Imaging and Characterization of Oxidative Protein Modifications in Skin

. 2023 Feb 16 ; 24 (4) : . [epub] 20230216

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36835390

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund "Plants as a tool for sustainable global development"
IGA_PrF_2022_029 "General and molecular biophysics: new trends and research approaches" of Palacký University

Skin plays an important role in protection, metabolism, thermoregulation, sensation, and excretion whilst being consistently exposed to environmental aggression, including biotic and abiotic stresses. During the generation of oxidative stress in the skin, the epidermal and dermal cells are generally regarded as the most affected regions. The participation of reactive oxygen species (ROS) as a result of environmental fluctuations has been experimentally proven by several researchers and is well known to contribute to ultra-weak photon emission via the oxidation of biomolecules (lipids, proteins, and nucleic acids). More recently, ultra-weak photon emission detection techniques have been introduced to investigate the conditions of oxidative stress in various living systems in in vivo, ex vivo and in vitro studies. Research into two-dimensional photon imaging is drawing growing attention because of its application as a non-invasive tool. We monitored spontaneous and stress-induced ultra-weak photon emission under the exogenous application of a Fenton reagent. The results showed a marked difference in the ultra-weak photon emission. Overall, these results suggest that triplet carbonyl (3C=O∗) and singlet oxygen (1O2) are the final emitters. Furthermore, the formation of oxidatively modified protein adducts and protein carbonyl formation upon treatment with hydrogen peroxide (H2O2) were observed using an immunoblotting assay. The results from this study broaden our understanding of the mechanism of the generation of ROS in skin layers and the formation/contribution of various excited species can be used as tools to determine the physiological state of the organism.

Zobrazit více v PubMed

Zeng R.J., Lin C.Q., Lin Z.H., Chen H., Lu W.Y., Lin C.M., Li H.H. Approaches to cutaneous wound healing: Basics and future directions. Cell Tissue Res. 2018;374:217–232. doi: 10.1007/s00441-018-2830-1. PubMed DOI

Elias P.M. The skin barrier as an innate immune element. Semin. Immunopathol. 2007;29:3–14. doi: 10.1007/s00281-007-0060-9. PubMed DOI

Park S. Biochemical, structural and physical changes in aging human skin, and their relationship. Biogerontology. 2022;23:275–288. doi: 10.1007/s10522-022-09959-w. PubMed DOI PMC

Abdlaty R., Hayward J., Farrell T., Fang Q.Y. Skin erythema and pigmentation: A review of optical assessment techniques. Photodiagn. Photodyn. Ther. 2021;33:102127. doi: 10.1016/j.pdpdt.2020.102127. PubMed DOI

Kong R., Bhargava R. Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging. Analyst. 2011;136:2359–2366. doi: 10.1039/c1an15111h. PubMed DOI

Moniz T., Lima S.C.A., Reis S. Human skin models: From healthy to disease-mimetic systems; characteristics and applications. Br. J. Pharmacol. 2020;177:4314–4329. doi: 10.1111/bph.15184. PubMed DOI PMC

Prasad A., Balukova A., Pospíšil P. Triplet Excited Carbonyls and Singlet Oxygen Formation During Oxidative Radical Reaction in Skin. Front. Physiol. 2018;9:1109. doi: 10.3389/fphys.2018.01109. PubMed DOI PMC

Avon S.L., Wood R.E. Porcine skin as an in-vivo model for ageing of human bite marks. J. Forensic Odontostomatol. 2005;23:30–39. PubMed

Haller H.L., Blome-Eberwein S.E., Branski L.K., Carson J.S., Crombie R.E., Hickerson W.L., Kamolz L.P., King B.T., Nischwitz S.P., Popp D., et al. Porcine Xenograft and Epidermal Fully Synthetic Skin Substitutes in the Treatment of Partial-Thickness Burns: A Literature Review. Medicina. 2021;57:432. doi: 10.3390/medicina57050432. PubMed DOI PMC

In M.K., Richardson K.C., Loewa A., Hedtrich S., Kaessmeyer S., Plendl J. Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. Anat. Histol. Embryol. 2019;48:207–217. doi: 10.1111/ahe.12425. PubMed DOI

Clark M., Tilman D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017;12:064016. doi: 10.1088/1748-9326/aa6cd5. DOI

Debeer S., Le Luduec J.B., Kaiserlian D., Laurent P., Nicolas J.F., Dubois B., Kanitakis J. Comparative histology and immunohistochemistry of porcine versus human skin. Eur. J. Dermatol. 2013;23:456–466. doi: 10.1684/ejd.2013.2060. PubMed DOI

Chen J.J., Liu Y., Zhao Z., Qiu J. Oxidative stress in the skin: Impact and related protection. Int. J. Cosmet. Sci. 2021;43:495–509. doi: 10.1111/ics.12728. PubMed DOI

Tsuchida K., Kobayashi M. Oxidative stress in human facial skin observed by ultraweak photon emission imaging and its correlation with biophysical properties of skin. Sci. Rep. 2020;10:9626. doi: 10.1038/s41598-020-66723-1. PubMed DOI PMC

Rinnerthaler M., Bischof J., Streubel M.K., Trost A., Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5:545–589. doi: 10.3390/biom5020545. PubMed DOI PMC

Rinnerthaler M., Streubel M.K., Bischof J., Richter K. Skin aging, gene expression and calcium. Exp. Gerontol. 2015;68:59–65. doi: 10.1016/j.exger.2014.09.015. PubMed DOI

Papaccio F., D’Arino A., Caputo S., Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants. 2022;11:1121. doi: 10.3390/antiox11061121. PubMed DOI PMC

Gu Y.P., Han J.X., Jiang C.P., Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020;59:101036. doi: 10.1016/j.arr.2020.101036. PubMed DOI

Sies H. On the history of oxidative stress: Concept and some aspects of current development. Curr. Opin. Toxicol. 2018;7:122–126. doi: 10.1016/j.cotox.2018.01.002. DOI

Sharifi-Rad M., Kumar N.V.A., Zucca P., Varoni E.M., Dini L., Panzarini E., Rajkovic J., Fokou P.V.T., Azzini E., Peluso I., et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694. PubMed DOI PMC

Borgia F., Li Pomi F., Vaccaro M., Alessandrello C., Papa V., Gangemi S. Oxidative Stress and Phototherapy in Atopic Dermatitis: Mechanisms, Role, and Future Perspectives. Biomolecules. 2022;12:1904. doi: 10.3390/biom12121904. PubMed DOI PMC

Mohideen K., Sudhakar U., Balakrishnan T., Almasri M.A., Al-Ahmari M.M., Al Dira H.S., Suhluli M., Dubey A., Mujoo S., Khurshid Z., et al. Malondialdehyde, an Oxidative Stress Marker in Oral Squamous Cell Carcinoma—A Systematic Review and Meta-Analysis. Curr. Issues Mol. Biol. 2021;43:1019–1035. doi: 10.3390/cimb43020072. PubMed DOI PMC

Yadav D.K., Prasad A., Kruk J., Pospíšil P. Evidence for the involvement of loosely bound plastosemiquinones in superoxide anion radical production in photosystem II. PLoS ONE. 2014;9:e115466. doi: 10.1371/journal.pone.0115466. PubMed DOI PMC

Pospíšil P., Prasad A., Rác M. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules. 2019;9:258. doi: 10.3390/biom9070258. PubMed DOI PMC

Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012;5:9–19. doi: 10.1097/WOX.0b013e3182439613. PubMed DOI PMC

Chiu T., Burd A. “Xenograft” dressing in the treatment of burns. Clin. Derm. 2005;23:419–423. doi: 10.1016/j.clindermatol.2004.07.027. PubMed DOI

Prasad A., Pospíšil P. Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep. 2013;3:1211. doi: 10.1038/srep01211. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace