Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23386970
PubMed Central
PMC3564034
DOI
10.1038/srep01211
PII: srep01211
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis fyziologie MeSH
- časové faktory MeSH
- fotony * MeSH
- lidé MeSH
- oxidace-redukce MeSH
- ruka fyziologie MeSH
- Saccharomyces cerevisiae fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Two-dimensional imaging of spontaneous ultra-weak photon emission was measured in the yeast cells, Arabidopsis plant and the human hand using highly sensitive charge coupled device (CCD) camera. For the first time, the detail analysis of measuring parameters such as accumulation time and binning is provided with the aim to achieve two-dimensional images of spontaneous ultra-weak photon emission of good quality. We present data showing that using a hardware binning with binning factor 4 × 4, the accumulation time decreases in the following order: yeast cells (30 min) > the human hand (20 min) > Arabidopsis plant (10 min). Analysis of measuring parameters provides a detailed description of standard condition to be used for two-dimensional spontaneous ultra-weak photon imaging in microbes, plants and animals. Thus, CCD imaging can be employed as a unique tool to examine the oxidative state of the living organism with the application in microbiological, plant and medical research.
Zobrazit více v PubMed
Amano T., Kobayashi M., Devaraj B., Usa M. & Inaba H. Ultra-weak biophoton emission imaging of transplanted bladder cancer. Urol. Res. 23 (5), 315–318 (1995). PubMed
Van wijk R., Van wijk E. P. A. & Bajpai R. P. Photocount distribution of photon emitted from three sites of a human body. J. Photochem. Photobiol. B: Biology 84, 45–55 (2006). PubMed
Cifra M., Van wijk E., Koch H., Bosman, S. & Van wijk, R. Spontaneous ultra-weak photon emission from human hand is time dependent. Radioengineering 16 (2), 15–19 (2007).
Laagar F., Park S.-H., Yang J.-M., Song W. & Soh K.-S. Effect of exercises on biophoton emission of the wrist. Eur. J. Appl. Physiol. 102, 463–469 (2008). PubMed
Kobayashi M., Kikuchi D. & Okamura H. Imaging of ultra-weak spontaneous photon emission from human body displaying diurnal rythym. PLoS one 4 (7), e6256 (2009). PubMed PMC
Prasad A. & Pospíšil P. Linoleic acid-induced ultra-weak photon emission from Clamydomonas reanhardtii as a tool for monitoring lipid peroxidation in cell membrane. PLoS one 6 (7), e22345 (2011). PubMed PMC
Prasad A. & Pospíšil P. Two-dimensional imaging of spontaneous ultraweak photon emisiion from the human skin: role of reactive oxygen species. J. Biophotonics 4 (11–12), 840–849 (2011). PubMed
Rastogi A. & Pospíšil P. Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defence system. J. Biomed. Opt. 16 (9), 096005 (2011). PubMed
Takeda M., Kobayashi M., Takayama M., Suzuki S., Ishida T., Ohnuki K., Moriya T. & Ohuchi N. Biophoton detection as a novel technique for cancer imaging. Cancer Sci. 95 (8), 656–661 (2004). PubMed PMC
Cabello J., Bailey A., Kitchen I., Prydderch M., Clark A., Turchetta R. & Wells K. Digital autoradiography using room temperature CCD and CMOS imaging technology. Phys. Med. Biol. 52, 4993–5011 (2007). PubMed
Janesick J. & Elliott T. History and advancement of large area array scientific area images. Astronomical CCD observing and reduction technique, ASP conference series., Howeel S. B., ed. eds. 23 (1992).
Groom D. E., Holland S. E., Levi M. E., Palaio N. P., Perlmutter S., Stover R. J. & Wei M. Back-illuminated, fully depleted CCD image sensors for use in optical and near-IR astronomy. Nucl. Instrum. Methods 442 (1–3), 216–222 (2000).
Reinke B. W. Optical coupling of two rapid charge coupled device (CCD) cameras to analyse the complete image. REE Revue de L'Electricite et de L' Electronique (5), 30–32 (2003).
Denvir D. J. & Conroy E. Electron multiplying CCD technology: The new ICCD. Proceeding of SPIE-the international society for optical engineering 4796, 164–174 (2002).
Zhang W. & Chen Q. Signal-to-noise ratio performance comparison of electron multiplying CCD and intensified CCD detectors. Proceeding of 2009 international conference on image analysis and signal processing 50544588, 337–341 (2009).
Salmon W. C. & Waters J. C. CCD camera for fluorescence imaging of living cells. Cold Spring Harb. Protocols 6 (7), 790–802 (2011). PubMed
Gardner D. W. Does your CCD need cooling? Photon. Spectra. 36 (6), 69–71 (2002).
Schmitt R. L., Cease H., DePoy D., Diehl H. T., Estrada J., Flaugher B., Kuhlmann S., Onal B. & Stefanik A. Cooling the dark energy camera instrument. Proceeding of SPIE-the international society for optical engineering 7014, 70146O (2008).
Domke K. & Skrzypczak A. Peltier modules in cooling system for electronic components. WIT transactions on Engineering Sciences 68, 3–12 (2010).
Prasad A. & Pospíšil P. Ultra-weak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J. Biomed. Opt. 17 (8), 085004 (2012). PubMed
Epperson P. M. & Denton M. B. Binning spectral devices in charge-coupled device. Anal. Chem. 61 (14), 1513–1517 (1989).
Hogan H. Multiplying electron yields multiplexed results. Biophotonics International 13 (8), 19–21 (2006).
Hideg E. & Inaba H. Biophoton emission (ultraweak photoemission) from dark adapted spinach chloroplast. Photochem Photobiol 53 (1), 137–142 (1991).
Havaux M., Triantaphylides C. & Genty B. Autoluminescence imaging: a non-invasive tool for mapping oxidative stress. Trends Plants Sci. 11 (10) (2006). PubMed
Bennett M., Mehta M. & Grant M. Biophoton imaging: a nondestructive method for assaying R gene responses. MPMI 18 (2) (2005). PubMed
Mansfield J. M. Biophoton distress flares signal the onset of the hypersensitive reaction. Trends Plants Sci. 10 (7), 307–309 (2005). PubMed
Kobayashi M., Sasaki K., Enomoto M. & Ehara Y. Highly sensitive determination if transient generation of biophotons during hypersensitive response to cucumber mosaic virus in cowpea. J. Expt. Bot. 58 (3), 465–472 (2007). PubMed
Lichtenthaler H. K. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987).
Augusto G. & Cilento G. Dark excitation of chlorophyll. Photochem. Photobiol. 30, 191–193 (1979).
Campa A., Nassi L. & Cilento G. Triplet energy transfer to chloroplasts from peroxidase-generated excited aliphatic aldehydes. Photochem. Photobiol. 40, 127–131 (1984).
Ou-Yang H., Stamatas G., Saliou C. & Kollias N. A chemiluminescence study of UV-A induced oxidative stress in human skin. In vivo. J. Invest. Dermatol. 122, 1020–1029 (2004). PubMed
Imaging and Characterization of Oxidative Protein Modifications in Skin
Reactive Oxygen Species as a Response to Wounding: In Vivo Imaging in Arabidopsis thaliana
Triplet Excited Carbonyls and Singlet Oxygen Formation During Oxidative Radical Reaction in Skin
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II
Cell-to-cell signaling through light: just a ghost of chance?