protein modification Dotaz Zobrazit nápovědu
Protein phosphorylation by protein kinases -- Sulfuryl transfers: action of protein sulfotransferases and aryl sulfatases -- Modifications of cysteine and methionine by oxidation-reduction -- Protein methylation -- Protein N-acetylation -- Protein lipidation -- Proteolytic posttranslational modification of proteins -- Ubiquitin and ubiquitin-like protein tags -- Protein glycosylation -- ADP ribosylation of proteins from NAD as donor -- Posttranslational hydroxylation of proteins -- Protein automodification reactions
xxi, 490 s. : il., tab. ; 27 cm
- MeSH
- posttranslační úpravy proteinů MeSH
- proteiny metabolismus MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- NLK Obory
- biologie
- biochemie
xix, 370 s. : il., tab. ; 24 cm
- MeSH
- biofarmacie metody MeSH
- glykosylace MeSH
- posttranslační úpravy proteinů MeSH
- proteinové inženýrství metody MeSH
- proteiny analýza MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Biotechnologie. Genetické inženýrství
- NLK Obory
- biomedicínské inženýrství
- biologie
281 s. : il.
- MeSH
- biologie buňky MeSH
- proteiny MeSH
- Publikační typ
- monografie MeSH
Studium protein‑proteinových interakcí in vivo se v současné době dostává do popředí zájmu – umožňuje prokázat nebo upřesnit již známé protein‑proteinové interakce a odhalit jejich inhibitory, zachytit konformační změny proteinů, objasnit nebo upřesnit signální kaskády v živé buňce s minimálním ovlivněním jejího buněčného prostředí. Jedním z možných přístupů umožňujících tuto charakteristiku jsou metody využívající rezonančního přenosu energie – fluorescenční (FRET) a jeho pozdější modifikace bioluminiscenční (BRET). Tyto metody jsou založeny na zviditelnění proteinových interakcí pomocí excitace fluorescenčních proteinů, ať už světelně nebo enzymaticky. Tyto přístupy umožňují nejen lokalizovat proteiny v buňce nebo jejich organelách (případně i v malých živočiších), ale i kvantifikovat intenzitu fluorescenčního nebo luminiscenčního signálu a odhalit pevnost vazby mezi interakčními partnery. V tomto příspěvku je objasněn princip metod FRET a BRET, jejich konkrétní aplikace při studiu protein‑proteinových interakcí a jsou popsány dosavadní poznatky získané s využitím těchto metod a upřesňující některé molekulární a buněčné mechanizmy a signalizace související s nádorovou biologií.
Nowadays, in vivo protein‑protein interaction studies have become preferable detecting methods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bioluminescent modification (BRET). They are based on visualization of protein‑protein interactions via light or enzymatic excitation of fluorescent or bioluminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein‑protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology. Key words: FRET – BRET – imaging methods – protein‑protein interaction in vivo This work was supported by the Czech Science Foundation projects P206/12/G151 and 13--00956S, by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) and by MH CZ – DRO (MMCI, 00209805). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers. Submitted: 20. 1. 2014 Accepted: 31. 3. 2014
- Klíčová slova
- intramolekulární biosenzory, protein‑proteinové interakce in vivo, intermolekulární biosenzory,
- MeSH
- biosenzitivní techniky * MeSH
- fluorescence MeSH
- fluorescenční barviva MeSH
- mapování interakce mezi proteiny * metody MeSH
- rezonanční přenos fluorescenční energie * metody MeSH
- sbalování proteinů MeSH
- techniky přenosu energie bioluminiscenční rezonancí * metody MeSH
- zelené fluorescenční proteiny MeSH
- Publikační typ
- práce podpořená grantem MeSH
UNLABELLED: Protein turnover is essential in all living organisms for the maintenance of normal cell physiology. In eukaryotes, most cellular protein turnover involves the ubiquitin-proteasome pathway, in which proteins tagged with ubiquitin are targeted to the proteasome for degradation. In contrast, most bacteria lack a proteasome but harbor proteases for protein turnover. However, some actinobacteria, such as mycobacteria, possess a proteasome in addition to these proteases. A prokaryotic ubiquitination-like tagging process in mycobacteria was described and was named pupylation: proteins are tagged with Pup (prokaryotic ubiquitin-like protein) and directed to the proteasome for degradation. We report pupylation in another actinobacterium, Streptomyces coelicolor. Both the morphology and life cycle of Streptomyces species are complex (formation of a substrate and aerial mycelium followed by sporulation), and these bacteria are prolific producers of secondary metabolites with important medicinal and agricultural applications. The genes encoding the pupylation system in S. coelicolor are expressed at various stages of development. We demonstrated that pupylation targets numerous proteins and identified 20 of them. Furthermore, we established that abolition of pupylation has substantial effects on morphological and metabolic differentiation and on resistance to oxidative stress. In contrast, in most cases, a proteasome-deficient mutant showed only modest perturbations under the same conditions. Thus, the phenotype of the pup mutant does not appear to be due solely to defective proteasomal degradation. Presumably, pupylation has roles in addition to directing proteins to the proteasome. IMPORTANCE: Streptomyces spp. are filamentous and sporulating actinobacteria, remarkable for their morphological and metabolic differentiation. They produce numerous bioactive compounds, including antifungal, antibiotic, and antitumor compounds. There is therefore considerable interest in understanding the mechanisms by which Streptomyces species regulate their complex physiology and production of bioactive compounds. We studied the role in Streptomyces of pupylation, a posttranslational modification that tags proteins that are then directed to the proteasome for degradation. We demonstrated that the absence of pupylation had large effects on morphological differentiation, antibiotic production, and resistance to oxidative stress in S. coelicolor. The phenotypes of pupylation and proteasome-defective mutants differed and suggest that pupylation acts in a proteasome-independent manner in addition to its role in proteasomal degradation.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- delece genu MeSH
- molekulární sekvence - údaje MeSH
- posttranslační úpravy proteinů MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- Streptomyces coelicolor genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Proteins are biopolymers composed of amino acids. Proteins play a role almost in all processes in living organisms. In cells, proteins are synthesized on ribosomes in a process called translation, where amino acids are connected one at a time by a chemical bond according to a pre-defined scenario stored as the genetic information. Relative to their lifetime, proteins spend non-negligible time attached to the ribosome. This review focuses on phenomena that involve a nascent protein before it is released from the ribosome, i.e., in the first moments of their own synthesis, co-translationally. The text partly covers a lecture given by the author at the Summer School for High School Teachers and Students organized by UCT Prague in August 2021.
- MeSH
- proteosyntéza * MeSH
- ribozomy chemie MeSH
- translační modifikace proteinu * fyziologie MeSH
- Publikační typ
- práce podpořená grantem MeSH