to excess light. Annu Rev. Plant Biol. 2009;60:239–260. doi: 10.1146/annurev.arplant.58.032806.103844. PubMed DOI

Pinnola A., Bassi R. Molecular mechanisms involved in plant photoprotection. Biochem. Soc. Trans. 2018;46:467–482. doi: 10.1042/BST20170307. PubMed DOI

Wu A., Allu A.D., Garapati P., Siddiqui H., Dortay H., Zanor M.I., Asensi-Fabado M.A., Munné-Bosch S., Antonio C., Tohge T., et al. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell. 2012;24:482–506. doi: 10.1105/tpc.111.090894. PubMed DOI PMC

Hutin C., Nussaume L., Moise N., Moya I., Kloppstech K., Havaux M. Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc. Natl. Acad. Sci. USA. 2003;100:4921–4926. doi: 10.1073/pnas.0736939100. PubMed DOI PMC

Meyer G., Kloppstech K. A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur. J. Biochem. 1984;138:201–207. doi: 10.1111/j.1432-1033.1984.tb07900.x. PubMed DOI

Binyamin L., Falah M., Portnoy V., Soudry E., Gepstein S. The early light-induced protein is also produced during leaf senescence of Nicotiana tabacum. Planta. 2001;212:591–597. doi: 10.1007/s004250000423. PubMed DOI

Humbeck K., Kloppstech K., Krupinska K. Expression of early-light inducible proteins in flag leaves of field-grown barley. Plant Physiol. 1994;105:1217–1222. doi: 10.1104/pp.105.4.1217. PubMed DOI PMC

Riefler M., Novák O., Strnad M., Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2016;18:40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC

Cortleven A., Nitschke S., Klaumünzer M., Abdelgawad H., Asard H., Grimm B., Riefler M., Schmülling T. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors. Plant Physiol. 2014;164:1470–1483. doi: 10.1104/pp.113.224667. PubMed DOI PMC

Qiu K., Li Z., Yang Z., Chen J., Wu S., Zhu X., Gao S., Gao J., Ren G., Kuai B., et al. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet. 2015;11:e1005399. doi: 10.1371/journal.pgen.1005399. PubMed DOI PMC

Yu J., Zhang Y., Di C., Zhang Q., Zhang K., Wang C., You Q., Yan H., Dai S.Y., Yuan J.S., et al. JAZ7 negatively regulates dark-induced senescence in Arabidopsis. J. Exp. Bot. 2016;67:751–762. doi: 10.1093/jxb/erv487. PubMed DOI PMC

Kim J., Kim J.H., Lyu J.I., Woo H.R., Lim P.O. New insights into the regulation of leaf senescence in Arabidopsis. J. Exp. Bot. 2018;69:787–799. doi: 10.1093/jxb/erx287. PubMed DOI

Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–382. doi: 10.1016/0076-6879(87)48036-1. DOI

Gilmore A.M., Björkman O. Adenine nucleotides and the xanthophyll cycle in leaves—I. Effects of CO2- and temperature-limited photosynthesis on adenylate energy charge and violaxanthin de-epoxidation. Planta. 1994;192:526–536. doi: 10.1007/BF00203591. DOI

Sedlářová M., Petřivalský M., Piterková J., Luhová L., Kočířová J., Lebeda A. Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp. Eur. J. Plant Pathol. 2011;129:267–280. doi: 10.1007/s10658-010-9626-9. DOI

Prasad A., Pospíšil P. Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep. 2013;3:1211. doi: 10.1038/srep01211. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...