Unveiling the role of epigenetic mechanisms and redox signaling in alleviating multiple abiotic stress in plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39363922
PubMed Central
PMC11446805
DOI
10.3389/fpls.2024.1456414
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, anthropogenic disturbances, crop resilience, epigenetic regulation, histone modification, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Anthropogenic activities and subsequent global climate change instigate drastic crop productivity and yield changes. These changes comprise a rise in the number and severity of plant stress factors, which can arise simultaneously or sequentially. When abiotic stress factors are combined, their impact on plants is more substantial than that of a singleton stress factor. One such impact is the alteration of redox cellular homeostasis, which, in turn, can regulate downstream stress-responsive gene expression and resistance response. The epigenetic regulation of gene expression in response to varied stress factors is an interesting phenomenon, which, conversely, can be stable and heritable. The epigenetic control in plants in response to abiotic stress combinations and their interactions with cellular redox alteration is an emerging field to commemorate crop yield management under climate change. The article highlights the integration of the redox signaling pathways and epigenetic regulations as pivotal components in the complex network of plant responses against multi-combinatorial stresses across time and space. This review aims to lay the foundation for developing novel approaches to mitigate the impact of environmental stresses on crop productivity, bridging the gap between theoretical understanding and practical solutions in the face of a changing climate and anthropogenic disturbances.
Division of Plant Biology Bose Institute Kolkata West Bengal India
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czechia
Zobrazit více v PubMed
AbdElgawad H., Zinta G., Hegab M. M., Pandey R., Asard H., Abuelsoud W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.00276 PubMed DOI PMC
Ahmad N., Naeem M., Ali H., Alabbosh K. F., Hussain H., Khan I., et al. . (2023). From challenges to solutions: The impact of melatonin on abiotic stress synergies in horticultural plants via redox regulation and epigenetic signaling. Sci. Hortic. 321, 112369. doi: 10.1016/j.scienta.2023.112369 DOI
Ahmed I. M., Cao F., Zhang M., Chen X., Zhang G., Wu F. (2013). Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in tibetan wild and cultivated barleys. PloS One 8, e77869. doi: 10.1371/journal.pone.0077869 PubMed DOI PMC
Aliyeva N., Nasibova A., Mammadov Z., Eftekhari A., Khalilov R. (2023). Individual and combinative effect of NaCl and γ-radiation on NADPH-generating enzymes activity in corn (Zea mays L.) sprouts. Heliyon 9, e22126. doi: 10.1016/j.heliyon.2023.e22126 PubMed DOI PMC
Andreyev A. Y., Kushnareva Y. E., Murphy A. N., Starkov A. A. (2015). Mitochondrial ROS metabolism: 10 years later. Biochem. Biokhimiia 80, 517–531. doi: 10.1134/S0006297915050028 PubMed DOI PMC
Asada K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141, 391–396. doi: 10.1104/pp.106.082040 PubMed DOI PMC
Attia H., Alamer K. H., Ouhibi C., Oueslati S., Lachaal M. (2020). Interaction between salt stress and drought stress on some physiological parameters in two pea cultivars. Int. J. Bot. 16, 1–8. doi: 10.3923/ijb.2020.1.8 DOI
Baek K.-H., Skinner D. Z. (2012). Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. J. Agric. Chem. Environ. 01, 34–40. doi: 10.4236/jacen.2012.11006 DOI
Balfagón D., Zandalinas S. I., Mittler R., Gómez-Cadenas A. (2020). High temperatures modify plant responses to abiotic stress conditions. Physiol. Plant 170, 335–344. doi: 10.1111/ppl.13151 PubMed DOI
Baniulis D., Hasan S. S., Stofleth J. T., Cramer W. A. (2013). Mechanism of enhanced superoxide production in the cytochrome b(6)f complex of oxygenic photosynthesis. Biochemistry 52, 8975–8983. doi: 10.1021/bi4013534 PubMed DOI PMC
Bao G., Tang W., An Q., Liu Y., Tian J., Zhao N., et al. . (2020). Physiological effects of the combined stresses of freezing-thawing, acid precipitation and deicing salt on alfalfa seedlings. BMC Plant Biol. 20, 204. doi: 10.1186/s12870-020-02413-4 PubMed DOI PMC
Barreto P., Dambire C., Sharma G., Vicente J., Osborne R., Yassitepe J., et al. . (2022). Mitochondrial retrograde signaling through UCP1-mediated inhibition of the plant oxygen-sensing pathway. Curr. Biol. 32, 1403–1411.e4. doi: 10.1016/j.cub.2022.01.037 PubMed DOI PMC
Barreto P., Okura V. K., Neshich I. A. P., Maia I. D. G., Arruda P. (2014). Overexpression of UCP1 in tobacco induces mitochondrial biogenesis and amplifies a broad stress response. BMC Plant Biol. 14, 144. doi: 10.1186/1471-2229-14-144 PubMed DOI PMC
Barreto P., Yassitepe J. E. C. T., Wilson Z. A., Arruda P. (2017). Mitochondrial Uncoupling Protein 1 Overexpression Increases Yield in Nicotiana tabacum under Drought Stress by Improving Source and Sink Metabolism. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01836 PubMed DOI PMC
Becker V. I., Goessling J. W., Duarte B., Caçador I., Liu F., Rosenqvist E., et al. . (2017). Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Funct. Plant Biol. 44, 665–678. doi: 10.1071/FP16370 PubMed DOI
Benali A., El Haddad N., Patil S. B., Goyal A., Hejjaoui K., El Baouchi A., et al. . (2023). Impact of terminal heat and combined heat-drought stress on plant growth, yield, grain size, and nutritional quality in chickpea (Cicer arietinum L.). Plants Basel Switz. 12, 3726. doi: 10.3390/plants12213726 PubMed DOI PMC
Berglund T., Wallström A., Nguyen T.-V., Laurell C., Ohlsson A. B. (2017). Nicotinamide; antioxidative and DNA hypomethylation effects in plant cells. Plant Physiology and Biochemistry 118, 551–560. doi: 10.1016/j.plaphy.2017.07.023 PubMed DOI
Bhar A., Chakraborty A., Roy A. (2021). Plant responses to biotic stress: old memories matter. Plants 11, 84. doi: 10.3390/plants11010084 PubMed DOI PMC
Bhar A., Chakraborty A., Roy A. (2023). The captivating role of calcium in plant-microbe interaction. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1138252 PubMed DOI PMC
Bhar A., Gupta S., Chatterjee M., Das S. (2017). “Redox regulatory networks in response to biotic stress in plants: A new insight through chickpea- fusarium interplay,” in Mechanism of plant hormone signaling under stress. Ed. Pandey G. K. (United States: Wiley; ), 23–43. doi: 10.1002/9781118889022.ch20 DOI
Bhatt M., Pandey S. S., Tiwari A. K., Tiwari B. S. (2021). Plastid-mediated singlet oxygen in regulated cell death. Plant Biol. 23, 686–694. doi: 10.1111/plb.13260 PubMed DOI
Bjornson M., Balcke G. U., Xiao Y., de Souza A., Wang J.-Z., Zhabinskaya D., et al. . (2017). Integrated omics analyses of retrograde signaling mutant delineate interrelated stress-response strata. Plant J. Cell Mol. Biol. 91, 70–84. doi: 10.1111/tpj.13547 PubMed DOI PMC
Brand D., Wijewardana C., Gao W., Reddy K. R. (2016). Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth. Front. Earth Sci. 10, 607–620. doi: 10.1007/s11707-016-0605-0 DOI
Bui L. T., Shukla V., Giorgi F. M., Trivellini A., Perata P., Licausi F., et al. . (2020). Differential submergence tolerance between juvenile and adult Arabidopsis plants involves the ANAC017 transcription factor. Plant J. 104, 979–994. doi: 10.1111/tpj.14975 PubMed DOI
Causevic A., Gentil M.-V., Delaunay A., El-Soud W. A., Garcia Z., Pannetier C., et al. . (2006). Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet lines. Planta. 224, 812–827. doi: 10.1007/s00425-006-0267-3 PubMed DOI
Chan K. X., Mabbitt P. D., Phua S. Y., Mueller J. W., Nisar N., Gigolashvili T., et al. . (2016). Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. Proc. Natl. Acad. Sci. U. S. A. 113, E4567–E4576. doi: 10.1073/pnas.1604936113 PubMed DOI PMC
Chan K. X., Wirtz M., Phua S. Y., Estavillo G. M., Pogson B. J. (2013). Balancing metabolites in drought: the sulfur assimilation conundrum. Trends Plant Sci. 18, 18–29. doi: 10.1016/j.tplants.2012.07.005 PubMed DOI
Chauhan D. K., Yadav V., Vaculík M., Gassmann W., Pike S., Arif N., et al. . (2021). Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit. Rev. Biotechnol. 41, 715–730. doi: 10.1080/07388551.2021.1874282 PubMed DOI
Chen S., Lin R., Lu H., Wang Q., Yang J., Liu J., et al. . (2020). Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in kandelia obovata under cadmium and zinc stress. Chemosphere 249, 126341. doi: 10.1016/j.chemosphere.2020.126341 PubMed DOI
Chen Y.-E., Zhang C.-M., Su Y.-Q., Ma J., Zhang Z.-W., Yuan M., et al. . (2017). Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environ. Exp. Bot. 135, 45–55. doi: 10.1016/j.envexpbot.2016.12.001 DOI
Choi C.-S., Sano H. (2007). Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet. Genomics 277, 589–600. doi: 10.1007/s00438-007-0209-1 PubMed DOI
Choudhury F. K., Rivero R. M., Blumwald E., Mittler R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867. doi: 10.1111/tpj.13299 PubMed DOI
Colombage R., Singh M. B., Bhalla P. L. (2023). Melatonin and abiotic stress tolerance in crop plants. Int. J. Mol. Sci. 24, 7447. doi: 10.3390/ijms24087447 PubMed DOI PMC
Corpas F. J. (2019). Peroxisomes in higher plants: an example of metabolic adaptability. Bot. Lett. 166, 298–308. doi: 10.1080/23818107.2019.1619196 DOI
Costa A. C., Rezende-Silva S. L., Megguer C. A., Moura L. M. F., Rosa M., Silva A. A. (2015). The effect of irradiance and water restriction on photosynthesis in young jatobá-do-cerrado (Hymenaea stigonocarpa) plants. Photosynthetica 53, 118–127. doi: 10.1007/s11099-015-0085-6 DOI
Cui F., Brosché M., Shapiguzov A., He X.-Q., Vainonen J. P., Leppälä J., et al. . (2019). Interaction of methyl viologen-induced chloroplast and mitochondrial signaling in Arabidopsis. Free Radic. Biol. Med. 134, 555–566. doi: 10.1016/j.freeradbiomed.2019.02.006 PubMed DOI
Dietz K.-J. (2016). Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol. Cells 39, 20–25. doi: 10.14348/molcells.2016.2324 PubMed DOI PMC
Dietzel L., Bräutigam K., Pfannschmidt T. (2008). Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry–functional relationships between short-term and long-term light quality acclimation in plants. FEBS J. 275, 1080–1088. doi: 10.1111/j.1742-4658.2008.06264.x PubMed DOI
Ding B., Bellizzi M. D. R., Ning Y., Meyers B. C., Wang G.-L. (2012). HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell 24, 3783–3794. doi: 10.1105/tpc.112.101972 PubMed DOI PMC
Dmitrieva V. A., Tyutereva E. V., Voitsekhovskaja O. V. (2020). Singlet oxygen in plants: generation, detection, and signaling roles. Int. J. Mol. Sci. 21, 3237. doi: 10.3390/ijms21093237 PubMed DOI PMC
Dobrogojski J., Adamiec M., Luciński R. (2020). The chloroplast genome: a review. Acta Physiol. Plant 42, 98. doi: 10.1007/s11738-020-03089-x DOI
Dogra V., Singh R. M., Li M., Li M., Singh S., Kim C. (2022). EXECUTER2 modulates the EXECUTER1 signalosome through its singlet oxygen-dependent oxidation. Mol. Plant 15, 438–453. doi: 10.1016/j.molp.2021.12.016 PubMed DOI
Dolzblasz A., Gola E. M., Sokołowska K., Smakowska-Luzan E., Twardawska A., Janska H. (2018). Impairment of meristem proliferation in plants lacking the mitochondrial protease atFTSH4. Int. J. Mol. Sci. 19, 853. doi: 10.3390/ijms19030853 PubMed DOI PMC
Dugasa M. T., Cao F., Ibrahim W., Wu F. (2019). Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiol. Plant 165, 134–143. doi: 10.1111/ppl.12743 PubMed DOI
Dumanović J., Nepovimova E., Natić M., Kuča K., Jaćević V. (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.552969 PubMed DOI PMC
Esmailpourmoghadam E., Salehi H., Moshtaghi N. (2023). Differential gene expression responses to salt and drought stress in tall fescue (Festuca arundinacea schreb.). Mol. Biotechnol. doi: 10.1007/s12033-023-00888-8 PubMed DOI
Espinas N. A., Kobayashi K., Takahashi S., Mochizuki N., Masuda T. (2012). Evaluation of unbound free heme in plant cells by differential acetone extraction. Plant Cell Physiol. 53, 1344–1354. doi: 10.1093/pcp/pcs067 PubMed DOI
Estavillo G. M., Crisp P. A., Pornsiriwong W., Wirtz M., Collinge D., Carrie C., et al. . (2011). Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23, 3992–4012. doi: 10.1105/tpc.111.091033 PubMed DOI PMC
Eysholdt-Derzsó E., Renziehausen T., Frings S., Frohn S., Von Bongartz K., Igisch C. P., et al. . (2023). Endoplasmic reticulum–bound ANAC013 factor is cleaved by RHOMBOID-LIKE 2 during the initial response to hypoxia in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 120, e2221308120. doi: 10.1073/pnas.2221308120 PubMed DOI PMC
Fichman Y., Miller G., Mittler R. (2019). Whole-plant live imaging of reactive oxygen species. Mol. Plant 12, 1203–1210. doi: 10.1016/j.molp.2019.06.003 PubMed DOI
Fortunato S., Lasorella C., Dipierro N., Vita F., De Pinto M. C. (2023). Redox signaling in plant heat stress response. Antioxidants 12, 605. doi: 10.3390/antiox12030605 PubMed DOI PMC
Foyer C. H., Noctor G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11, 861–905. doi: 10.1089/ars.2008.2177 PubMed DOI
Fukao T., Bailey-Serres J. (2004). Plant responses to hypoxia – is survival a balancing act? Trends Plant Sci. 9, 449–456. doi: 10.1016/j.tplants.2004.07.005 PubMed DOI
Gao Y., Zheng W., Zhang C., Zhang L., Xu K. (2019). High temperature and high light intensity induced photoinhibition of bayberry (Myrica rubra Sieb. et Zucc.) by disruption of D1 turnover in photosystem II. Sci. Hortic. 248, 132–137. doi: 10.1016/j.scienta.2019.01.007 DOI
Garcia de la Garma J., Fernandez-Garcia N., Bardisi E., Pallol B., Asensio-Rubio J. S., Bru R., et al. . (2015). New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytol. 205, 216–239. doi: 10.1111/nph.12997 PubMed DOI
Garg N., Chandel S. (2012). Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in cajanus cajan (L.) millsp. Under naCl and cd stresses. J. Plant Growth Regul. 31, 292–308. doi: 10.1007/s00344-011-9239-3 DOI
Garg R., Verma M., Agrawal S., Shankar R., Majee M., Jain M. (2014). Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 21, 69–84. doi: 10.1093/dnares/dst042 PubMed DOI PMC
Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. PPB 48, 909–930. doi: 10.1016/j.plaphy.2010.08.016 PubMed DOI
Gilroy S., Białasek M., Suzuki N., Górecka M., Devireddy A. R., Karpiński S., et al. . (2016). ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 171, 1606–1615. doi: 10.1104/pp.16.00434 PubMed DOI PMC
Gilroy S., Suzuki N., Miller G., Choi W.-G., Toyota M., Devireddy A. R., et al. . (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 19, 623–630. doi: 10.1016/j.tplants.2014.06.013 PubMed DOI
Gollan P. J., Aro E.-M. (2020). Photosynthetic signalling during high light stress and recovery: targets and dynamics. Philos. Trans. R. Soc Lond. B. Biol. Sci. 375, 20190406. doi: 10.1098/rstb.2019.0406 PubMed DOI PMC
Gong B., Qiu H., Van Gestel C. A. M., Peijnenburg W. J. G. M., He E. (2022). Increasing temperatures potentiate the damage of rare earth element yttrium to the crop plant triticum aestivum L. J. Agric. Food Chem. 70, 16390–16400. doi: 10.1021/acs.jafc.2c05883 PubMed DOI
Gonzali S., Loreti E., Cardarelli F., Novi G., Parlanti S., Pucciariello C., et al. . (2015). Universal stress protein HRU1 mediates ROS homeostasis under anoxia. Nat. Plants 1, 15151. doi: 10.1038/nplants.2015.151 PubMed DOI
Gupta S., Bhar A., Chatterjee M., Das S. (2013). Fusarium oxysporum f.sp. ciceri Race 1 Induced Redox State Alterations Are Coupled to Downstream Defense Signaling in Root Tissues of Chickpea (Cicer arietinum L.). PloS One 8, e73163. doi: 10.1371/journal.pone.0073163 PubMed DOI PMC
Haddad R., Kamangar A. (2015). The ameliorative effect of silicon and potassium on drought stressed grape (Vitis vinifera L.) leaves. Iran. J. Genet. Plant Breed. 4, 48–58.
Hamidi-Moghaddam A., Arouiee H., Moshtaghi N., Azizi M., Shoor M., Sefidkon F. (2019). Visual quality and morphological responses of rosemary plants to UV-B radiation and salinity stress. J. Ecol. Eng. 20, 34–43. doi: 10.12911/22998993/94920 DOI
Harris C. J., Amtmann A., Ton J. (2023). Epigenetic processes in plant stress priming: Open questions and new approaches. Curr. Opin. Plant Biol. 75, 102432. doi: 10.1016/j.pbi.2023.102432 PubMed DOI
Hartman S., Liu Z., Van Veen H., Vicente J., Reinen E., Martopawiro S., et al. . (2019). Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat. Commun. 10, 4020. doi: 10.1038/s41467-019-12045-4 PubMed DOI PMC
Hong C.-P., Wang M.-C., Yang C.-Y. (2020). NADPH oxidase rbohD and ethylene signaling are involved in modulating seedling growth and survival under submergence stress. Plants 9, 471. doi: 10.3390/plants9040471 PubMed DOI PMC
Huang H., Ullah F., Zhou D.-X., Yi M., Zhao Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00800 PubMed DOI PMC
Huang S., Van Aken O., Schwarzländer M., Belt K., Millar A. H. (2016). The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol. 171, 1551–1559. doi: 10.1104/pp.16.00166 PubMed DOI PMC
Jampoh E. A., Sáfrán E., Babinyec-Czifra D., Kristóf Z., Krárné Péntek B., Fábián A., et al. . (2023). Morpho-anatomical, physiological and biochemical adjustments in response to heat and drought co-stress in winter barley. Plants 12, 3907. doi: 10.3390/plants12223907 PubMed DOI PMC
Jänsch N., Sugiarto W. O., Muth M., Kopranovic A., Desczyk C., Ballweg M., et al. . (2020). Switching the switch: ligand induced disulfide formation in HDAC8. Chem. – Eur. J. 26, 13249–13255. doi: 10.1002/chem.202001712 PubMed DOI PMC
Jethva J., Lichtenauer S., Schmidt-Schippers R., Steffen-Heins A., Poschet G., Wirtz M., et al. . (2023). Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation. New Phytol. 238, 96–112. doi: 10.1111/nph.18657 PubMed DOI
Jethva J., Schmidt R. R., Sauter M., Selinski J. (2022). Try or die: dynamics of plant respiration and how to survive low oxygen conditions. Plants 11, 205. doi: 10.3390/plants11020205 PubMed DOI PMC
Johnson S. M., Lim F.-L., Finkler A., Fromm H., Slabas A. R., Knight M. R. (2014). Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genomics 15, 456. doi: 10.1186/1471-2164-15-456 PubMed DOI PMC
Jones J. D. G., Dangl J. L. (2006). The plant immune system. Nature 444, 323–329. doi: 10.1038/nature05286 PubMed DOI
Joshi N. C., Yadav D., Ratner K., Kamara I., Aviv-Sharon E., Irihimovitch V., et al. . (2020). Sodium hydrosulfide priming improves the response of photosynthesis to overnight frost and day high light in avocado (Persea americana Mill, cv. ‘Hass’). Physiol. Plant 168, 394–405. doi: 10.1111/ppl.13023 PubMed DOI
Kerchev P., Waszczak C., Lewandowska A., Willems P., Shapiguzov A., Li Z., et al. . (2016). Lack of GLYCOLATE OXIDASE1, but not GLYCOLATE OXIDASE2, attenuates the photorespiratory phenotype of CATALASE2-deficient arabidopsis. Plant Physiol. 171, 1704–1719. doi: 10.1104/pp.16.00359 PubMed DOI PMC
Khedia J., Agarwal P., Agarwal P. K. (2019). Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants. Biotech 9, 395. doi: 10.1007/s13205-019-1924-0 PubMed DOI PMC
Kim M. J., Ciani S., Schachtman D. P. (2010). A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol. Plant 3, 420–427. doi: 10.1093/mp/ssp121 PubMed DOI
Kleine T., Leister D. (2016). Retrograde signaling: Organelles go networking. Biochim. Biophys. Acta 1857, 1313–1325. doi: 10.1016/j.bbabio.2016.03.017 PubMed DOI
Kopriva S., Gigolashvili T. (2016). “Glucosinolate synthesis in the context of plant metabolism,” in Advances in botanical research (United Kingdom: Elsevier; ), 99–124. doi: 10.1016/bs.abr.2016.07.002 DOI
Kosmacz M., Parlanti S., Schwarzländer M., Kragler F., Licausi F., Van Dongen J. T. (2015). The stability and nuclear localization of the transcription factor RAP 2.12 are dynamically regulated by oxygen concentration. Plant Cell Environ. 38, 1094–1103. doi: 10.1111/pce.12493 PubMed DOI
Koussevitzky S., Suzuki N., Huntington S., Armijo L., Sha W., Cortes D., et al. . (2008). Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J. Biol. Chem. 283, 34197–34203. doi: 10.1074/jbc.M806337200 PubMed DOI PMC
Kumar D., Datta R., Hazra S., Sultana A., Mukhopadhyay R., Chattopadhyay S. (2015). Transcriptomic Profiling of Arabidopsis thaliana Mutant pad2.1 in Response to Combined Cold and Osmotic Stress. PloS One 10, e0122690. doi: 10.1371/journal.pone.0122690 PubMed DOI PMC
Lee K. P., Kim C., Landgraf F., Apel K. (2007). EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 104, 10270–10275. doi: 10.1073/pnas.0702061104 PubMed DOI PMC
Lee J. K., Woo S. Y., Kwak M. J., Park S. H., Kim H. D., Lim Y. J., et al. . (2020). Effects of elevated temperature and ozone in brassica juncea L.: growth, physiology, and ROS accumulation. Forests 11, 68. doi: 10.3390/f11010068 DOI
Lemke M. D., Woodson J. D. (2022). Targeted for destruction: degradation of singlet oxygen-damaged chloroplasts. Plant Signal. Behav. 17, 2084955. doi: 10.1080/15592324.2022.2084955 PubMed DOI PMC
León-Chan R. G., López-Meyer M., Osuna-Enciso T., Sañudo-Barajas J. A., Heredia J. B., León-Félix J. (2017). Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environ. Exp. Bot. 139, 143–151. doi: 10.1016/j.envexpbot.2017.05.006 DOI
Li X., Cai J., Liu F., Dai T., Cao W., Jiang D. (2014). Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Funct. Plant Biol. FPB 41, 690–703. doi: 10.1071/FP13306 PubMed DOI
Li M., Kim C. (2023). “Singlet oxygen in plants: From genesis to signaling,” in Advances in botanical research (United Kingdom: Elsevier; ), 1–42. doi: 10.1016/bs.abr.2022.08.023 DOI
Licausi F., Kosmacz M., Weits D. A., Giuntoli B., Giorgi F. M., Voesenek L. A. C. J., et al. . (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419–422. doi: 10.1038/nature10536 PubMed DOI
Lin H.-H., Lin K.-H., Chen S.-C., Shen Y.-H., Lo H.-F. (2015). Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses. Bot. Stud. 56, 18. doi: 10.1186/s40529-015-0098-2 PubMed DOI PMC
Liu Y., He C. (2016). Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Rep. 35, 995–1007. doi: 10.1007/s00299-016-1950-x PubMed DOI
Liu B., Wang R., Gong J., Zhu T., Long S., Guo H., et al. . (2023). Combined cold and drought stress-induced response of photosynthesis and osmotic adjustment in elymus nutans griseb. Agronomy 13, 2368. doi: 10.3390/agronomy13092368 DOI
Liu Y., Zhang H. (2021). Reactive oxygen species and nitric oxide as mediators in plant hypersensitive response and stomatal closure. Plant Signal. Behav. 16, 1985860. doi: 10.1080/15592324.2021.1985860 PubMed DOI PMC
Locato V., Cimini S., De Gara L. (2018). ROS and redox balance as multifaceted players of cross-tolerance: epigenetic and retrograde control of gene expression. J. Exp. Bot. 69, 3373–3391. doi: 10.1093/jxb/ery168 PubMed DOI
Lu T., Meng Z., Zhang G., Qi M., Sun Z., Liu Y., et al. . (2017). Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Front. Plant Sci. 8. doi: 10.3389/fpls.2017.00365 PubMed DOI PMC
Luo M., Cheng K., Xu Y., Yang S., Wu K. (2017). Plant responses to abiotic stress regulated by histone deacetylases. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.02147 PubMed DOI PMC
Luo M., Wang Y.-Y., Liu X., Yang S., Lu Q., Cui Y., et al. . (2012). HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J. Exp. Bot. 63, 3297–3306. doi: 10.1093/jxb/ers059 PubMed DOI PMC
Ma X., Wang W., Bittner F., Schmidt N., Berkey R., Zhang L., et al. . (2016). Dual and opposing roles of xanthine dehydrogenase in defense-associated reactive oxygen species metabolism in arabidopsis. Plant Cell 28, 1108–1126. doi: 10.1105/tpc.15.00880 PubMed DOI PMC
Mansoor S., Ali Wani O., Lone J. K., Manhas S., Kour N., Alam P., et al. . (2022). Reactive oxygen species in plants: from source to sink. Antioxidants 11, 225. doi: 10.3390/antiox11020225 PubMed DOI PMC
Maruta T., Noshi M., Tanouchi A., Tamoi M., Yabuta Y., Yoshimura K., et al. . (2012). H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. J. Biol. Chem. 287, 11717–11729. doi: 10.1074/jbc.M111.292847 PubMed DOI PMC
Masson N., Keeley T. P., Giuntoli B., White M. D., Puerta M. L., Perata P., et al. . (2019). Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science 365, 65–69. doi: 10.1126/science.aaw0112 PubMed DOI PMC
Meng X., Li L., Pascual J., Rahikainen M., Yi C., Jost R., et al. . (2022). GWAS on multiple traits identifies mitochondrial ACONITASE3 as important for acclimation to submergence stress. Plant Physiol. 188, 2039–2058. doi: 10.1093/plphys/kiac011 PubMed DOI PMC
Mignolet-Spruyt L., Xu E., Idänheimo N., Hoeberichts F. A., Mühlenbock P., Brosché M., et al. . (2016). Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 67, 3831–3844. doi: 10.1093/jxb/erw080 PubMed DOI
Mittler R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19. doi: 10.1016/j.tplants.2005.11.002 PubMed DOI
Mittler R. (2017). ROS are good. Trends Plant Sci. 22, 11–19. doi: 10.1016/j.tplants.2016.08.002 PubMed DOI
Mittler R., Blumwald E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annu. Rev. Plant Biol. 61, 443–462. doi: 10.1146/annurev-arplant-042809-112116 PubMed DOI
Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490–498. doi: 10.1016/j.tplants.2004.08.009 PubMed DOI
Moller I. M. (2001). PLANT MITOCHONDRIA AND OXIDATIVE STRESS: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 561–591. doi: 10.1146/annurev.arplant.52.1.561 PubMed DOI
Murphy M. P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13. doi: 10.1042/BJ20081386 PubMed DOI PMC
Nadarajah K. K. (2020). ROS homeostasis in abiotic stress tolerance in plants. Int. J. Mol. Sci. 21, 5208. doi: 10.3390/ijms21155208 PubMed DOI PMC
Nakano T., Suzuki K., Fujimura T., Shinshi H. (2006). Genome-wide analysis of the ERF gene family in arabidopsis and rice. Plant Physiol. 140, 411–432. doi: 10.1104/pp.105.073783 PubMed DOI PMC
Nayyar H., Awasthi R., Kaushal N., Vadez V., Turner N., Berger J., et al. . (2014). Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 41, 1148–1167. doi: 10.1071/FP13340 PubMed DOI
Ng S., De Clercq I., Van Aken O., Law S. R., Ivanova A., Willems P., et al. . (2014). Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Mol. Plant 7, 1075–1093. doi: 10.1093/mp/ssu037 PubMed DOI
Noctor G., De Paepe R., Foyer C. H. (2007). Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci. 12, 125–134. doi: 10.1016/j.tplants.2007.01.005 PubMed DOI
O’Brien J. A., Daudi A., Finch P., Butt V. S., Whitelegge J. P., Souda P., et al. . (2012). A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol. 158, 2013–2027. doi: 10.1104/pp.111.190140 PubMed DOI PMC
Ors S., Suarez D. L. (2017). Spinach biomass yield and physiological response to interactive salinity and water stress. Agric. Water Manage. 190, 31–41. doi: 10.1016/j.agwat.2017.05.003 DOI
Osakabe Y., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S. P. (2013). Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot. 64, 445–458. doi: 10.1093/jxb/ers354 PubMed DOI
Osthoff A., Donà Dalle Rose P., Baldauf J. A., Piepho H.-P., Hochholdinger F. (2019). Transcriptomic reprogramming of barley seminal roots by combined water deficit and salt stress. BMC Genomics 20, 325. doi: 10.1186/s12864-019-5634-0 PubMed DOI PMC
Ou X., Zhuang T., Yin W., Miao Y., Wang B., Zhang Y., et al. . (2015). DNA methylation changes induced in rice by exposure to high concentrations of the nitric oxide modulator, sodium nitroprusside. Plant Mol. Biol. Rep. 33, 1428–1440. doi: 10.1007/s11105-014-0843-9 DOI
Park J., Lim C. J., Shen M., Park H. J., Cha J.-Y., Iniesto E., et al. . (2018). Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proc. Natl. Acad. Sci. 115, E5400–E5409. doi: 10.1073/pnas.1721241115 PubMed DOI PMC
Pesaresi P., Hertle A., Pribil M., Kleine T., Wagner R., Strissel H., et al. . (2009). Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 21, 2402–2423. doi: 10.1105/tpc.108.064964 PubMed DOI PMC
Poborilova Z., Ohlsson A. B., Berglund T., Vildova A., Provaznik I., Babula P. (2015). DNA hypomethylation concomitant with the overproduction of ROS induced by naphthoquinone juglone on tobacco BY-2 suspension cells. Environ. Exp. Bot. 113, 28–39. doi: 10.1016/j.envexpbot.2015.01.005 DOI
Pospíšil P., Prasad A., Rác M. (2019). Mechanism of the formation of electronically excited species by oxidative metabolic processes: role of reactive oxygen species. Biomolecules 9, 258. doi: 10.3390/biom9070258 PubMed DOI PMC
Prasch C. M., Sonnewald U. (2013). Simultaneous application of heat, drought, and virus to arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol. 162, 1849–1866. doi: 10.1104/pp.113.221044 PubMed DOI PMC
Qin F., Kodaira K.-S., Maruyama K., Mizoi J., Tran L.-S. P., Fujita Y., et al. . (2011). SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response. Plant Physiol. 157, 1900–1913. doi: 10.1104/pp.111.187302 PubMed DOI PMC
Quan L., Zhang. B., Shi. W. W., Li. H. Y. (2008). Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol. 50, 2–18. doi: 10.1111/j.1744-7909.2007.00599.x PubMed DOI
Rahantaniaina M.-S., Li S., Chatel-Innocenti G., Tuzet A., Mhamdi A., Vanacker H., et al. . (2017). Glutathione oxidation in response to intracellular H2O2: Key but overlapping roles for dehydroascorbate reductases. Plant Signal. Behav. 12, e1356531. doi: 10.1080/15592324.2017.1356531 PubMed DOI PMC
Rahman M. M., Mostofa M. G., Keya S. S., Ghosh P. K., Abdelrahman M., Anik T. R., et al. . (2023). Jasmonic acid priming augments antioxidant defense and photosynthesis in soybean to alleviate combined heat and drought stress effects. Plant Physiol. Biochem. PPB 206, 108193. doi: 10.1016/j.plaphy.2023.108193 PubMed DOI
Ramakrishnan M., Papolu P. K., Satish L., Vinod K. K., Wei Q., Sharma A., et al. . (2022). Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J. Adv. Res. 42, 99–116. doi: 10.1016/j.jare.2022.04.007 PubMed DOI PMC
Rasmusson A. G., Wallström S. V. (2010). Involvement of mitochondria in the control of plant cell NAD(P)H reduction levels. Biochem. Soc Trans. 38, 661–666. doi: 10.1042/BST0380661 PubMed DOI
Ray P. D., Huang B.-W., Tsuji Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990. doi: 10.1016/j.cellsig.2012.01.008 PubMed DOI PMC
Renziehausen T., Frings S., Schmidt-Schippers R. (2024). Against all floods’: plant adaptation to flooding stress and combined abiotic stresses. Plant J. 117, 1836–1855. doi: 10.1111/tpj.16614 PubMed DOI
Rillig M. C., Ryo M., Lehmann A., Aguilar-Trigueros C. A., Buchert S., Wulf A., et al. . (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890. doi: 10.1126/science.aay2832 PubMed DOI PMC
Ritonga F. N., Chen S. (2020). Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 9, 560. doi: 10.3390/plants9050560 PubMed DOI PMC
Rivero R. M., Mestre T. C., Mittler R., Rubio F., Garcia-Sanchez F., Martinez V. (2014). The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 37, 1059–1073. doi: 10.1111/pce.12199 PubMed DOI
Rizhsky L., Liang H., Mittler R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 130, 1143–1151. doi: 10.1104/pp.006858 PubMed DOI PMC
Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S., Mittler R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134, 1683–1696. doi: 10.1104/pp.103.033431 PubMed DOI PMC
Rodríguez-Serrano M., Romero-Puertas M. C., Sanz-Fernández M., Hu J., Sandalio L. M. (2016). Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a. Plant Physiol. 171, 1665–1674. doi: 10.1104/pp.16.00648 PubMed DOI PMC
Rollins J. A., Habte E., Templer S. E., Colby T., Schmidt J., von Korff M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J. Exp. Bot. 64, 3201–3212. doi: 10.1093/jxb/ert158 PubMed DOI PMC
Saijo Y., Loo E. P. (2020). Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 225, 87–104. doi: 10.1111/nph.15989 PubMed DOI
Samsone I., Andersone-Ozola U., Karlsons A., Ievinsh G. (2020). Light conditions affect naCl-induced physiological responses in a clonal plant species. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 74, 335–343. doi: 10.2478/prolas-2020-0050 DOI
Sasidharan R., Bailey-Serres J., Ashikari M., Atwell B. J., Colmer T. D., Fagerstedt K., et al. . (2017). Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol. 214, 1403–1407. doi: 10.1111/nph.14519 PubMed DOI
Schmidt R. R., Fulda M., Paul M. V., Anders M., Plum F., Weits D. A., et al. . (2018). Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA in Arabidopsis. Proc. Natl. Acad. Sci. 115, 2098–2106. doi: 10.1073/pnas.1809429115 PubMed DOI PMC
Schwarzländer M., Fricker M. D., Sweetlove L. J. (2009). Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim. Biophys. Acta 1787, 468–475. doi: 10.1016/j.bbabio.2009.01.020 PubMed DOI
Shaar-Moshe L., Blumwald E., Peleg Z. (2017). Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat. Plant Physiol. 174, 421–434. doi: 10.1104/pp.17.00030 PubMed DOI PMC
Shapiguzov A., Vainonen J. P., Hunter K., Tossavainen H., Tiwari A., Järvi S., et al. . (2019). Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. eLife 8, e43284. doi: 10.7554/eLife.43284 PubMed DOI PMC
Sharif P., Seyedsalehi M., Paladino O., Van Damme P., Sillanpää M., Sharifi A. A. (2018). Effect of drought and salinity stresses on morphological and physiological characteristics of canola. Int. J. Environ. Sci. Technol. 15, 1859–1866. doi: 10.1007/s13762-017-1508-7 DOI
Shen Y., Issakidis-Bourguet E., Zhou D.-X. (2016). Perspectives on the interactions between metabolism, redox, and epigenetics in plants. J. Exp. Bot. 67, 5291–5300. doi: 10.1093/jxb/erw310 PubMed DOI
Shu S., Tang Y., Yuan Y., Sun J., Zhong M., Guo S. (2016). The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol. Biochem. 107, 344–353. doi: 10.1016/j.plaphy.2016.06.021 PubMed DOI
Silva E. N., Vieira S. A., Ribeiro R. V., Ponte L. F. A., Ferreira-Silva S. L., Silveira J. A. G. (2013). Contrasting physiological responses of jatropha curcas plants to single and combined stresses of salinity and heat. J. Plant Growth Regul. 32, 159–169. doi: 10.1007/s00344-012-9287-3 DOI
Singh A., Kumar A., Yadav S., Singh I. K. (2019). Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene 18, 100173. doi: 10.1016/j.plgene.2019.100173 DOI
Singh S. K., Reddy K. R., Reddy V. R., Gao W. (2014). Maize growth and developmental responses to temperature and ultraviolet-B radiation interaction. Photosynthetica 52, 262–271. doi: 10.1007/s11099-014-0029-6 DOI
Singh R., Singh S., Parihar P., Mishra R. K., Tripathi D. K., Singh V. P., et al. . (2016). Reactive oxygen species (ROS): beneficial companions of plants’ Developmental processes. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01299 PubMed DOI PMC
Smirnoff N., Arnaud D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytol. 221, 1197–1214. doi: 10.1111/nph.15488 PubMed DOI
Su L., Dai Z., Li S., Xin H. (2015). A novel system for evaluating drought–cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biol. 15, 82. doi: 10.1186/s12870-015-0459-8 PubMed DOI PMC
Suszek-Łopatka B., Maliszewska-Kordybach B., Klimkowicz-Pawlas A., Smreczak B. (2021). The multifactorial assessment of the Zn impact on high and low temperature stress towards wheat seedling growth under diverse moisture conditions (optimal and wet) in three soils. J. Hazard. Mater. 416, 126087. doi: 10.1016/j.jhazmat.2021.126087 PubMed DOI
Suzuki N., Bassil E., Hamilton J. S., Inupakutika M. A., Zandalinas S. I., Tripathy D., et al. . (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PloS One 11, e0147625. doi: 10.1371/journal.pone.0147625 PubMed DOI PMC
Suzuki N., Rivero R. M., Shulaev V., Blumwald E., Mittler R. (2014). Abiotic and biotic stress combinations. New Phytol. 203, 32–43. doi: 10.1111/nph.12797 PubMed DOI
Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., et al. . (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646. doi: 10.1093/nar/gkac1000 PubMed DOI PMC
Szucs A., Jäger K., Jurca M. E., Fábián A., Bottka S., Zvara A., et al. . (2010). Histological and microarray analysis of the direct effect of water shortage alone or combined with heat on early grain development in wheat (Triticum aestivum). Physiol. Plant 140, 174–188. doi: 10.1111/j.1399-3054.2010.01394.x PubMed DOI
Takagi D., Takumi S., Hashiguchi M., Sejima T., Miyake C. (2016). Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiol. 171, 1626–1634. doi: 10.1104/pp.16.00246 PubMed DOI PMC
Takahashi F., Kuromori T., Urano K., Yamaguchi-Shinozaki K., Shinozaki K. (2020). Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.556972 PubMed DOI PMC
Tan S., Dong F., Yang Y., Zeng Q., Chen B., Jiang L. (2017). Effects of waterlogging and cadmium on ecophysiological responses and metal bio-accumulation in Bermuda grass (Cynodon dactylon). Environ. Earth Sci. 76, 719. doi: 10.1007/s12665-017-7060-4 DOI
Terai Y., Ueno H., Ogawa T., Sawa Y., Miyagi A., Kawai-Yamada M., et al. . (2020). Dehydroascorbate reductases and glutathione set a threshold for high-light-induced ascorbate accumulation. Plant Physiol. 183, 112–122. doi: 10.1104/pp.19.01556 PubMed DOI PMC
Tripathi R., Agrawal S. B. (2013). Interactive effect of supplemental ultraviolet B and elevated ozone on seed yield and oil quality of two cultivars of linseed (Linum usitatissimum L.) carried out in open top chambers. J. Sci. Food Agric. 93, 1016–1025. doi: 10.1002/jsfa.5838 PubMed DOI
Tripathi D. K., Bhat J. A., Antoniou C., Kandhol N., Singh V. P., Fernie A. R., et al. . (2024). Redox regulation by priming agents toward a sustainable agriculture. Plant Cell Physiol. 65, 1087–1102. doi: 10.1093/pcp/pcae031 PubMed DOI PMC
Tripathi D., Nam A., Oldenburg D. J., Bendich A. J. (2020). Reactive oxygen species, antioxidant agents, and DNA damage in developing maize mitochondria and plastids. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00596 PubMed DOI PMC
Tripathi R., Rai K., Singh S., Agrawal M., Agrawal S. B. (2019). Role of supplemental UV-B in changing the level of ozone toxicity in two cultivars of sunflower: growth, seed yield and oil quality. Ecotoxicol. Lond. Engl. 28, 277–293. doi: 10.1007/s10646-019-02020-6 PubMed DOI
Tripathy B. C., Oelmüller R. (2012). Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 7, 1621–1633. doi: 10.4161/psb.22455 PubMed DOI PMC
Ueda M., Seki M. (2020). Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiol. 182, 15–26. doi: 10.1104/pp.19.00988 PubMed DOI PMC
Vainonen J. P., Sakuragi Y., Stael S., Tikkanen M., Allahverdiyeva Y., Paakkarinen V., et al. . (2008). Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. FEBS J. 275, 1767–1777. doi: 10.1111/j.1742-4658.2008.06335.x PubMed DOI
Van Aken O., De Clercq I., Ivanova A., Law S. R., Van Breusegem F., Millar A. H., et al. . (2016). Mitochondrial and chloroplast stress responses are modulated in distinct touch and chemical inhibition phases. Plant Physiol. 171, 2150–2165. doi: 10.1104/pp.16.00273 PubMed DOI PMC
Vanderauwera S., Vandenbroucke K., Inzé A., Van De Cotte B., Mühlenbock P., De Rycke R., et al. . (2012). AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. 109, 20113–20118. doi: 10.1073/pnas.1217516109 PubMed DOI PMC
Vanderauwera S., Zimmermann P., Rombauts S., Vandenabeele S., Langebartels C., Gruissem W., et al. . (2005). Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol. 139, 806–821. doi: 10.1104/pp.105.065896 PubMed DOI PMC
Vincent C., Schaffer B., Rowland D. (2018). Water-deficit priming of papaya reduces high-light stress through oxidation avoidance rather than anti-oxidant activity. Environ. Exp. Bot. 156, 106–119. doi: 10.1016/j.envexpbot.2018.04.016 DOI
Voesenek L. A. C. J., Bailey-Serres J. (2015). Flood adaptive traits and processes: an overview. New Phytol. 206, 57–73. doi: 10.1111/nph.13209 PubMed DOI
Vogel M. O., Moore M., König K., Pecher P., Alsharafa K., Lee J., et al. . (2014). Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in Arabidopsis. Plant Cell 26, 1151–1165. doi: 10.1105/tpc.113.121061 PubMed DOI PMC
Vogelsang L., Dietz K.-J. (2022). Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation. Free Radic. Biol. Med. 193, 764–778. doi: 10.1016/j.freeradbiomed.2022.11.019 PubMed DOI
Voothuluru P., Sharp R. E. (2013). Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance. J. Exp. Bot. 64, 1223–1233. doi: 10.1093/jxb/ers277 PubMed DOI
Wagner D., Przybyla D., Op den Camp R., Kim C., Landgraf F., Lee K. P., et al. . (2004). The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306, 1183–1185. doi: 10.1126/science.1103178 PubMed DOI
Wang L., Leister D., Guan L., Zheng Y., Schneider K., Lehmann M., et al. . (2020). The Arabidopsis SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins. Proc. Natl. Acad. Sci. 117, 6918–6927. doi: 10.1073/pnas.1918640117 PubMed DOI PMC
Waszczak C., Carmody M., Kangasjärvi J. (2018). Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 69, 209–236. doi: 10.1146/annurev-arplant-042817-040322 PubMed DOI
Weits D. A., Giuntoli B., Kosmacz M., Parlanti S., Hubberten H.-M., Riegler H., et al. . (2014). Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat. Commun. 5, 3425. doi: 10.1038/ncomms4425 PubMed DOI PMC
White M. D., Klecker M., Hopkinson R. J., Weits D. A., Mueller C., Naumann C., et al. . (2017). Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat. Commun. 8, 14690. doi: 10.1038/ncomms14690 PubMed DOI PMC
Wolfe M. D., Tonsor S. J. (2014). Adaptation to spring heat and drought in northeastern Spanish Arabidopsis thaliana. New Phytol. 201, 323–334. doi: 10.1111/nph.12485 PubMed DOI
Woodson J. D., Chory J. (2008). Coordination of gene expression between organellar and nuclear genomes. Nat. Rev. Genet. 9, 383–395. doi: 10.1038/nrg2348 PubMed DOI PMC
Xu P., Chen H., Cai W. (2020). Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep. 21, e48967. doi: 10.15252/embr.201948967 PubMed DOI PMC
Xu L., Pan R., Shabala L., Shabala S., Zhang W.-Y. (2019). Temperature influences waterlogging stress-induced damage in Arabidopsis through the regulation of photosynthesis and hypoxia-related genes. Plant Growth Regul. 89, 143–152. doi: 10.1007/s10725-019-00518-x DOI
Yang L., Zhang J., He J., Qin Y., Hua D., Duan Y., et al. . (2014). ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis. PloS Genet. 10, e1004791. doi: 10.1371/journal.pgen.1004791 PubMed DOI PMC
Yao Y., He R. J., Xie Q. L., Zhao X. H., Deng X. M., He J. B., et al. . (2017). ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol. 213, 1667–1681. doi: 10.1111/nph.14278 PubMed DOI
Yildirim E., Agar G., Ors S., Yuksel E. A., Aydin M., Ekinci M., et al. . (2023). Growth, physiological, biochemical and DNA methylation responses to cadmium stress of bean (phaseolus vulgaris L) grown under different irrigation levels. Plant Growth Regul. 101, 537–556. doi: 10.1007/s10725-023-01039-4 DOI
Yin J., Gao Y., Chen R., Yu D., Wilby R., Wright N., et al. . (2023). Flash floods: why are more of them devastating the world’s driest regions? Nature 615, 212–215. doi: 10.1038/d41586-023-00626-9 PubMed DOI
Yuan M., Ngou B. P. M., Ding P., Xin X.-F. (2021). PTI-ETI crosstalk: an integrative view of plant immunity. Curr. Opin. Plant Biol. 62, 102030. doi: 10.1016/j.pbi.2021.102030 PubMed DOI
Zafar M. M., Chattha W. S., Khan A. I., Zafar S., Subhan M., Saleem H., et al. . (2023). Drought and heat stress on cotton genotypes suggested agro-physiological and biochemical features for climate resilience. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1265700 PubMed DOI PMC
Zandalinas S. I., Mittler R. (2022). Plant responses to multifactorial stress combination. New Phytol. 234, 1161–1167. doi: 10.1111/nph.18087 PubMed DOI
Zandalinas S. I., Sengupta S., Fritschi F. B., Azad R. K., Nechushtai R., Mittler R. (2021). The impact of multifactorial stress combination on plant growth and survival. New Phytol. 230, 1034–1048. doi: 10.1111/nph.17232 PubMed DOI PMC
Zhang L.-J., Zhong T.-X., Xu L.-X., Han L., Zhang X. (2015). Water deficit irrigation impacts on antioxidant metabolism associated with freezing tolerance in creeping bentgrass. J. Am. Soc Hortic. Sci. 140, 323–332. doi: 10.21273/JASHS.140.4.323 DOI
Zhang H., Zhu J., Gong Z., Zhu J.-K. (2022). Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104–119. doi: 10.1038/s41576-021-00413-0 PubMed DOI
Zhao C., Zhang H., Song C., Zhu J.-K., Shabala S. (2020). Mechanisms of plant responses and adaptation to soil salinity. Innovation 1, 100017. doi: 10.1016/j.xinn.2020.100017 PubMed DOI PMC
Zheng Y., Cheng D., Simmons M. (2014). Ozone pollution effects on gas exchange, growth and biomass yield of salinity-treated winter wheat cultivars. Sci. Total Environ. 499, 18–26. doi: 10.1016/j.scitotenv.2014.08.049 PubMed DOI
Zheng C., Wang Y., Ding Z., Zhao L. (2016). Global transcriptional analysis reveals the complex relationship between tea quality, leaf senescence and the responses to cold-drought combined stress in camellia sinensis. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01858 PubMed DOI PMC
Zhou X., Hua D., Chen Z., Zhou Z., Gong Z. (2009). Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. Plant J. 60, 79–90. doi: 10.1111/j.1365-313X.2009.03931.x PubMed DOI
Zhou R., Yu X., Li X., Mendanha dos Santos T., Rosenqvist E., Ottosen C.-O. (2020). Combined high light and heat stress induced complex response in tomato with better leaf cooling after heat priming. Plant Physiol. Biochem. 151, 1–9. doi: 10.1016/j.plaphy.2020.03.011 PubMed DOI
Zubrycka A., Dambire C., Dalle Carbonare L., Sharma G., Boeckx T., Swarup K., et al. . (2023). ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana. Nat. Commun. 14, 4665. doi: 10.1038/s41467-023-40366-y PubMed DOI PMC