Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31284470
PubMed Central
PMC6681336
DOI
10.3390/biom9070258
PII: biom9070258
Knihovny.cz E-zdroje
- Klíčová slova
- chromophores, electronically excited species, hydrogen peroxide, hydroxyl radical, oxidative radical reactions, reactive oxygen species, singlet oxygen, superoxide anion radical,
- MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- oxidace-redukce MeSH
- přenos energie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyslík MeSH
- reaktivní formy kyslíku MeSH
It is well known that biological systems, such as microorganisms, plants, and animals, including human beings, form spontaneous electronically excited species through oxidative metabolic processes. Though the mechanism responsible for the formation of electronically excited species is still not clearly understood, several lines of evidence suggest that reactive oxygen species (ROS) are involved in the formation of electronically excited species. This review attempts to describe the role of ROS in the formation of electronically excited species during oxidative metabolic processes. Briefly, the oxidation of biomolecules, such as lipids, proteins, and nucleic acids by ROS initiates a cascade of reactions that leads to the formation of triplet excited carbonyls formed by the decomposition of cyclic (1,2-dioxetane) and linear (tetroxide) high-energy intermediates. When chromophores are in proximity to triplet excited carbonyls, the triplet-singlet and triplet-triplet energy transfers from triplet excited carbonyls to chromophores result in the formation of singlet and triplet excited chromophores, respectively. Alternatively, when molecular oxygen is present, the triplet-singlet energy transfer from triplet excited carbonyls to molecular oxygen initiates the formation of singlet oxygen. Understanding the mechanism of the formation of electronically excited species allows us to use electronically excited species as a marker for oxidative metabolic processes in cells.
Zobrazit více v PubMed
Halliwell B., Gutteridge J.M.C. Free Radical in Biology and Medicine. Oxford University Press; New York, NY, USA: 2007. p. 704.
Halliwell B. Free radicals and antioxidants-Quo vadis? Trends Pharmacol. Sci. 2011;32:125–130. doi: 10.1016/j.tips.2010.12.002. PubMed DOI
Hawkins C.L., Davies M.J. Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta Bioenerget. 2001;1504:196–219. doi: 10.1016/S0005-2728(00)00252-8. PubMed DOI
Tulah A.S., Birch-Machin M.A. Stressed out mitochondria: The role of mitochondria in ageing and cancer focussing on strategies and opportunities in human skin. Mitochondrion. 2013;13:444–453. doi: 10.1016/j.mito.2012.11.007. PubMed DOI
Kroeller-Schoen S., Steven S., Kossmann S., Scholz A., Daub S., Oelze M., Xia N., Hausding M., Mikhed Y., Zinssius E., et al. Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen Species-Studies in White Blood Cells and in Animal Models. Antioxid. Redox Signal. 2014;20:247–266. doi: 10.1089/ars.2012.4953. PubMed DOI PMC
Radi R. Peroxynitrite, a Stealthy Biological Oxidant. J. Biol. Chem. 2013;288:26464–26472. doi: 10.1074/jbc.R113.472936. PubMed DOI PMC
Bartesaghi S., Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018;14:618–625. doi: 10.1016/j.redox.2017.09.009. PubMed DOI PMC
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA. 2018;115:5839–5848. doi: 10.1073/pnas.1804932115. PubMed DOI PMC
Gutteridge J.M.C., Halliwell B. Free radicals and antioxidants in the year 2000—A historical look to the future. Ann. N. Y. Acad. Sci. 2000;899:136–147. doi: 10.1111/j.1749-6632.2000.tb06182.x. PubMed DOI
Halliwell B., Gutteridge J.M.C. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med. 1995;18:125–126. doi: 10.1016/0891-5849(95)91457-3. PubMed DOI
Hellemans L., Corstjens H., Neven A., Declercq L., Maes D. Antioxidant enzyme activity in human stratum corneum shows seasonal variation with an age-dependent recovery. J. Investig. Dermatol. 2003;120:434–439. doi: 10.1046/j.1523-1747.2003.12056.x. PubMed DOI
Auf Dem Keller U., Kumin A., Braun S., Werner S. Reactive oxygen species and their detoxification in healing skin wounds. J. Investig. Dermatol. Symp. Proc. 2006;11:106–111. doi: 10.1038/sj.jidsymp.5650001. PubMed DOI
Darvin M.E., Patzelt A., Knorr F., Blume-Peytavi U., Sterry W., Lademann J. One-year study on the variation of carotenoid antioxidant substances in living human skin: Influence of dietary supplementation and stress factors. J. Biomed. Opt. 2008;13:044028. doi: 10.1117/1.2952076. PubMed DOI
Tiwari S., Mishra P.C. Urocanic acid as an efficient hydroxyl radical scavenger: A quantum theoretical study. J. Mol. Model. 2011;17:59–72. doi: 10.1007/s00894-010-0699-3. PubMed DOI
Linton S., Davies M.J., Dean R.T. Protein oxidation and ageing. Exp. Gerontol. 2001;36:1503–1518. doi: 10.1016/S0531-5565(01)00136-X. PubMed DOI
Celaje J.A., Zhang D., Guerrero A.M., Selke M. Chemistry of trans-Resveratrol with Singlet Oxygen: 2+2 Addition, 4+2 Addition, and Formation of the Phytoalexin Moracin M. Org. Lett. 2011;13:4846–4849. doi: 10.1021/ol201922u. PubMed DOI
Jacobson M.D. Reactive oxygen species and programmed cell death. Trends Biochem. Sci. 1996;21:83–86. doi: 10.1016/S0968-0004(96)20008-8. PubMed DOI
Bennett M.F., Robinson M.K., Baron E.D., Cooper K.D. Skin immune systems and inflammation: Protector of the skin or promoter of aging? J. Investig. Dermatol. Symp. Proc. 2008;13:15–19. doi: 10.1038/jidsymp.2008.3. PubMed DOI
Cilento G., Adam W. From free radicals to electronically excited species. Free Radic. Biol. Med. 1995;19:103–114. doi: 10.1016/0891-5849(95)00002-F. PubMed DOI
Mano C.M., Prado F.M., Massari J., Ronsein G.E., Martinez G.R., Miyamoto S., Cadet J., Sies H., Medeiros M.H.G., Bechara E.J.H., et al. Excited singlet molecular O-2 ((1)Delta g) is generated enzymatically from excited carbonyls in the dark. Sci. Rep. 2014;4:5938. doi: 10.1038/srep05938. PubMed DOI PMC
Cifra M., Pospíšil P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B Biol. 2014;139:2–10. doi: 10.1016/j.jphotobiol.2014.02.009. PubMed DOI
Prasad A., Pospisil P. Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep. 2013;3:1211. doi: 10.1038/srep01211. PubMed DOI PMC
Madl P., Verwanger T., Geppert M., Scholkmann F. Oscillations of ultra-weak photon emission from cancer and non-cancer cells stressed by culture medium change and TNF-alpha. Sci. Rep. 2017;7:11249. doi: 10.1038/s41598-017-10949-z. PubMed DOI PMC
Rac M., Sedlarova M., Pospisil P. The formation of electronically excited species in the human multiple myeloma cell suspension. Sci. Rep. 2015;5:8882. doi: 10.1038/srep08882. PubMed DOI PMC
He M., van Wijk E., van Wietmarschen H., Wang M., Sun M.M., Koval S., van Wijk R., Hankemeier T., van der Greef J. Spontaneous ultra-weak photon emission in correlation to inflammatory metabolism and oxidative stress in a mouse model of collagen-induced arthritis. J. Photochem. Photobiol. B. 2017;168:98–106. doi: 10.1016/j.jphotobiol.2016.12.036. PubMed DOI
Prasad A., Ferretti U., Sedlarova M., Pospisil P. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress. Sci. Rep. 2016;6:13. doi: 10.1038/srep20094. PubMed DOI PMC
Usui S., Tada M., Kobayashi M. Non-invasive visualization of physiological changes of insects during metamorphosis based on biophoton emission imaging. Sci. Rep. 2019;9:7. doi: 10.1038/s41598-019-45007-3. PubMed DOI PMC
Van Wijk R., Van Wijk E. Ultraweak Photon Emission from Human Body. Springer; Boston, MA, USA: 2005. pp. 173–184.
Biesalski H.K., Obermueller-Jevic U.C. UV light, beta-carotene and human skin-Beneficial and potentially harmful effects. Arch. Biochem. Biophys. 2001;389:1–6. doi: 10.1006/abbi.2001.2313. PubMed DOI
Hao O.Y., Stamatas G., Saliou C., Kollias N. A chemiluminescence study of UVA-induced oxidative stress in human skin in vivo. J. Investig. Dermatol. 2004;122:1020–1029. PubMed
Rattan S.I.S., Fernandes R.A., Demirovic D., Dymek B., Lima C.F. Heat stress and hormetin-induced hormesis in human cells: Effects on aging, wound healing, angiogenesis, and differentiation. Dose-response. 2009;7:90–103. doi: 10.2203/dose-response.08-014.Rattan. PubMed DOI PMC
Kobayashi M., Kikuchi D., Okamura H. Imaging of Ultraweak Spontaneous Photon Emission from Human Body Displaying Diurnal Rhythm. PLoS ONE. 2009;4:e6256. doi: 10.1371/journal.pone.0006256. PubMed DOI PMC
Prasad A., Pospisil P. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes. PLoS ONE. 2011;6:e22345. doi: 10.1371/journal.pone.0022345. PubMed DOI PMC
Prasad A., Pospisil P. Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: Role of reactive oxygen species. J. Biophotonics. 2011;4:840–849. doi: 10.1002/jbio.201100073. PubMed DOI
Rastogi A., Pospíšil P. Production of hydrogen peroxide and hydroxyl radical in potato tuber during the necrotrophic phase of hemibiotrophic pathogen Phytophthora infestans infection. J. Photochem. Photobiol. B Biol. 2012;117:202–206. doi: 10.1016/j.jphotobiol.2012.10.001. PubMed DOI
Burgos R.C.R., Schoeman J.C., van Winden L.J., Cervinkova K., Ramautar R., Van Wijk E.P.A., Cifra M., Berger R., Hankemeier T., van der Greef J. Ultra-weak photon emission as a dynamic tool for monitoring oxidative stress metabolism. Sci. Rep. 2017;7:1229. doi: 10.1038/s41598-017-01229-x. PubMed DOI PMC
Kamal A.M., Komatsu S. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol. Biol. Rep. 2016;43:73–89. doi: 10.1007/s11033-015-3940-4. PubMed DOI
Cadenas E., Arad I.D., Boveris A., Fisher A.B., Chance B. Partial Spectral-Analysis of the Hydroperoxide-Induced Chemi-Luminescence of the Perfused Lung. FEBS Lett. 1980;111:413–418. doi: 10.1016/0014-5793(80)80839-8. PubMed DOI
Van Wijk R., Ackerman J.M., Van Wijk E.P.A. Color filters and human photon emission: Implications for auriculomedicine. Explor. J. Sci. Heal. 2005;1:102–108. doi: 10.1016/j.explore.2004.12.003. PubMed DOI
Cadenas E., Wefers H., Sies H. Low-Level Chemi-Luminescence of Isolated Hepatocytes. Eur. J. Biochem. 1981;119:531–536. doi: 10.1111/j.1432-1033.1981.tb05640.x. PubMed DOI
Mathew B.G., Roy D. Weak luminescence from the frozen-thawed root tips of Cicer arietinum L. J. Photochem. Photobiol. B Biol. 1992;12:141–150. doi: 10.1016/1011-1344(92)85003-D. DOI
Pospíšil P., Prasad A., Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B Biol. 2014;139:11–23. doi: 10.1016/j.jphotobiol.2014.02.008. PubMed DOI
Han D., Williams E., Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 2001;353:411–416. doi: 10.1042/bj3530411. PubMed DOI PMC
Auchere F., Rusnak F. What is the ultimate fate of superoxide anion in vivo? J. Biol. Inorg. Chem. 2002;7:664–667. doi: 10.1007/s00775-002-0362-2. PubMed DOI
Pospisil P. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta Bioenerget. 2012;1817:218–231. doi: 10.1016/j.bbabio.2011.05.017. PubMed DOI
Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141:391–396. doi: 10.1104/pp.106.082040. PubMed DOI PMC
Barber M.J., Kay C.J. Superoxide production during reduction of molecular oxygen by assimilatory nitrate reductase. Arch. Biochem. Biophys. 1996;326:227–232. doi: 10.1006/abbi.1996.0069. PubMed DOI
Lambert A.J., Brand M.D. Superoxide production by NADH: Ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem. J. 2004;382:511–517. doi: 10.1042/BJ20040485. PubMed DOI PMC
Wood P.M. The potential diagram for oxygen at PH-7. Biochem. J. 1988;253:287–289. doi: 10.1042/bj2530287. PubMed DOI PMC
Aikens J., Dix T.A. Perhydroxyl radical (HOO.) initiated lipid-peroxidation-the role of fatty acid hydroperoxide. J. Biol. Chem. 1991;266:15091–15098. PubMed
Gebicki J.M., Bielski B.H.J. Comparison of the capacities of the perhydroxyl and the speroxide radicals to initiate chain oxidation of linoleic acid. J. Am. Chem. Soc. 1981;103:7020–7022. doi: 10.1021/ja00413a066. DOI
Winterbourn C.C., Kettle A.J. Radical-radical reactions of superoxide: A potential route to toxicity. Biochem. Biophys. Res. Commun. 2003;305:729–736. doi: 10.1016/S0006-291X(03)00810-6. PubMed DOI
Barbouti A., Doulias P.T., Zhu B.Z., Frei B., Galaris D. Intracellular iron, but not copper, plays a critical role in hydrogen peroxide-induced DNA damage. Free Radical Biol. Med. 2001;31:490–498. doi: 10.1016/S0891-5849(01)00608-6. PubMed DOI
Dahlgren C., Karlsson A., Bylund J. Measurement of respiratory burst products generated by professional phagocytes. Methods Mol. Biol. 2007;412:349–363. PubMed
Daithankar V.N., Wang W., Trujillo J.R., Thorpe C. Flavin-linked Erv-family sulfhydryl oxidases release superoxide anion during catalytic turnover. BioChemistry. 2012;51:265–272. doi: 10.1021/bi201672h. PubMed DOI PMC
Wood P.M. The 2 Redox Potentials for Oxygen Reduction to Superoxide. Trends Biochem. Sci. 1987;12:250–251. doi: 10.1016/0968-0004(87)90123-X. DOI
Culotta V.C., Yang M., O’Halloran T.V. Activation of superoxide dismutases: Putting the metal to the pedal. Biochim. Biophysica Acta-Mol. Cell Res. 2006;1763:747–758. doi: 10.1016/j.bbamcr.2006.05.003. PubMed DOI PMC
Halliwell B., Clement M.V., Long L.H. Hydrogen peroxide in the human body. FEBS Lett. 2000;486:10–13. doi: 10.1016/S0014-5793(00)02197-9. PubMed DOI
Kale R., Hebert A.E., Frankel L.K., Sallans L., Bricker T.M., Pospíšil P. Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proc. Natl. Acad. Sci. USA. 2017;114:2988–2993. doi: 10.1073/pnas.1618922114. PubMed DOI PMC
Hoffmann M.E., Meneghini R. Action of hydrogen peroxide on human fibroblast in culture. PhotoChem. Photobiol. 1979;30:151–155. doi: 10.1111/j.1751-1097.1979.tb07128.x. PubMed DOI
Stadtman E.R., Levine R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 2003;25:207–218. doi: 10.1007/s00726-003-0011-2. PubMed DOI
Kim Y.H., Berry A.H., Spencer D.S., Stites W.E. Comparing the effect on protein stability of methionine oxidation versus mutagenesis: Steps toward engineering oxidative resistance in proteins. Protein Eng. 2001;14:343–347. doi: 10.1093/protein/14.5.343. PubMed DOI
Ashby M.T., Nagy P. On the kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution-Commentary. J. Pharm. Sci. 2006;95:15–18. doi: 10.1002/jps.20521. PubMed DOI
Winterbourn C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995;82–83:969–974. doi: 10.1016/0378-4274(95)03532-X. PubMed DOI
Prousek J. Fenton chemistry in biology and medicine. Pure Appl. Chem. 2007;79:2325–2338. doi: 10.1351/pac200779122325. DOI
Buettner G.R. The pecking order of free-radicals and antioxidants-lipid-peroxidation, alpha-tocopherol, and ascorbate. Arch. BioChem. Biophys. 1993;300:535–543. doi: 10.1006/abbi.1993.1074. PubMed DOI
Pierre J.L., Fontecave M. Iron and activated oxygen species in biology: The basic chemistry. Biometals. 1999;12:195–199. doi: 10.1023/A:1009252919854. PubMed DOI
Bresgen N., Jaksch H., Lacher H., Ohlenschlager I., Uchida K., Eckl P.M. Iron-mediated oxidative stress plays an essential role in ferritin-induced cell death. Free Radic. Biol. Med. 2010;48:1347–1357. doi: 10.1016/j.freeradbiomed.2010.02.019. PubMed DOI
Waldo G.S., Wright E., Whang Z.H., Briat J.F., Theil E.C., Sayers D.E. Formation of the ferritin iron mineral occurs in plastids-an X-ray-absorption spectroscopy study. Plant Physiol. 1995;109:797–802. doi: 10.1104/pp.109.3.797. PubMed DOI PMC
Koppenol W.H., Butler J., Vanleeuwen J.W. Haber-Weiss Cycle. PhotoChem. Photobiol. 1978;28:655–660. doi: 10.1111/j.1751-1097.1978.tb06989.x. DOI
Pospíšil P. Production of reactive oxygen species by photosystem II. Biochim. Biophysica Acta-Bioenerget. 2009;1787:1151–1160. doi: 10.1016/j.bbabio.2009.05.005. PubMed DOI
Stadtman E.R. Oxidation of free amino-acids and amino-acid-residues in proteins by radiolysis and by meral-catalyzed reactions. Annu. Rev. BioChem. 1993;62:797–821. doi: 10.1146/annurev.bi.62.070193.004053. PubMed DOI
Aust A.E., Eveleigh J.F. Mechanisms of DNA oxidation. Proc. Soc. Exp. Biol. Med. 1999;222:246–252. doi: 10.1046/j.1525-1373.1999.d01-141.x. PubMed DOI
Balasubramanian B., Pogozelski W.K., Tullius T.D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. USA. 1998;95:9738–9743. doi: 10.1073/pnas.95.17.9738. PubMed DOI PMC
Pogozelski W.K., Tullius T.D. Oxidative strand scission of nucleic acids: Routes initiated by hydrogen abstraction from the sugar moiety. Chem. Rev. 1998;98:1089–1107. doi: 10.1021/cr960437i. PubMed DOI
Henle E.S., Linn S. Formation, prevention, and repair of DNA damage by iron hydrogen peroxide. J. Biol. Chem. 1997;272:19095–19098. doi: 10.1074/jbc.272.31.19095. PubMed DOI
Halliwell B., Aruoma O.I. DNA damage by oxygen-derived species-its mechanism and measurement in mammalian systems. FEBS Lett. 1991;281:9–19. doi: 10.1016/0014-5793(91)80347-6. PubMed DOI
Ogilby P.R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010;39:3181–3209. doi: 10.1039/b926014p. PubMed DOI
DeRosa M.C., Crutchley R.J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002;233:351–371. doi: 10.1016/S0010-8545(02)00034-6. DOI
Adam W., Cilento G. Chemical and Biology Generation of Excited States. Academic Press; New York, NY, USA: 1982.
Adam W., Kazakov D.V., Kazakov V.P. Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev. 2005;105:3371–3387. doi: 10.1021/cr0300035. PubMed DOI
Stratton S.P., Liebler D.C. Determination of singlet oxygen-specific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: Effect of beta-carotene and alpha-tocopherol. BioChemistry. 1997;36:12911–12920. doi: 10.1021/bi9708646. PubMed DOI
Gracanin M., Hawkins C.L., Pattison D.I., Davies M.J. Singlet-oxygen-mediated amino acid and protein oxidation: Formation of tryptophan peroxides and decomposition products. Free Radic. Biol. Med. 2009;47:92–102. doi: 10.1016/j.freeradbiomed.2009.04.015. PubMed DOI
Pryor W.A., Stanley J.P., Blair E., Cullen G.B. Autoxidation of polyunsaturated fatty-acids. 1. effect of ozone on autoxidation of neat methyl linoleate and methyl linolenate. Arch. Environ. Health. 1976;31:201–210. doi: 10.1080/00039896.1976.10667220. PubMed DOI
D’Ambrosio P., Tonucci L., d’Alessandro N., Morvillo A., Sortino S., Bressan M. Water-Soluble Transition-Metal-Phthalocyanines as Singlet Oxygen Photosensitizers in Ene Reactions. Eur. J. Inorg. Chem. 2011;2011:503–509. doi: 10.1002/ejic.201000784. DOI
Griesbeck A.G., de Kiff A. A New Directing Mode for Singlet Oxygen Ene Reactions: The Vinylogous Gem Effect Enables a O-1(2) Domino Ene/ 4+2 Process. Org. Lett. 2013;15:2073–2075. doi: 10.1021/ol4009602. PubMed DOI
Ravanat J.L., Di Mascio P., Martinez G.R., Medeiros M.H.G., Cadet J. Singlet oxygen induces oxidation of cellular DNA. J. Biol. Chem. 2000;275:40601–40604. doi: 10.1074/jbc.M006681200. PubMed DOI
Tsunoda H., Kudo T., Masaki Y., Ohkubo A., Seio K., Sekine M. Biochemistry behavior of N-oxidized cytosine and adenine bases in DNA polymerase-mediated primer extension reactions. Nucleic Acids Res. 2011;39:2995–3004. doi: 10.1093/nar/gkq914. PubMed DOI PMC
Nguyen K.V., Muller J.G., Burrows C.J. Oxidation of 9-beta-D-ribofuranosyl uric acid by one-electron oxidants versus singlet oxygen and its implications for the oxidation of 8-oxo-7,8-dihydroguanosine. Tetrahedron Lett. 2011;52:2176–2180. doi: 10.1016/j.tetlet.2010.11.123. DOI
Kang P., Foote C.S. Formation of transient intermediates in low-temperature photosensitized oxidation of an 8-C-13-guanosine derivative. J. Am. Chem. Soc. 2002;124:4865–4873. doi: 10.1021/ja012038x. PubMed DOI
Prat F., Houk K.N., Foote C.S. Effect of guanine stacking on the oxidation of 8-oxoguanine in B-DNA. J. Am. Chem. Soc. 1998;120:845–846. doi: 10.1021/ja972331q. DOI
Hatz S., Poulsen L., Ogilby P.R. Time-resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: Effects of oxygen diffusion and oxygen concentration. PhotoChem. Photobiol. 2008;84:1284–1290. doi: 10.1111/j.1751-1097.2008.00359.x. PubMed DOI
Da Silva E.F.F., Pedersen B.W., Breitenbach T., Toftegaard R., Kuimova M.K., Arnaut L.G., Ogilby P.R. Irradiation-and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process. J. Phys. Chem. B. 2012;116:445–461. doi: 10.1021/jp206739y. PubMed DOI
Breitenbach T., Kuimova M.K., Gbur P., Hatz S., Schack N.B., Pedersen B.W., Lambert J.D.C., Poulsen L., Ogilby P.R. Photosensitized production of singlet oxygen: Spatially-resolved optical studies in single cells. Photochem. PhotoBiol. Sci. 2009;8:442–452. doi: 10.1039/B809049A. PubMed DOI
Di Mascio P., Martinez G.R., Miyamoto S., Ronsein G.E., Medeiros M.H.G., Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem. Rev. 2019;119:2043–2086. doi: 10.1021/acs.chemrev.8b00554. PubMed DOI
Girotti A.W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 1998;39:1529–1542. PubMed
Leach A.G., Houk K.N., Foote C.S. Theoretical Prediction of a Perepoxide Intermediate for the Reaction of Singlet Oxygen with trans-Cyclooctene Contrasts with the Two-Step No-Intermediate Ene Reaction for Acyclic Alkenes. J. Org. Chem. 2008;73:8511–8519. doi: 10.1021/jo8016154. PubMed DOI
Dean R.T., Gieseg S., Davies M.J. Reactive Species and Their Accumulation on Radical-Damaged Proteins. Trends Biochem. Sci. 1993;18:437–441. doi: 10.1016/0968-0004(93)90145-D. PubMed DOI
Simpson J.A., Narita S., Gieseg S., Gebicki S., Gebicki J.M., Dean R.T. Long-lived reactive species on free-radical-damaged proteins. Biochem. J. 1992;282:621–624. doi: 10.1042/bj2820621. PubMed DOI PMC
Greer A., Vassilikogiannakis G., Lee K.C., Koffas T.S., Nahm K., Foote C.S. Reaction of singlet oxygen with trans-4-propenylanisole. Formation of 2+2 products with added acid. J. Org. Chem. 2000;65:6876–6878. doi: 10.1021/jo991576d. PubMed DOI
Fedorova G.F., Trofimov A.V., Vasil’ev R.F., Veprintsev T.L. Peroxy-radical-mediated chemiluminescence: Mechanistic diversity and fundamentals for antioxidant assay. Arkivoc. 2007;8:163–215. doi: 10.1002/chin.200709275. DOI
Uemi M., Ronsein G.E., Miyamoto S., Medeiros M.H.G., Di Mascio P. Generation of Cholesterol Carboxyaldehyde by the Reaction of Singlet Molecular Oxygen O-2 ((1)Delta(g)) as Well as Ozone with Cholesterol. Chem. Res. Toxicol. 2009;22:875–884. doi: 10.1021/tx800447b. PubMed DOI
Clennan E.L. New mechanistic and synthetic aspects of singlet oxygen chemistry. Tetrahedron. 2000;56:9151–9179. doi: 10.1016/S0040-4020(00)00794-8. DOI
Adam W., Bosio S.G., Turro N.J. Highly diastereoselective dioxetane formation in the photooxygenation of enecarbamates with an oxazolidinone chiral auxiliary: Steric control in the 2+2 cycloaddition of singlet oxygen through conformational alignment. J. Am. Chem. Soc. 2002;124:8814–8815. doi: 10.1021/ja026815k. PubMed DOI
Clennan E.L., Pace A. Advances in singlet oxygen chemistry. Tetrahedron. 2005;61:6665–6691. doi: 10.1016/j.tet.2005.04.017. DOI
Corey E.J., Wang Z. Conversion of arachidonic acid to the prostaglandin endoperoxide PGG(2), a chemical analog of the biosynthetic-pathway. Tetrahedron Lett. 1994;35:539–542. doi: 10.1016/S0040-4039(00)75832-1. DOI
Miyamoto S., Rettori D., Augusto O., Martinez G.R., Medeiros M.H.G., Di Mascio P. Linoleic acid hydroperoxide reacts with hypochlorite generating peroxyl radical intermediates and singlet oxygen. Free Radic. Biol. Med. 2004;37:S16. PubMed PMC
Prado F.M., Oliveira M.C.B., Miyamoto S., Martinez G.R., Medeiros M.H.G., Ronsein G.E., Di Mascio P. Thymine hydroperoxide as a potential source of singlet molecular oxygen in DNA. Free Radic. Biol. Med. 2009;47:401–409. doi: 10.1016/j.freeradbiomed.2009.05.001. PubMed DOI
Russell G.A. Deuterium-isotope Effects in the Autoxidation of Aralkyl Hydrocarbons. Mechanism of the Interaction of Peroxy Radicals. J. Am. Chem. Soc. 1957;79:3871–3877. doi: 10.1021/ja01571a068. DOI
Miyamoto S., Martinez G.R., Medeiros M.H.G., Di Mascio P. Singlet molecular oxygen generated by biological hydroperoxides. J. PhotoChem. Photobiol. B Biol. 2014;139:24–33. doi: 10.1016/j.jphotobiol.2014.03.028. PubMed DOI
Miyamoto S., Di Mascio P. Lipid Hydroperoxides as a Source of Singlet Molecular Oxygen. In: Kato Y., editor. Lipid Hydroperoxide-Derived Modification of Biomolecules. Volume 77. Springer; Berlin/Heidelberg, Germany: 2014. pp. 3–20. PubMed
Cadenas E., Sies H. Methods in Enzymology. Academic Press; Cambridge, MA, USA: 2000. Formation of electronically excited states during the oxidation of arachidonic acid by prostaglandin endoperoxide synthase. PubMed
Hall R., Chamulitrat W., Takahashi N., Chignell C., Mason R. Detection of Singlet oxygem phosphorescence during chloroperoxidase-catalyzed decomposition of ethyl hydroperoxide. J. Biol. Chem. 1989;264:7900–7906. PubMed
Howard J.A., Ingold K.U. Absolute rate constants for hydrocarbon autooxidation.V. Hydroperoxy radical in chain propagation and termination. Can. J. Chem. 1967;45:785–792. doi: 10.1139/v67-131. DOI
Cilento G., Nascimento A. Generation of electronically excited triplet species at the cellular level: A potential source of genotoxicity. Toxicol. Lett. 1993;67:17–28. doi: 10.1016/0378-4274(93)90043-W. PubMed DOI
Boveris A., Cadenas E., Reiter R., Filipkowski M., Nakase Y., Chance B. Organ Chemi-Luminescence-Non-Invasive Assay for Oxidative Radical Reactions. Proc. Natl. Acad. Sci. USA. 1980;77:347–351. doi: 10.1073/pnas.77.1.347. PubMed DOI PMC
Bennett M., Mehta M., Grant M. Biophoton imaging: A nondestructive method for assaying R gene responses. Mol. Plant-Microbe Interact. 2005;18:95–102. doi: 10.1094/MPMI-18-0095. PubMed DOI
Darmanyan A.P., Foote C.S. Solvent effects on singlet oxygen yield from N,PI-asterisk and PI,PI-asterisk triplet carbonyl compounds. J. Phys. Chem. 1993;97:5032–5035. doi: 10.1021/j100121a029. DOI
Mansfield J.W. Biophoton distress flares signal the onset of the hypersensitive reaction. Trends Plant Sci. 2005;10:307–309. doi: 10.1016/j.tplants.2005.05.007. PubMed DOI
Niu E.P., Mau A.W.H., Ghiggino K.P. Dye-Sensitized Photooxidation of Anthracene and Its Derivatives in Nafion Membrane. Aust. J. Chem. 1991;44:695–704. doi: 10.1071/CH9910695. DOI
Cilento G., Adam W. Photochemistry and Photobiology without Light. PhotoChem. Photobiol. 1988;48:361–368. doi: 10.1111/j.1751-1097.1988.tb02835.x. PubMed DOI
Kopecky K.R., Mumford C. Luminescence in thermal decomposition of 3,3,4-trimethyl-1,2-dioxetane. Can. J. Chem. 1969;47:709. doi: 10.1139/v69-114. DOI
Cilento G., Debaptista C., Brunetti I.L. Triplet carbonyls: From photophysics to biochemistry. J. Mol. Struct. 1994;324:45–48. doi: 10.1016/0022-2860(94)08225-1. DOI
Kopecky K.R., Filby J.E. Yields of excited-states from thermolysis of some 1,2-dioxetanes. Can. J. Chem. 1979;57:283–288. doi: 10.1139/v79-047. DOI
Turro N.J., Lechtken P. Biacetyl sensitized decomposition of tetramethyl-1,2-dioxetane-example of anti-Stokes sensitization involving a masked excited state. Tetrahedron Lett. 1973;14:565–568. doi: 10.1016/S0040-4039(01)95847-2. DOI
Matsumoto M. Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence. J. Photochem. Photobiol. C. 2004;5:27–53. doi: 10.1016/j.jphotochemrev.2004.02.001. DOI
Richardson W.H., Anderegg J.H., Price M.E., Tappen W.A., Oneal H.E. Kinetics and mechanisms of thermal decomposition of triphenyl-1,1,2-dioxetane. J. Org. Chem. 1978;43:2236–2242. doi: 10.1021/jo00405a031. DOI
Akasaka T., Fukuoka K., Ando W. A 3-methylene-1,2-dioxetane as a possible chemiluminescent intermediate in singlet oxygenation of allene. Bull. Chem. Soc. Jpn. 1989;62:1367–1369. doi: 10.1246/bcsj.62.1367. DOI
Baumstark A.L., Anderson S.L., Sapp C.J., Vasquez P.C. Thermolysis of 3-alkyl-3-methyl-1,2-dioxetanes: Activation parameters and chemiexcitation yields. Heteroat. Chem. 2001;12:176–179. doi: 10.1002/hc.1028. DOI
Nery A.L.P., Weiss D., Catalani L.H., Baader W.J. Studies on the intramolecular electron transfer catalyzed thermolysis of 1,2-dioxetanes. Tetrahedron. 2000;56:5317–5327. doi: 10.1016/S0040-4020(00)00457-9. DOI
Carey F., Sundberg R. Advanced Organic Chemisty Part A Structure and Mechanisms. Plenum Press; New York, NY, USA: 1984. p. 1199.
Miyamoto S., Ronsein G.E., Prado F.M., Uemi M., Correa T.C., Toma I.N., Bertolucci A., Oliveira M.C.B., Motta F.D., Medeiros M.H.G., et al. Biological hydroperoxides and singlet molecular oxygen generation. IUBMB Life. 2007;59:322–331. doi: 10.1080/15216540701242508. PubMed DOI
Vacher M., Galvan I.F., Ding B.W., Schramm S., Berraud-Pache R., Naumov P., Ferre N., Liu Y.J., Navizet I., Roca-Sanjuan D., et al. Chemi-and Bioluminescence of Cyclic Peroxides. Chem. Rev. 2018;118:6927–6974. doi: 10.1021/acs.chemrev.7b00649. PubMed DOI
Augusto O., Cilento G. Dark Excitation of Chlorophyll. PhotoChem. Photobiol. 1979;30:191–193. doi: 10.1111/j.1751-1097.1979.tb07135.x. DOI
Bohne C., Campa A., Cilento G., Nassi L., Villablanca M. Chlorophyll-an efficient detector of electronically excited species in Biochem. systems. Anal. BioChem. 1986;155:1–9. doi: 10.1016/0003-2697(86)90215-0. PubMed DOI
Campa A., Nassi L., Cilento G. Triplet Energy-Transfer to Chloroplasts from Peroxidase-Generated Excited Aliphatic-Aldehydes. PhotoChem. Photobiol. 1984;40:127–131. doi: 10.1111/j.1751-1097.1984.tb04563.x. DOI
Marder J.B., Droppa M., Caspi V., Raskin V.I., Horvath G. Light-independent thermoluminescence from thylakoids of greening barley leaves. Evidence for involvement of oxygen radicals and free chlorophyll. Physiol. Plant. 1998;104:713–719. doi: 10.1034/j.1399-3054.1998.1040428.x. DOI
Porcal G., Bertolotti S.G., Previtah C.M., Encinas M.V. Electron transfer quenching of singlet and triplet excited states of flavins and lumichrome by aromatic and aliphatic electron donors. Phys. Chem. Chem. Phys. 2003;5:4123–4128. doi: 10.1039/b306945a. DOI
Krasnovsky A.A., Neverov K.V., Egorov S.Y., Roeder B., Levald T. Photophysical Studies of Pheophorbide-a and Pheophytin-a Phosphorescence and Photo-Sensitized Singlet Oxygen Luminescence. J. Photochem. Photobiol. B. 1990;5:245–254. doi: 10.1016/1011-1344(90)80009-M. PubMed DOI
Ortega-Ojeda F., Calcerrada M., Ferrero A., Campos J., Garcia-Ruiz C. Measuring the Human Ultra-Weak Photon Emission Distribution Using an Electron-Multiplying, Charge-Coupled Device as a Sensor. Sensors. 2018;18:1152. doi: 10.3390/s18041152. PubMed DOI PMC
Tsuchida K., Iwasa T., Kobayashi M. Noninvasive imaging of UV-induced oxidative stress in human skin using ultra-weak photon emission. J. Investig. Dermatol. 2018;138:B20. doi: 10.1016/j.jid.2018.06.124. DOI
Kobayashi M., Iwasa T., Tada M. Polychromatic spectral pattern analysis of ultra-weak photon emissions from a human body. J. Photochem. Photobiol. B. 2016;159:186–190. doi: 10.1016/j.jphotobiol.2016.03.037. PubMed DOI
Prasad A., Balukova A., Pospisil P. Triplet Excited Carbonyls and Singlet Oxygen Formation During Oxidative Radical Reaction in Skin. Front. Physiol. 2018;9:1109. doi: 10.3389/fphys.2018.01109. PubMed DOI PMC
Hideg E., Inaba H. Biophoton Emission (Ultraweak Photoemission) from Dark Adapted Spinach-Chloroplasts. PhotoChem. Photobiol. 1991;53:137–142. doi: 10.1111/j.1751-1097.1991.tb08479.x. DOI
Kalaji H.M., Goltsev V., Bosa K., Allakhverdiev S.I., Strasser R.J., Govindjee Experimental in vivo measurements of light emission in plants: A perspective dedicated to David Walker. Photosynth. Res. 2012;114:69–96. doi: 10.1007/s11120-012-9780-3. PubMed DOI
Kellogg R.E. Mechanism of chemiluminescence from peroxy radicals. J. Am. Chem. Soc. 1969;91:5433–5436. doi: 10.1021/ja01048a005. DOI
Niu Q.J., Mendenhall G.D. Yields of singlet molecular oxygen from peroxyl radical termination. J. Am. Chem. Soc. 1992;114:165–172. doi: 10.1021/ja00027a024. DOI
Kanofsky J.R. Singlet oxygen production from the peroxidase catalyzed formation of styrene glutathione adducts. Biochem. Biophys. Res. Commun. 1989;159:1051–1054. doi: 10.1016/0006-291X(89)92215-8. PubMed DOI
Sun S., Bao Z., Ma H., Zhang D., Zheng X. Singlet oxygen generation from the decomposition of alpha-linolenic acid hydroperoxide by cytochrome c and lactoperoxidase. BioChemstry. 2007;46:6668–6673. doi: 10.1021/bi700178u. PubMed DOI
Koh E., Fluhr R. Singlet oxygen detection in biological systems: Uses and limitations. Plant Signal. Behav. 2016;11:e1192742. doi: 10.1080/15592324.2016.1192742. PubMed DOI PMC
Imaging and Characterization of Oxidative Protein Modifications in Skin
Bioactive Compounds and Their Impact on Protein Modification in Human Cells
Reactive oxygen species in photosystem II: relevance for oxidative signaling
Free Radical-Mediated Protein Radical Formation in Differentiating Monocytes
Biological autoluminescence for assessing oxidative processes in yeast cell cultures
Reactive Oxygen Species Imaging in U937 Cells
Editorial: Reactive Oxygen Species (ROS) Detection Methods in Biological System
Reactive Oxygen Species as a Response to Wounding: In Vivo Imaging in Arabidopsis thaliana