Triplet Excited Carbonyls and Singlet Oxygen Formation During Oxidative Radical Reaction in Skin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30158877
PubMed Central
PMC6104306
DOI
10.3389/fphys.2018.01109
Knihovny.cz E-zdroje
- Klíčová slova
- singlet oxygen, skin, triplet excited carbonyl, two-dimensional photon imaging, ultra-weak photon emission,
- Publikační typ
- časopisecké články MeSH
The skin is the largest organ in the body and is consistently exposed to aggressive environmental attacks (biological/physical/chemical, etc.). Reactive oxygen species (ROS) are formed during the normal oxidative metabolism which enhances to a lethal level under stress conditions referred to as oxidative stress. While, under normal conditions, cells are capable of dealing with ROS using non-enzymatic and enzymatic defense system, it can lead to a critical damage to cell system via the oxidation of cellular components under stress condition. Lipid peroxidation is a well-established mechanism of cellular injury in all kinds of organisms and it is often used as an indicator of oxidative stress in cells and tissues. In the presence of metal ions, ROS such as hydrogen peroxide (H2O2) produces highly reactive hydroxyl radical (HO•) via Fenton reaction. In the current study, we have used the porcine skin (intact pig ear/skin biopsies) as an ex vivo/in vitro model system to represent human skin. Experimental results have been presented on the participation of HO• in the initiation of lipid peroxidation and thereby leading to the formation of reactive intermediates and the formation of electronically excited species eventually leading to ultra-weak photon emission (UPE). To understand the participation of different electronically excited species in the overall UPE, the effect of a scavenger of singlet oxygen (1O2) on photon emission in the visible and near-infrared region of the spectrum was measured which showed its contribution. In addition, measurement with interference filter with a transmission in the range of 340-540 nm reflected a substantial contribution of triplet carbonyls (3L=O∗) in the photon emission. Thus, it is concluded that during the oxidative radical reactions, the UPE is contributed by the formation of both 3L=O∗ and 1O2. The method used in the current study is claimed to be a potential tool for non-invasive determination of the physiological and pathological state of human skin in dermatological research.
Zobrazit více v PubMed
Abdullahi A., Amini-Nik S., Jeschke M. G. (2014). Animal models in burn research. Cell. Mol. Life Sci. 71 3241–3255. 10.1007/s00018-014-1612-5 PubMed DOI PMC
Adam W., Cilento G. (1982). Chemical and Biological Generation of Excited States. Cambridge, MA: Academic Press.
Avon S. L., Wood R. E. (2005). Porcine skin as an in-vivo model for ageing of human bite marks. J. For. Odonto Stomatol. 23 30–39. PubMed
Cadenas E., Arad I. D., Boveris A., Fisher A. B., Chance B. (1980). Partial spectral-analysis of the hydroperoxide-induced chemi-luminescence of the perfused lung. FEBS Lett. 111 413–418. 10.1016/0014-5793(80)80839-8 PubMed DOI
Cadenas E., Sies H. (2000). Formation of electronically excited states during the oxidation of arachidonic acid by prostaglandin endoperoxide synthase. Methods Enzymol. 319 67–77. 10.1016/S0076-6879(00)19009-3 PubMed DOI
Chartier C., Mofid Y., Bastard C., Miette V., Maruani A., Machet L., et al. (2017). High-resolution elastography for thin-layer mechanical characterization: toward skin investigation. Ultrasound Med. Biol. 43 670–681. 10.1016/j.ultrasmedbio.2016.11.007 PubMed DOI
Chiu T., Burd A. (2005). “Xenograft” dressing in the treatment of burns. Clin. Dermatol. 23 419–423. 10.1016/j.clindermatol.2004.07.027 PubMed DOI
Cifra M., Pospíšil P. (2014). Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. 139 2–10. 10.1016/j.jphotobiol.2014.02.009 PubMed DOI
Cilento G., Adam W. (1995). From free-radicals to electronically excited species. Free Radic. Biol. Med. 19 103–114. 10.1016/0891-5849(95)00002-f PubMed DOI
Corey E. J., Wang Z. (1994). Conversion of arachidonic-acid to the prostaglandin endoperoxide PGG2, a chemical analog of the biosynthetic-pathway. Tetrahedron Lett. 35 539–542. 10.1016/S0040-4039(00)75832-r1 DOI
Footitt S., Palleschi S., Fazio E., Palomba R., Finch-Savage W. E., Silvestroni L. (2016). Ultraweak photon emission from the seed coat in response to temperature and humiditya potential mechanism for environmental signal transduction in the soil seed bank. Photochem. Photobiol. 92 678–687. 10.1111/php.12616 PubMed DOI PMC
Halliwell B., Gutteridge J. (2007). Free Radicals in Biology and Medicine, 4th Edn Oxford: Oxford University Press.
Havaux M. (2003). Spontaneous and thermoinduced photon emission: new methods to detect and quantify oxidative stress in plants. Trends Plant Sci. 8 409–413. 10.1016/s1360-1385(03)00185-r7 PubMed DOI
Hikima T., Kaneda N., Matsuo K., Tojo K. (2012). Prediction of percutaneous absorption in human using three-dimensional human cultured epidermis labcyte EPI-MODEL. Biol. Pharm. Bull. 35 362–368. 10.1248/bpb.35.362 PubMed DOI
Jacobi U., Kaiser M., Toll R., Mangelsdorf S., Audring H., Otberg N., et al. (2007). Porcine ear skin: an in vitro model for human skin. Skin Res. Technol. 13 19–24. 10.1111/j.1600-0846.2006.00179.x PubMed DOI
Ji H., Li X.-K. (2016). Oxidative Stress in Atopic Dermatitis. Oxid. Med. Cell. Longev. 2016 2721469. 10.1155/2016/2721469 PubMed DOI PMC
Kellogg R. E. (1969). Mechanism of chemiluminescence from peroxy radicals. J. Am. Chem. Soc. 91 5433–5436. 10.1021/ja01048a005 DOI
Kobayashi M. (2005). “Two-Dimensional Imaging and Spatiotemporal Analysis of Biophoton,” in Biophotonics, eds Shen X., Van Wijk R. (Boston, MA: Springer; ).
Kong R., Bhargava R. (2011). Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging. Analyst 136 2359–2366. 10.1039/c1an15111h PubMed DOI
Madl P., Verwanger T., Geppert M., Scholkmann F. (2017). Oscillations of ultra-weak photon emission from cancer and non-cancer cells stressed by culture medium change and TNF-alpha. Sci. Rep. 7:11249. 10.1038/s41598-017-10949-z PubMed DOI PMC
Massari J., Tokikawa R., Medinas D. B., Angeli J. P., Di Mascio P., Assunção N. A., et al. (2011). Generation of singlet oxygen by the glyoxal-peroxynitrite system. J. Am. Chem. Soc. 133 20761–20768. 10.1021/ja2051414 PubMed DOI
Mathew B. G., Roy D. (1992). Weak luminescence from the frozen-thawed root tips of Cicer arietinum. L. J. Photochem. Photobiol. B Biol. 12 141–150. 10.1016/1011-1344(92)85003-d DOI
Meyer W., Neurand K., Schwarz R., Bartels T., Althoff H. (1994). Arrangement of elastic fibers in the integument of domesticated mammals. Scanning Microsc. 8 375–391. PubMed
Meyer W., Schwarz R., Neurand K. (1978). The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr. Probl. Dermatol 7 39–52. 10.1159/000401274 PubMed DOI
Miyamoto S., Martinez G. R., Medeiros M. H. G., Di Mascio P. (2014). Singlet molecular oxygen generated by biological hydroperoxides. J. Photochem. Photobiol. B Biol. 139 24–33. 10.1016/j.jphotobiol.2014.03.028 PubMed DOI
Miyamoto S., Ronsein G. E., Prado F. M., Uemi M., Corrêa T. C., Toma I. N., et al. (2007). Biological hydroperoxides and singlet molecular oxygen generation. IUBMB Life 59 322–331. 10.1080/15216540701242508 PubMed DOI
Morris G. M., Hopewell J. W. (1990). Epidermal-cell kinetics of the pig - a review. Cell Tissue Kinet. 23 271–282. 10.1111/j.1365-2184.1990.tb01124.x PubMed DOI
Morrow A., Lechler T. (2015). Studying cell biology in the skin. Mol. Biol. Cell 26 4183–4186. 10.1091/mbc.E15-04-0246 PubMed DOI PMC
Niggli H. J., Tudisco S., Lanzanò L., Applegate L. A., Scordino A., Musumeci F. (2008). Laser-Ultraviolet-A induced ultra weak photon emission in human skin cells: a biophotonic comparison between keratinocytes and fibroblasts. Indian J. Exp. Biol. 46 358–363. PubMed
Ou-Yang H. (2014). The application of ultra-weak photon emission in dermatology. J. Photochem. Photobiol. B Biol. 139 63–70. 10.1016/j.jphotobiol.2013.10.003 PubMed DOI
Poplova M., Červinková K., Průša J., Prasad A., Pospíšil P., Van Wijk E. P. A., et al. (2017). Label-free chemiluminescence imaging of oxidative processes in human skin. Free Radic. Biol. Med. 108:S63 10.1016/j.freeradbiomed.2017.04.218 DOI
Pospíšil P., Prasad A., Rác M. (2014). Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B Biol. 139 11–23. 10.1016/j.jphotobiol.2014.02.008 PubMed DOI
Prasad A., Ferretti U., Sedlářová M., Pospíšil P. (2016). Singlet oxygen production in Chlamydomonas reinhardtii under heat stress. Sci. Rep. 6:20094. 10.1038/srep20094 PubMed DOI PMC
Prasad A., Pospíšil P. (2011a). Linoleic Acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes. PLoS One 6:e22345. 10.1371/journal.pone.0022345 PubMed DOI PMC
Prasad A., Pospíšil P. (2011b). Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: role of reactive oxygen species. J. Biophotonics 4 840–849. 10.1002/jbio.201100073 PubMed DOI
Prasad A., Pospíšil P. (2013). Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep. 3:1211. 10.1038/srep01211 PubMed DOI PMC
Prost-Squarcioni C. (2006). Histology of skin and hair follicle. Med. Sci. 22 131–137. 10.1051/medsci/2006222131 PubMed DOI
Rastogi A., Pospíšil P. (2011). Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system. J. Biomed. Opt. 16:096005. 10.1117/1.3616135 PubMed DOI
Rifkind J. M., Mohanty J. G., Nagababu E. (2015). The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front. Physiol. 5:500. 10.3389/fphys.2014.00500 PubMed DOI PMC
Rinnerthaler M., Bischof J., Streubel M. K., Trost A., Richter K. (2015). Oxidative stress in aging human skin. Biomolecules 5 545–589. 10.3390/biom5020545 PubMed DOI PMC
Russell G. A. (1957). Deuterium-Isotope effects in the autoxidation of aralkyl hydrocarbons - mechanism of the interaction of peroxy radicals. J. Am. Chem. Soc. 79 3871–3877. 10.1021/Ja01571a068 DOI
Sadrzadeh S. M. H., Graf E., Panter S. S., Hallaway P. E., Eaton J. W. (1984). Hemoglobin - a biologic fenton reagent. J. Biol. Chem. 259 4354–4356. PubMed
Sauermann G., Mei W. P., Hoppe U., Stab F. (1999). Ultraweak photon emission of human skin in vivo: influence of topically applied antioxidants on human skin. Methods Enzymol. 300(Pt B), 419–428. 10.1016/S0076-6879(99)00147-0 PubMed DOI
Suzuki K., Saito H., Jinno N., Hashimoto M., Tsukagoshi K., Kimoto H., et al. (2008). Specific Chemiluminescence from Singlet Oxygen Generated by the Reaction of Acetonitrile and Hydrogen Peroxide in the Presence of Alkali Halide. Chem. Lett. 37 1090–1091. 10.1246/cl.2008.1090 DOI
Tepole A. B., Gosain A. K., Kuhl E. (2012). Stretching skin: the physiological limit and beyond. Int. J. Non Linear Mech. 47 938–949. 10.1016/j.ijnonlinmec.2011.07.006 PubMed DOI PMC
Torinuki W., Miura T. (1981). Singlet oxygen and ultraweak chemi-luminescence in rat skin. Tohoku J. Exp. Med. 135 387–393. 10.1620/tjem.135.387 PubMed DOI
Zouboulis C. C. (2009). The skin as an endocrine organ. Dermatoendocrinol 1 250–252. 10.4161/derm.1.5.9499 PubMed DOI PMC
Imaging and Characterization of Oxidative Protein Modifications in Skin