Imaging and Characterization of Oxidative Protein Modifications in Skin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund "Plants as a tool for sustainable global development"
IGA_PrF_2022_029
"General and molecular biophysics: new trends and research approaches" of Palacký University
PubMed
36835390
PubMed Central
PMC9959078
DOI
10.3390/ijms24043981
PII: ijms24043981
Knihovny.cz E-zdroje
- Klíčová slova
- malondialdehyde, oxidative radical reaction, porcine skin, protein carbonyls, protein modification, reactive oxygen species, two-dimensional imaging, ultra-weak photon emission,
- MeSH
- kůže * metabolismus MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- peroxid vodíku * metabolismus MeSH
- proteiny metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peroxid vodíku * MeSH
- proteiny MeSH
- reaktivní formy kyslíku MeSH
Skin plays an important role in protection, metabolism, thermoregulation, sensation, and excretion whilst being consistently exposed to environmental aggression, including biotic and abiotic stresses. During the generation of oxidative stress in the skin, the epidermal and dermal cells are generally regarded as the most affected regions. The participation of reactive oxygen species (ROS) as a result of environmental fluctuations has been experimentally proven by several researchers and is well known to contribute to ultra-weak photon emission via the oxidation of biomolecules (lipids, proteins, and nucleic acids). More recently, ultra-weak photon emission detection techniques have been introduced to investigate the conditions of oxidative stress in various living systems in in vivo, ex vivo and in vitro studies. Research into two-dimensional photon imaging is drawing growing attention because of its application as a non-invasive tool. We monitored spontaneous and stress-induced ultra-weak photon emission under the exogenous application of a Fenton reagent. The results showed a marked difference in the ultra-weak photon emission. Overall, these results suggest that triplet carbonyl (3C=O∗) and singlet oxygen (1O2) are the final emitters. Furthermore, the formation of oxidatively modified protein adducts and protein carbonyl formation upon treatment with hydrogen peroxide (H2O2) were observed using an immunoblotting assay. The results from this study broaden our understanding of the mechanism of the generation of ROS in skin layers and the formation/contribution of various excited species can be used as tools to determine the physiological state of the organism.
Zobrazit více v PubMed
Zeng R.J., Lin C.Q., Lin Z.H., Chen H., Lu W.Y., Lin C.M., Li H.H. Approaches to cutaneous wound healing: Basics and future directions. Cell Tissue Res. 2018;374:217–232. doi: 10.1007/s00441-018-2830-1. PubMed DOI
Elias P.M. The skin barrier as an innate immune element. Semin. Immunopathol. 2007;29:3–14. doi: 10.1007/s00281-007-0060-9. PubMed DOI
Park S. Biochemical, structural and physical changes in aging human skin, and their relationship. Biogerontology. 2022;23:275–288. doi: 10.1007/s10522-022-09959-w. PubMed DOI PMC
Abdlaty R., Hayward J., Farrell T., Fang Q.Y. Skin erythema and pigmentation: A review of optical assessment techniques. Photodiagn. Photodyn. Ther. 2021;33:102127. doi: 10.1016/j.pdpdt.2020.102127. PubMed DOI
Kong R., Bhargava R. Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging. Analyst. 2011;136:2359–2366. doi: 10.1039/c1an15111h. PubMed DOI
Moniz T., Lima S.C.A., Reis S. Human skin models: From healthy to disease-mimetic systems; characteristics and applications. Br. J. Pharmacol. 2020;177:4314–4329. doi: 10.1111/bph.15184. PubMed DOI PMC
Prasad A., Balukova A., Pospíšil P. Triplet Excited Carbonyls and Singlet Oxygen Formation During Oxidative Radical Reaction in Skin. Front. Physiol. 2018;9:1109. doi: 10.3389/fphys.2018.01109. PubMed DOI PMC
Avon S.L., Wood R.E. Porcine skin as an in-vivo model for ageing of human bite marks. J. Forensic Odontostomatol. 2005;23:30–39. PubMed
Haller H.L., Blome-Eberwein S.E., Branski L.K., Carson J.S., Crombie R.E., Hickerson W.L., Kamolz L.P., King B.T., Nischwitz S.P., Popp D., et al. Porcine Xenograft and Epidermal Fully Synthetic Skin Substitutes in the Treatment of Partial-Thickness Burns: A Literature Review. Medicina. 2021;57:432. doi: 10.3390/medicina57050432. PubMed DOI PMC
In M.K., Richardson K.C., Loewa A., Hedtrich S., Kaessmeyer S., Plendl J. Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. Anat. Histol. Embryol. 2019;48:207–217. doi: 10.1111/ahe.12425. PubMed DOI
Clark M., Tilman D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017;12:064016. doi: 10.1088/1748-9326/aa6cd5. DOI
Debeer S., Le Luduec J.B., Kaiserlian D., Laurent P., Nicolas J.F., Dubois B., Kanitakis J. Comparative histology and immunohistochemistry of porcine versus human skin. Eur. J. Dermatol. 2013;23:456–466. doi: 10.1684/ejd.2013.2060. PubMed DOI
Chen J.J., Liu Y., Zhao Z., Qiu J. Oxidative stress in the skin: Impact and related protection. Int. J. Cosmet. Sci. 2021;43:495–509. doi: 10.1111/ics.12728. PubMed DOI
Tsuchida K., Kobayashi M. Oxidative stress in human facial skin observed by ultraweak photon emission imaging and its correlation with biophysical properties of skin. Sci. Rep. 2020;10:9626. doi: 10.1038/s41598-020-66723-1. PubMed DOI PMC
Rinnerthaler M., Bischof J., Streubel M.K., Trost A., Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5:545–589. doi: 10.3390/biom5020545. PubMed DOI PMC
Rinnerthaler M., Streubel M.K., Bischof J., Richter K. Skin aging, gene expression and calcium. Exp. Gerontol. 2015;68:59–65. doi: 10.1016/j.exger.2014.09.015. PubMed DOI
Papaccio F., D’Arino A., Caputo S., Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants. 2022;11:1121. doi: 10.3390/antiox11061121. PubMed DOI PMC
Gu Y.P., Han J.X., Jiang C.P., Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020;59:101036. doi: 10.1016/j.arr.2020.101036. PubMed DOI
Sies H. On the history of oxidative stress: Concept and some aspects of current development. Curr. Opin. Toxicol. 2018;7:122–126. doi: 10.1016/j.cotox.2018.01.002. DOI
Sharifi-Rad M., Kumar N.V.A., Zucca P., Varoni E.M., Dini L., Panzarini E., Rajkovic J., Fokou P.V.T., Azzini E., Peluso I., et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694. PubMed DOI PMC
Borgia F., Li Pomi F., Vaccaro M., Alessandrello C., Papa V., Gangemi S. Oxidative Stress and Phototherapy in Atopic Dermatitis: Mechanisms, Role, and Future Perspectives. Biomolecules. 2022;12:1904. doi: 10.3390/biom12121904. PubMed DOI PMC
Mohideen K., Sudhakar U., Balakrishnan T., Almasri M.A., Al-Ahmari M.M., Al Dira H.S., Suhluli M., Dubey A., Mujoo S., Khurshid Z., et al. Malondialdehyde, an Oxidative Stress Marker in Oral Squamous Cell Carcinoma—A Systematic Review and Meta-Analysis. Curr. Issues Mol. Biol. 2021;43:1019–1035. doi: 10.3390/cimb43020072. PubMed DOI PMC
Yadav D.K., Prasad A., Kruk J., Pospíšil P. Evidence for the involvement of loosely bound plastosemiquinones in superoxide anion radical production in photosystem II. PLoS ONE. 2014;9:e115466. doi: 10.1371/journal.pone.0115466. PubMed DOI PMC
Pospíšil P., Prasad A., Rác M. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules. 2019;9:258. doi: 10.3390/biom9070258. PubMed DOI PMC
Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012;5:9–19. doi: 10.1097/WOX.0b013e3182439613. PubMed DOI PMC
Chiu T., Burd A. “Xenograft” dressing in the treatment of burns. Clin. Derm. 2005;23:419–423. doi: 10.1016/j.clindermatol.2004.07.027. PubMed DOI
Prasad A., Pospíšil P. Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep. 2013;3:1211. doi: 10.1038/srep01211. PubMed DOI PMC