Triplet Excited Carbonyls and Singlet Oxygen Formation During Oxidative Radical Reaction in Skin

. 2018 ; 9 () : 1109. [epub] 20180815

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30158877

The skin is the largest organ in the body and is consistently exposed to aggressive environmental attacks (biological/physical/chemical, etc.). Reactive oxygen species (ROS) are formed during the normal oxidative metabolism which enhances to a lethal level under stress conditions referred to as oxidative stress. While, under normal conditions, cells are capable of dealing with ROS using non-enzymatic and enzymatic defense system, it can lead to a critical damage to cell system via the oxidation of cellular components under stress condition. Lipid peroxidation is a well-established mechanism of cellular injury in all kinds of organisms and it is often used as an indicator of oxidative stress in cells and tissues. In the presence of metal ions, ROS such as hydrogen peroxide (H2O2) produces highly reactive hydroxyl radical (HO•) via Fenton reaction. In the current study, we have used the porcine skin (intact pig ear/skin biopsies) as an ex vivo/in vitro model system to represent human skin. Experimental results have been presented on the participation of HO• in the initiation of lipid peroxidation and thereby leading to the formation of reactive intermediates and the formation of electronically excited species eventually leading to ultra-weak photon emission (UPE). To understand the participation of different electronically excited species in the overall UPE, the effect of a scavenger of singlet oxygen (1O2) on photon emission in the visible and near-infrared region of the spectrum was measured which showed its contribution. In addition, measurement with interference filter with a transmission in the range of 340-540 nm reflected a substantial contribution of triplet carbonyls (3L=O∗) in the photon emission. Thus, it is concluded that during the oxidative radical reactions, the UPE is contributed by the formation of both 3L=O∗ and 1O2. The method used in the current study is claimed to be a potential tool for non-invasive determination of the physiological and pathological state of human skin in dermatological research.

Zobrazit více v PubMed

Abdullahi A., Amini-Nik S., Jeschke M. G. (2014). Animal models in burn research. Cell. Mol. Life Sci. 71 3241–3255. 10.1007/s00018-014-1612-5 PubMed DOI PMC

Adam W., Cilento G. (1982). Chemical and Biological Generation of Excited States. Cambridge, MA: Academic Press.

Avon S. L., Wood R. E. (2005). Porcine skin as an in-vivo model for ageing of human bite marks. J. For. Odonto Stomatol. 23 30–39. PubMed

Cadenas E., Arad I. D., Boveris A., Fisher A. B., Chance B. (1980). Partial spectral-analysis of the hydroperoxide-induced chemi-luminescence of the perfused lung. FEBS Lett. 111 413–418. 10.1016/0014-5793(80)80839-8 PubMed DOI

Cadenas E., Sies H. (2000). Formation of electronically excited states during the oxidation of arachidonic acid by prostaglandin endoperoxide synthase. Methods Enzymol. 319 67–77. 10.1016/S0076-6879(00)19009-3 PubMed DOI

Chartier C., Mofid Y., Bastard C., Miette V., Maruani A., Machet L., et al. (2017). High-resolution elastography for thin-layer mechanical characterization: toward skin investigation. Ultrasound Med. Biol. 43 670–681. 10.1016/j.ultrasmedbio.2016.11.007 PubMed DOI

Chiu T., Burd A. (2005). “Xenograft” dressing in the treatment of burns. Clin. Dermatol. 23 419–423. 10.1016/j.clindermatol.2004.07.027 PubMed DOI

Cifra M., Pospíšil P. (2014). Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. 139 2–10. 10.1016/j.jphotobiol.2014.02.009 PubMed DOI

Cilento G., Adam W. (1995). From free-radicals to electronically excited species. Free Radic. Biol. Med. 19 103–114. 10.1016/0891-5849(95)00002-f PubMed DOI

Corey E. J., Wang Z. (1994). Conversion of arachidonic-acid to the prostaglandin endoperoxide PGG2, a chemical analog of the biosynthetic-pathway. Tetrahedron Lett. 35 539–542. 10.1016/S0040-4039(00)75832-r1 DOI

Footitt S., Palleschi S., Fazio E., Palomba R., Finch-Savage W. E., Silvestroni L. (2016). Ultraweak photon emission from the seed coat in response to temperature and humiditya potential mechanism for environmental signal transduction in the soil seed bank. Photochem. Photobiol. 92 678–687. 10.1111/php.12616 PubMed DOI PMC

Halliwell B., Gutteridge J. (2007). Free Radicals in Biology and Medicine, 4th Edn Oxford: Oxford University Press.

Havaux M. (2003). Spontaneous and thermoinduced photon emission: new methods to detect and quantify oxidative stress in plants. Trends Plant Sci. 8 409–413. 10.1016/s1360-1385(03)00185-r7 PubMed DOI

Hikima T., Kaneda N., Matsuo K., Tojo K. (2012). Prediction of percutaneous absorption in human using three-dimensional human cultured epidermis labcyte EPI-MODEL. Biol. Pharm. Bull. 35 362–368. 10.1248/bpb.35.362 PubMed DOI

Jacobi U., Kaiser M., Toll R., Mangelsdorf S., Audring H., Otberg N., et al. (2007). Porcine ear skin: an in vitro model for human skin. Skin Res. Technol. 13 19–24. 10.1111/j.1600-0846.2006.00179.x PubMed DOI

Ji H., Li X.-K. (2016). Oxidative Stress in Atopic Dermatitis. Oxid. Med. Cell. Longev. 2016 2721469. 10.1155/2016/2721469 PubMed DOI PMC

Kellogg R. E. (1969). Mechanism of chemiluminescence from peroxy radicals. J. Am. Chem. Soc. 91 5433–5436. 10.1021/ja01048a005 DOI

Kobayashi M. (2005). “Two-Dimensional Imaging and Spatiotemporal Analysis of Biophoton,” in Biophotonics, eds Shen X., Van Wijk R. (Boston, MA: Springer; ).

Kong R., Bhargava R. (2011). Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging. Analyst 136 2359–2366. 10.1039/c1an15111h PubMed DOI

Madl P., Verwanger T., Geppert M., Scholkmann F. (2017). Oscillations of ultra-weak photon emission from cancer and non-cancer cells stressed by culture medium change and TNF-alpha. Sci. Rep. 7:11249. 10.1038/s41598-017-10949-z PubMed DOI PMC

Massari J., Tokikawa R., Medinas D. B., Angeli J. P., Di Mascio P., Assunção N. A., et al. (2011). Generation of singlet oxygen by the glyoxal-peroxynitrite system. J. Am. Chem. Soc. 133 20761–20768. 10.1021/ja2051414 PubMed DOI

Mathew B. G., Roy D. (1992). Weak luminescence from the frozen-thawed root tips of Cicer arietinum. L. J. Photochem. Photobiol. B Biol. 12 141–150. 10.1016/1011-1344(92)85003-d DOI

Meyer W., Neurand K., Schwarz R., Bartels T., Althoff H. (1994). Arrangement of elastic fibers in the integument of domesticated mammals. Scanning Microsc. 8 375–391. PubMed

Meyer W., Schwarz R., Neurand K. (1978). The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr. Probl. Dermatol 7 39–52. 10.1159/000401274 PubMed DOI

Miyamoto S., Martinez G. R., Medeiros M. H. G., Di Mascio P. (2014). Singlet molecular oxygen generated by biological hydroperoxides. J. Photochem. Photobiol. B Biol. 139 24–33. 10.1016/j.jphotobiol.2014.03.028 PubMed DOI

Miyamoto S., Ronsein G. E., Prado F. M., Uemi M., Corrêa T. C., Toma I. N., et al. (2007). Biological hydroperoxides and singlet molecular oxygen generation. IUBMB Life 59 322–331. 10.1080/15216540701242508 PubMed DOI

Morris G. M., Hopewell J. W. (1990). Epidermal-cell kinetics of the pig - a review. Cell Tissue Kinet. 23 271–282. 10.1111/j.1365-2184.1990.tb01124.x PubMed DOI

Morrow A., Lechler T. (2015). Studying cell biology in the skin. Mol. Biol. Cell 26 4183–4186. 10.1091/mbc.E15-04-0246 PubMed DOI PMC

Niggli H. J., Tudisco S., Lanzanò L., Applegate L. A., Scordino A., Musumeci F. (2008). Laser-Ultraviolet-A induced ultra weak photon emission in human skin cells: a biophotonic comparison between keratinocytes and fibroblasts. Indian J. Exp. Biol. 46 358–363. PubMed

Ou-Yang H. (2014). The application of ultra-weak photon emission in dermatology. J. Photochem. Photobiol. B Biol. 139 63–70. 10.1016/j.jphotobiol.2013.10.003 PubMed DOI

Poplova M., Červinková K., Průša J., Prasad A., Pospíšil P., Van Wijk E. P. A., et al. (2017). Label-free chemiluminescence imaging of oxidative processes in human skin. Free Radic. Biol. Med. 108:S63 10.1016/j.freeradbiomed.2017.04.218 DOI

Pospíšil P., Prasad A., Rác M. (2014). Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B Biol. 139 11–23. 10.1016/j.jphotobiol.2014.02.008 PubMed DOI

Prasad A., Ferretti U., Sedlářová M., Pospíšil P. (2016). Singlet oxygen production in Chlamydomonas reinhardtii under heat stress. Sci. Rep. 6:20094. 10.1038/srep20094 PubMed DOI PMC

Prasad A., Pospíšil P. (2011a). Linoleic Acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes. PLoS One 6:e22345. 10.1371/journal.pone.0022345 PubMed DOI PMC

Prasad A., Pospíšil P. (2011b). Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: role of reactive oxygen species. J. Biophotonics 4 840–849. 10.1002/jbio.201100073 PubMed DOI

Prasad A., Pospíšil P. (2013). Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep. 3:1211. 10.1038/srep01211 PubMed DOI PMC

Prost-Squarcioni C. (2006). Histology of skin and hair follicle. Med. Sci. 22 131–137. 10.1051/medsci/2006222131 PubMed DOI

Rastogi A., Pospíšil P. (2011). Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system. J. Biomed. Opt. 16:096005. 10.1117/1.3616135 PubMed DOI

Rifkind J. M., Mohanty J. G., Nagababu E. (2015). The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front. Physiol. 5:500. 10.3389/fphys.2014.00500 PubMed DOI PMC

Rinnerthaler M., Bischof J., Streubel M. K., Trost A., Richter K. (2015). Oxidative stress in aging human skin. Biomolecules 5 545–589. 10.3390/biom5020545 PubMed DOI PMC

Russell G. A. (1957). Deuterium-Isotope effects in the autoxidation of aralkyl hydrocarbons - mechanism of the interaction of peroxy radicals. J. Am. Chem. Soc. 79 3871–3877. 10.1021/Ja01571a068 DOI

Sadrzadeh S. M. H., Graf E., Panter S. S., Hallaway P. E., Eaton J. W. (1984). Hemoglobin - a biologic fenton reagent. J. Biol. Chem. 259 4354–4356. PubMed

Sauermann G., Mei W. P., Hoppe U., Stab F. (1999). Ultraweak photon emission of human skin in vivo: influence of topically applied antioxidants on human skin. Methods Enzymol. 300(Pt B), 419–428. 10.1016/S0076-6879(99)00147-0 PubMed DOI

Suzuki K., Saito H., Jinno N., Hashimoto M., Tsukagoshi K., Kimoto H., et al. (2008). Specific Chemiluminescence from Singlet Oxygen Generated by the Reaction of Acetonitrile and Hydrogen Peroxide in the Presence of Alkali Halide. Chem. Lett. 37 1090–1091. 10.1246/cl.2008.1090 DOI

Tepole A. B., Gosain A. K., Kuhl E. (2012). Stretching skin: the physiological limit and beyond. Int. J. Non Linear Mech. 47 938–949. 10.1016/j.ijnonlinmec.2011.07.006 PubMed DOI PMC

Torinuki W., Miura T. (1981). Singlet oxygen and ultraweak chemi-luminescence in rat skin. Tohoku J. Exp. Med. 135 387–393. 10.1620/tjem.135.387 PubMed DOI

Zouboulis C. C. (2009). The skin as an endocrine organ. Dermatoendocrinol 1 250–252. 10.4161/derm.1.5.9499 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace