The captivating role of calcium in plant-microbe interaction
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
36938033
PubMed Central
PMC10020633
DOI
10.3389/fpls.2023.1138252
Knihovny.cz E-resources
- Keywords
- ROS, biotic stress, calcium signalling, calcium-dependent proteins, defence signalling, plant-microbe interaction,
- Publication type
- Journal Article MeSH
- Review MeSH
Plant immune response is fascinating due to the complete absence of a humoral system. The adaptive immune response in plants relies on the intracellular orchestration of signalling molecules or intermediates associated with transcriptional reprogramming. Plant disease response phenomena largely depend on pathogen recognition, signal perception, and intracellular signal transduction. The pathogens possess specific pathogen-associated molecular patterns (PAMP) or microbe-associated molecular patterns (MAMP), which are first identified by pattern recognition receptors (PRRs) of host plants for successful infection. After successful pathogen recognition, the defence response is initiated within plants. The first line of non-specific defence response is called PAMP-triggered immunity (PTI), followed by the specific robust signalling is called effector-triggered immunity (ETI). Calcium plays a crucial role in both PTI and ETI. The biphasic induction of reactive oxygen species (ROS) is inevitable in any plant-microbe interaction. Calcium ions play crucial roles in the initial oxidative burst and ROS induction. Different pathogens can induce calcium accumulation in the cytosol ([Ca2+]Cyt), called calcium signatures. These calcium signatures further control the diverse defence-responsive proteins in the intracellular milieu. These calcium signatures then activate calcium-dependent protein kinases (CDPKs), calcium calmodulins (CaMs), calcineurin B-like proteins (CBLs), etc., to impart intricate defence signalling within the cell. Decoding this calcium ionic map is imperative to unveil any plant microbe interplay and modulate defence-responsive pathways. Hence, the present review is unique in developing concepts of calcium signature in plants and their subsequent decoding mechanism. This review also intends to articulate early sensing of calcium oscillation, signalling events, and comprehensive mechanistic roles of calcium within plants during pathogenic ingression. This will accumulate and summarize the exciting roles of calcium ions in plant immunity and provide the foundation for future research.
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Post Graduate Department of Botany Ramakrishna Mission Vivekananda Centenary College Kolkata India
See more in PubMed
Aldon D., Mbengue M., Mazars C., Galaud J.-P. (2018). Calcium signalling in plant biotic interactions. Int. J. Mol. Sci. 19 (3), 665. doi: 10.3390/ijms19030665 PubMed DOI PMC
Ali R., Ma W., Lemtiri-Chlieh F., Tsaltas D., Leng Q., von Bodman S., et al. . (2007). Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19 (3), 1081–1095. doi: 10.1105/tpc.106.045096 PubMed DOI PMC
Bai F., Stratmann J. W., Matton D. P. (2022). A complete MAPK cascade, a calmodulin, and a protein phosphatase act downstream of CRK receptor kinases and regulate arabidopsis innate immunity. bioRxiv. doi: 10.1101/2022.03.27.486008 DOI
Barka G. D., Castro I. S. L., Alves D. R., de Almeida D. P., Caixeta E. T. (2023). “The role of receptor-like kinases in fungal/microbial resistance in plants,” in Plant receptor-like kinases (Elsevier; ), 63–85.
Basu D., Codjoe J. M., Veley K. M., Haswell E. S. (2022). The mechanosensitive ion channel MSL10 modulates susceptibility to pseudomonas syringae in arabidopsis thaliana. Mol. Plant-Microbe Interact. 35 (7), MPMI–08-21-0207-FI. doi: 10.1094/MPMI-08-21-0207-FI PubMed DOI
Bhar A., Chakraborty A., Roy A. (2021). Plant responses to biotic stress: Old memories matter. Plants 11 (1), 84. doi: 10.3390/plants11010084 PubMed DOI PMC
Bose J., Pottosin I. I., Shabala S. S., Palmgren M. G., Shabala S. (2011). Calcium efflux systems in stress signaling and adaptation in plants. Front. Plant Sci. 2, 85. doi: 10.3389/fpls.2011.00085 PubMed DOI PMC
Cao K., Zhang Z., Fan H., Tan Y., Xu H., Zhou X. (2022). Comparative transcriptomic analysis reveals gene expression in response to cold stress in rhododendron aureum georgi. Theor. Exp. Plant Physiol. 34 (3), 347–366. doi: 10.1007/s40626-022-00248-y DOI
Carrasco-Castilla J., Ortega-Ortega Y., Jáuregui-Zúñiga D., Juárez-Verdayes M. A., Arthikala M.-K., Monroy-Morales E., et al. . (2018). Down-regulation of a phaseolus vulgaris annexin impairs rhizobial infection and nodulation. Environ. Exp. Bot. 153, 108–119. doi: 10.1016/j.envexpbot.2018.05.016 DOI
Chandran V., Stollar E. J., Lindorff-Larsen K., Harper J. F., Chazin W. J., Dobson C. M., et al. . (2006). Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition. J. Mol. Biol. 357 (2), 400–410. doi: 10.1016/j.jmb.2005.11.093 PubMed DOI
Cheng S.-H., Willmann M. R., Chen H.-C., Sheen J. (2002). Calcium signaling through protein kinases. the arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129 (2), 469–485. doi: 10.1104/pp.005645 PubMed DOI PMC
Chu-Puga Á., González-Gordo S., Rodríguez-Ruiz M., Palma J. M., Corpas F. J. (2019). NADPH oxidase (Rboh) activity is up regulated during sweet pepper (Capsicum annuum l.) fruit ripening. Antioxidants 8 (1), 9. doi: 10.3390/antiox8010009 PubMed DOI PMC
Dadacz-Narloch B., Kimura S., Kurusu T., Farmer E. E., Becker D., Kuchitsu K., et al. . (2013). On the cellular site of two-pore channel TPC 1 action in the poaceae. New Phytol. 200 (3), 663–674. doi: 10.1111/nph.12402 PubMed DOI
Davies J. M. (2014). Annexin-mediated calcium signalling in plants. Plants 3 (1), 128–140. doi: 10.3390/plants3010128 PubMed DOI PMC
de Carvalho Niebel F., Lescure N., Cullimore J. V., Gamas P. (1998). The medicago truncatula MtAnn1 gene encoding an annexin is induced by nod factors and during the symbiotic interaction with rhizobium meliloti. Mol. Plant-Microbe Interact. 11 (6), 504–513. doi: 10.1094/MPMI.1998.11.6.504 PubMed DOI
DeFalco T. A., Moeder W., Yoshioka K. (2023). Ca2+ signalling in plant biotic interactions. Front. Plant Sci. 14, 200. doi: 10.3389/fpls.2023.1137001 PubMed DOI PMC
Demidchik V., Shabala S., Isayenkov S., Cuin T. A., Pottosin I. (2018). Calcium transport across plant membranes: mechanisms and functions. New Phytol. 220 (1), 49–69. doi: 10.1111/nph.15266 PubMed DOI
Drerup M. M., Schlücking K., Hashimoto K., Manishankar P., Steinhorst L., Kuchitsu K., et al. . (2013). The calcineurin b-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the arabidopsis NADPH oxidase RBOHF. Mol. Plant 6 (2), 559–569. doi: 10.1093/mp/sst009 PubMed DOI
Duo H., Yu H., Sun E., Zhao D., Zuo C. (2022). RNA Sequencing reveals that cell wall, Ca2+, hypersensitive response and salicylic acid signals are involved in pear suspension cells responses to valsa pyri infection. Scientia Hortic. 305, 111422. doi: 10.1016/j.scienta.2022.111422 DOI
Duszyn M., Świeżawska B., Szmidt-Jaworska A., Jaworski K. (2019). Cyclic nucleotide gated channels (CNGCs) in plant signalling–current knowledge and perspectives. J. Plant Physiol. 241, 153035. doi: 10.1016/j.jplph.2019.153035 PubMed DOI
Eichstädt B., Lederer S., Trempel F., Jiang X., Guerra T., Waadt R., et al. . (2021). Plant immune memory in systemic tissue does not involve changes in rapid calcium signaling. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.798230 PubMed DOI PMC
Erickson J., Weckwerth P., Romeis T., Lee J. (2022). What’s new in protein kinase/phosphatase signalling in the control of plant immunity? Essays Biochem. 66 (5), 621–634. doi: 10.1042/EBC20210088 PubMed DOI PMC
Evangelisti E., Rey T., Schornack S. (2014). Cross-interference of plant development and plant–microbe interactions. Curr. Opin. Plant Biol. 20, 118–126. doi: 10.1016/j.pbi.2014.05.014 PubMed DOI
Falke J. J., Drake S. K., Hazard A. L., Peersen O. B. (1994). Molecular tuning of ion binding to calcium signaling proteins. Q. Rev. biophysics 27 (3), 219–290. doi: 10.1017/S0033583500003012 PubMed DOI
Fichman Y., Zandalinas S. I., Peck S., Luan S., Mittler R. (2022). HPCA1 is required for systemic reactive oxygen species and calcium cell-to-cell signaling and plant acclimation to stress. Plant Cell 34 (11), 4453–4471. doi: 10.1093/plcell/koac241 PubMed DOI PMC
Freymark G., Diehl T., Miklis M., Romeis T., Panstruga R. (2007). Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs). Mol. Plant-Microbe Interact. 20 (10), 1213–1221. doi: 10.1094/MPMI-20-10-1213 PubMed DOI
Frietsch S., Wang Y.-F., Sladek C., Poulsen L. R., Romanowsky S. M., Schroeder J. I., et al. . (2007). A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc. Natl. Acad. Sci. 104 (36), 14531–14536. doi: 10.1073/pnas.0701781104 PubMed DOI PMC
Furuichi N. (2020). Effector signaling in hypersensitive response of plant microbe interaction: Single-Molecule-Signaling of suppressor from phytophthora infestans and host selective toxin of alternaria solani on Ca2+-dependent protein-kinase (CDPK). Insights Biotechnol. Bioinforma 1 (1), 1003. Available at: https://www.medtextpublications.com/open-access/effector-signaling-in-hypersensitive-response-of-plant-microbe-interaction-single-molecule-signaling-415.pdf.
Gao Q., Xiong T., Li X., Chen W., Zhu X. (2019). Calcium and calcium sensors in fruit development and ripening. Scientia Hortic. 253, 412–421. doi: 10.1016/j.scienta.2019.04.069 DOI
Garcia-Mata C., Wang J., Gajdanowicz P., Gonzalez W., Hills A., Donald N., et al. . (2010). A minimal cysteine motif required to activate the SKOR k+ channel of arabidopsis by the reactive oxygen species H2O2*[S]. J. Biol. Chem. 285 (38), 29286–29294. doi: 10.1074/jbc.M110.141176 PubMed DOI PMC
Genre A., Russo G. (2016). Does a common pathway transduce symbiotic signals in plant–microbe interactions? Front. Plant Sci. 7, 96. doi: 10.3389/fpls.2016.00096 PubMed DOI PMC
Ghorbel M., Zribi I., Missaoui K., Drira-Fakhfekh M., Azzouzi B., Brini F. (2021). Differential regulation of the durum wheat pathogenesis-related protein (PR1) by calmodulin TdCaM1. 3 protein. Mol. Biol. Rep. 48 (1), 347–362. doi: 10.1007/s11033-020-06053-7 PubMed DOI
Gilroy S., Suzuki N., Miller G., Choi W.-G., Toyota M., Devireddy A. R., et al. . (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 19 (10), 623–630. doi: 10.1016/j.tplants.2014.06.013 PubMed DOI
Gnanasekaran P., KishoreKumar R., Bhattacharyya D., Vinoth Kumar R., Chakraborty S. (2019). Multifaceted role of geminivirus associated betasatellite in pathogenesis. Mol. Plant Pathol. 20 (7), 1019–1033. doi: 10.1111/mpp.12800 PubMed DOI PMC
Gonçalves M. F., Nunes R. B., Tilleman L., Van de Peer Y., Deforce D., Van Nieuwerburgh F., et al. . (2019). Dual RNA sequencing of vitis vinifera during lasiodiplodia theobromae infection unveils host–pathogen interactions. Int. J. Mol. Sci. 20 (23), 6083. doi: 10.3390/ijms20236083 PubMed DOI PMC
Goto Y., Maki N., Ichihashi Y., Kitazawa D., Igarashi D., Kadota Y., et al. . (2020). Exogenous treatment with glutamate induces immune responses in arabidopsis. Mol. Plant-Microbe Interact. 33 (3), 474–487. doi: 10.1094/MPMI-09-19-0262-R PubMed DOI
Gupta S., Bhar A., Chatterjee M., Das S. (2013). Fusarium oxysporum f. sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum l.). PloS One 8 (9), e73163. doi: 10.1371/journal.pone.0073163 PubMed DOI PMC
Gupta S., Roy A. (2021). “Deciphering the role of phytoanticipins, phytoalexins, and polyphenols in plant-insect defense,” in Plant-pest interactions: From molecular mechanisms to chemical ecology (Springer; ), 305–335.
Hamilton E. S., Haswell E. S. (2017). The tension-sensitive ion transport activity of MSL8 is critical for its function in pollen hydration and germination. Plant Cell Physiol. 58 (7), 1222–1237. doi: 10.1093/pcp/pcw230 PubMed DOI
Hamilton E. S., Schlegel A. M., Haswell E. S. (2015). United in diversity: mechanosensitive ion channels in plants. Annu. Rev. Plant Biol. 66, 113. doi: 10.1146/annurev-arplant-043014-114700 PubMed DOI PMC
Harmon A. C., Yoo B.-C., McCaffery C. (1994). Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33 (23), 7278–7287. doi: 10.1021/bi00189a032 PubMed DOI
Harper J. F., Huang J.-F., Lloyd S. J. (1994). Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33 (23), 7267–7277. doi: 10.1021/bi00189a031 PubMed DOI
He J., Rössner N., Hoang M. T., Alejandro S., Peiter E. (2021). Transport, functions, and interaction of calcium and manganese in plant organellar compartments. Plant Physiol. 187 (4), 1940–1972. doi: 10.1093/plphys/kiab122 PubMed DOI PMC
He F., Wang C., Sun H., Tian S., Zhao G., Liu C., et al. . (2022). Simultaneous editing of three homoeologs of TaCIPK14 confers broad-spectrum resistance to stripe rust in wheat. Plant Biotechnol. J 21(2), 354–368. doi: 10.1111/pbi.13956 PubMed DOI PMC
Hepler P. K., Winship L. J. (2010). Calcium at the cell wall-cytoplast interface. J. Integr. Plant Biol. 52 (2), 147–160. doi: 10.1111/j.1744-7909.2010.00923.x PubMed DOI
Huang W., Wu Z., Tian H., Li X., Zhang Y. (2021). Arabidopsis CALMODULIN-BINDING PROTEIN 60b plays dual roles in plant immunity. Plant Commun. 2 (6), 100213. doi: 10.1016/j.xplc.2021.100213 PubMed DOI PMC
Hundacker J., Bittner N., Weise C., Bröhan G., Varama M., Hilker M. (2022). Pine defense against eggs of an herbivorous sawfly is elicited by an annexin-like protein present in egg-associated secretion. Plant Cell Environ. 45 (4), 1033–1048. doi: 10.1111/pce.14211 PubMed DOI
Jia B., Li Y., Sun X., Sun M. (2022). Structure, function, and applications of soybean calcium transporters. Int. J. Mol. Sci. 23 (22), 14220. doi: 10.3390/ijms232214220 PubMed DOI PMC
Jin F., Liu J., Wu E., Yang P., Gao J., Gao X., et al. . (2021). Leaf transcriptome analysis of broomcorn millet uncovers key genes and pathways in response to sporisorium destruens. Int. J. Mol. Sci. 22 (17), 9542. doi: 10.3390/ijms22179542 PubMed DOI PMC
Johnson C. H., Knight M. R., Kondo T., Masson P., Sedbrook J., Haley A., et al. . (1995). Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269 (5232), 1863–1865. doi: 10.1126/science.7569925 PubMed DOI
Jones J. D., Dangl J. L. (2006). The plant immune system. nature 444 (7117), 323–329. doi: 10.1038/nature05286 PubMed DOI
Jose J. V. (2023). “Physiological and molecular aspects of macronutrient uptake by higher plants,” in Sustainable plant nutrition (Elsevier; ), 1–21.
Kader M. A., Lindberg S. (2010). Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling Behav. 5 (3), 233–238. doi: 10.4161/psb.5.3.10740 PubMed DOI PMC
Kamal H., Minhas F.-u., Tripathi D., Abbasi W. A., Hamza M., Mustafa R., et al. . (2019). βC1, pathogenicity determinant encoded by cotton leaf curl multan betasatellite, interacts with calmodulin-like protein 11 (Gh-CML11) in gossypium hirsutum. PloS One 14 (12), e0225876. doi: 10.1371/journal.pone.0225876 PubMed DOI PMC
Kimura S., Kaya H., Kawarazaki T., Hiraoka G., Senzaki E., Michikawa M., et al. . (2012). Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim. Biophys. Acta (BBA)-Molecular Cell Res. 1823 (2), 398–405. doi: 10.1016/j.bbamcr.2011.09.011 PubMed DOI
Kong D., Hu H.-C., Okuma E., Lee Y., Lee H. S., Munemasa S., et al. . (2016). L-met activates arabidopsis GLR Ca2+ channels upstream of ROS production and regulates stomatal movement. Cell Rep. 17 (10), 2553–2561. doi: 10.1016/j.celrep.2016.11.015 PubMed DOI
Kretsinger R. H., Nockolds C. E. (1973). Carp muscle calcium-binding protein: II. structure determination and general description. J. Biol. Chem. 248 (9), 3313–3326. doi: 10.1016/S0021-9258(19)44043-X PubMed DOI
Kumar S., Mazumder M., Gupta N., Chattopadhyay S., Gourinath S. (2016). Crystal structure of arabidopsis thaliana calmodulin7 and insight into its mode of DNA binding. FEBS Lett. 590 (17), 3029–3039. doi: 10.1002/1873-3468.12349 PubMed DOI
Kumari D., Prasad B. D., Sahni S., Nonhebel H. M., Krishna P. (2022). The expanded and diversified calmodulin-binding protein 60 (CBP60) family in rice (Oryza sativa l.) is conserved in defense responses against pathogens. Agronomy 12 (12), 3060. doi: 10.3390/agronomy12123060 DOI
Kurusu T., Hamada J., Hamada H., Hanamata S., Kuchitsu K. (2010). Roles of calcineurin b-like protein-interacting protein kinases in innate immunity in rice. Plant Signaling Behav. 5 (8), 1045–1047. doi: 10.4161/psb.5.8.12407 PubMed DOI PMC
Lacombe B., Becker D., Hedrich R., DeSalle R., Hollmann M., Kwak J. M., et al. . (2001). The identity of plant glutamate receptors. Science 292 (5521), 1486–1487. doi: 10.1126/science.292.5521.1486b PubMed DOI
Lam H.-M., Chiu J., Hsieh M.-H., Meisel L., Oliveira I. C., Shin M., et al. . (1998). Glutamate-receptor genes in plants. Nature 396 (6707), 125–126. doi: 10.1038/24066 PubMed DOI
La Verde V., Dominici P., Astegno A. (2018). Towards understanding plant calcium signaling through calmodulin-like proteins: A biochemical and structural perspective. Int. J. Mol. Sci. 19 (5), 1331. doi: 10.3390/ijms19051331 PubMed DOI PMC
Li G., Liu S., Wu L., Wang X., Cuan R., Zheng Y., et al. . (2022). Characterization and functional analysis of a new Calcium/Calmodulin-dependent protein kinase (CaMK1) in the citrus pathogenic fungus penicillium italicum. J. Fungi 8 (7), 667. doi: 10.3390/jof8070667 PubMed DOI PMC
Liu B., Fan H., Sun C., Yuan M., Geng X., Ding X., et al. . (2022). New insights into the role of chrysanthemum calcineurin b–like interacting protein kinase CmCIPK23 in nitrate signaling in arabidopsis roots. Sci. Rep. 12 (1), 1–13. doi: 10.1038/s41598-021-04758-8 PubMed DOI PMC
Lu L., Rong W., Zhou R., Huo N., Zhang Z. (2019). TaCML36, a wheat calmodulin-like protein, positively participates in an immune response to rhizoctonia cerealis. Crop J. 7 (5), 608–618. doi: 10.1016/j.cj.2019.02.001 DOI
Luan S., Kudla J.r., Rodriguez-Concepcion M., Yalovsky S., Gruissem W. (2002). Calmodulins and calcineurin b–like proteins: Calcium sensors for specific signal response coupling in plants. Plant Cell 14 (suppl_1), S389–S400. doi: 10.1105/tpc.001115 PubMed DOI PMC
Ludwig A. A., Saitoh H., Felix G., Freymark G., Miersch O., Wasternack C., et al. . (2005). Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc. Natl. Acad. Sci. 102 (30), 10736–10741. doi: 10.1073/pnas.0502954102 PubMed DOI PMC
Mäser P., Thomine S., Schroeder J. I., Ward J. M., Hirschi K., Sze H., et al. . (2001). Phylogenetic relationships within cation transporter families of arabidopsis. Plant Physiol. 126 (4), 1646–1667. doi: 10.1104/pp.126.4.1646 PubMed DOI PMC
Marcec M. J., Gilroy S., Poovaiah B., Tanaka K. (2019). Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Sci. 283, 343–354. doi: 10.1016/j.plantsci.2019.03.004 PubMed DOI
McAinsh M. R., Pittman J. K. (2009). Shaping the calcium signature. New Phytol. 181 (2), 275–294. doi: 10.1111/j.1469-8137.2008.02682.x PubMed DOI
Meng H., Sun M., Jiang Z., Liu Y., Sun Y., Liu D., et al. . (2021). Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by phytophthora nicotianae. Sci. Rep. 11 (1), 1–13. doi: 10.1038/s41598-020-80280-7 PubMed DOI PMC
Mirsaeidi M., Gidfar S., Vu A., Schraufnagel D. (2016). Annexins family: insights into their functions and potential role in pathogenesis of sarcoidosis. J. Trans. Med. 14 (1), 1–9. doi: 10.1186/s12967-016-0843-7 PubMed DOI PMC
Mishra G. P., Aski M. S., Bosamia T., Chaurasia S., Mishra D. C., Bhati J., et al. . (2021). Insights into the host-pathogen interaction pathways through RNA-seq analysis of lens culinaris medik. in response to rhizoctonia bataticola infection. Genes 13 (1), 90. doi: 10.3390/genes13010090 PubMed DOI PMC
Mohammad-Sidik A., Sun J., Shin R., Song Z., Ning Y., Matthus E., et al. . (2021). Annexin 1 is a component of eATP-induced cytosolic calcium elevation in arabidopsis thaliana roots. Int. J. Mol. Sci. 22 (2), 494. doi: 10.3390/ijms22020494 PubMed DOI PMC
Mohanta T. K., Mohanta N., Mohanta Y. K., Parida P., Bae H. (2015). Genome-wide identification of calcineurin b-like (CBL) gene family of plants reveals novel conserved motifs and evolutionary aspects in calcium signaling events. BMC Plant Biol. 15 (1), 1–15. doi: 10.1186/s12870-015-0543-0 PubMed DOI PMC
Mohanta T. K., Yadav D., Khan A. L., Hashem A., Abd-Allah E. F., Al-Harrasi A. (2019). Molecular players of EF-hand containing calcium signaling event in plants. Int. J. Mol. Sci. 20 (6), 1476. doi: 10.3390/ijms20061476 PubMed DOI PMC
Nomura H., Shiina T. (2014). Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. Mol. Plant 7 (7), 1094–1104. doi: 10.1093/mp/ssu020 PubMed DOI
Onofre T. S., Loch L., Ferreira Rodrigues J. P., Macedo S., Yoshida N. (2022). Gp35/50 mucin molecules of trypanosoma cruzi metacyclic forms that mediate host cell invasion interact with annexin A2. PloS Negl. Trop. Dis. 16 (10), e0010788. doi: 10.1371/journal.pntd.0010788 PubMed DOI PMC
Pacheco R., Quinto C. (2022). Phospholipase ds in plants: Their role in pathogenic and symbiotic interactions. Plant Physiol. Biochem. 173, 76–86. doi: 10.1016/j.plaphy.2022.01.025 PubMed DOI
Pavlova O., Leppyanen I., Kustova D., Bovin A., Dolgikh E. (2021). Phylogenetic and structural analysis of annexins in pea (Pisum sativum l.) and their role in legume-rhizobial symbiosis development. Vavilov J. Genet. Breed. 25 (5), 502. doi: 10.18699/VJ21.057 PubMed DOI PMC
Peiter E., Maathuis F. J., Mills L. N., Knight H., Pelloux J., Hetherington A. M., et al. . (2005). The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434 (7031), 404–408. doi: 10.1038/nature03381 PubMed DOI
Plasencia F. A., Estrada Y., Flores F. B., Ortíz-Atienza A., Lozano R., Egea I. (2021). The Ca2+ sensor calcineurin b–like protein 10 in plants: emerging new crucial roles for plant abiotic stress tolerance. Front. Plant Sci. 11, 599944. doi: 10.3389/fpls.2020.599944 PubMed DOI PMC
Qi Z., Stephens N. R., Spalding E. P. (2006). Calcium entry mediated by GLR3. 3, an arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol. 142 (3), 963–971. doi: 10.1104/pp.106.088989 PubMed DOI PMC
Qiu Y., Xi J., Du L., Poovaiah B. (2012). The function of calreticulin in plant immunity: new discoveries for an old protein. Plant Signaling Behav. 7 (8), 907–910. doi: 10.4161/psb.20721 PubMed DOI PMC
Richards S., Laohavisit A., Mortimer J. C., Shabala L., Swarbreck S. M., Shabala S., et al. . (2014). Annexin 1 regulates the h 2 O 2-induced calcium signature in a rabidopsis thaliana roots. Plant J. 77 (1), 136–145. doi: 10.1111/tpj.12372 PubMed DOI
Rupp B., Marshak D., Parkin S. (1996). Crystallization and preliminary X-ray analysis of two new crystal forms of calmodulin. Acta Crystallographica Section D: Biol. Crystallogr. 52 (2), 411–413. doi: 10.1107/S0907444995011826 PubMed DOI
Saad R. B., Ben Romdhane W., Ben Hsouna A., Mihoubi W., Harbaoui M., Brini F. (2020). Insights into plant annexins function in abiotic and biotic stress tolerance. Plant Signaling Behav. 15 (1), 1699264. doi: 10.1080/15592324.2019.1699264 PubMed DOI PMC
Saijo Y., Loo E. (2020). Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 225 (1), 87–104. doi: 10.1111/nph.15989 PubMed DOI
Sánchez-Barrena M. J., Fujii H., Angulo I., Martínez-Ripoll M., Zhu J.-K., Albert A. (2007). The structure of the c-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol. Cell 26 (3), 427–435. doi: 10.1016/j.molcel.2007.04.013 PubMed DOI PMC
Shu B., Jue D., Zhang F., Zhang D., Liu C., Wu Q., et al. . (2020). Genome-wide identification and expression analysis of the citrus calcium-dependent protein kinase (CDPK) genes in response to arbuscular mycorrhizal fungi colonization and drought. Biotechnol. Biotechnol. Equip. 34 (1), 1304–1314. doi: 10.1080/13102818.2020.1837011 DOI
Singh A., Mehta S., Yadav S., Nagar G., Ghosh R., Roy A., et al. . (2022). How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants. Int. J. Mol. Sci. 23 (4). 1995. doi: 10.3390/ijms23041995 PubMed DOI PMC
Sun L., Qin J., Wu X., Zhang J., Zhang J. (2022. a). TOUCH 3 and CALMODULIN 1/4/6 cooperate with calcium-dependent protein kinases to trigger calcium-dependent activation of CAM-BINDING PROTEIN 60-LIKE G and regulate fungal resistance in plants. Plant Cell 34 (10), 4088–4104. doi: 10.1093/plcell/koac209 PubMed DOI PMC
Sun X., Xie F., Chen Y., Guo Z., Dong L., Qin L., et al. . (2022. b). Glutamine synthetase gene PpGS1. 1 negatively regulates the powdery mildew resistance in Kentucky bluegrass. Horticulture Res. 9. doi: 10.1093/hr/uhac196 PubMed DOI PMC
Tang M., Zhang H., Wan Y., Deng Z., Qin X., Li R., et al. . (2023). Transcriptome analysis in response to infection of xanthomonas oryzae pv. oryzicola strains with different pathogenicity. Int. J. Mol. Sci. 24 (1), 14. 10.3390/ijms24010014 PubMed PMC
Thomma B. P., Nürnberger T., Joosten M. H. (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23 (1), 4–15. doi: 10.1105/tpc.110.082602 PubMed DOI PMC
Thor K. (2019). Calcium–nutrient and messenger. Front. Plant Sci. 10, 440. doi: 10.3389/fpls.2019.00440 PubMed DOI PMC
Tian W., Wang C., Gao Q., Li L., Luan S. (2020). Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat. Plants 6 (7), 750–759. doi: 10.1038/s41477-020-0667-6 PubMed DOI
Trotta A., Rahikainen M., Konert G., Finazzi G., Kangasjärvi S. (2014). Signalling crosstalk in light stress and immune reactions in plants. Philos. Trans. R. Soc. B: Biol. Sci. 369 (1640), 20130235. doi: 10.1098/rstb.2013.0235 PubMed DOI PMC
Tunc-Ozdemir M., Rato C., Brown E., Rogers S., Mooneyham A., Frietsch S., et al. . (2013. a). Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility. PloS One 8 (2), e55277. doi: 10.1371/journal.pone.0055277 PubMed DOI PMC
Tunc-Ozdemir M., Tang C., Ishka M. R., Brown E., Groves N. R., Myers C. T., et al. . (2013. b). A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol. 161 (2), 1010–1020. doi: 10.1104/pp.112.206888 PubMed DOI PMC
Tuteja N., Mahajan S. (2007). Calcium signaling network in plants: an overview. Plant Signaling Behav. 2 (2), 79–85. doi: 10.4161/psb.2.2.4176 PubMed DOI PMC
Urquhart W., Gunawardena A. H., Moeder W., Ali R., Berkowitz G. A., Yoshioka K. (2007). The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Mol. Biol. 65 (6), 747–761. doi: 10.1007/s11103-007-9239-7 PubMed DOI
Vadassery J., Scholz S. S., Mithöfer A. (2012). Multiple calmodulin-like proteins in arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion. Plant Signaling Behav. 7 (10), 1277–1280. doi: 10.4161/psb.21664 PubMed DOI PMC
van der Burgh A. M., Joosten M. H. (2019). Plant immunity: thinking outside and inside the box. Trends Plant Sci. 24 (7), 587–601. doi: 10.1016/j.tplants.2019.04.009 PubMed DOI
Van Der Burgh A. M., Postma J., Robatzek S., Joosten M. H. (2019). Kinase activity of SOBIR1 and BAK1 is required for immune signalling. Mol. Plant Pathol. 20 (3), 410–422. doi: 10.1111/mpp.12767 PubMed DOI PMC
Wan W. L., Zhang L., Pruitt R., Zaidem M., Brugman R., Ma X., et al. . (2019). Comparing arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. New Phytol. 221 (4), 2080–2095. doi: 10.1111/nph.15497 PubMed DOI PMC
Wang X. (2005). Regulatory functions of phospholipase d and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol. 139 (2), 566–573. doi: 10.1104/pp.105.068809 PubMed DOI PMC
Wang Z., Ma L.-Y., Cao J., Li Y.-L., Ding L.-N., Zhu K.-M., et al. . (2019). Recent advances in mechanisms of plant defense to sclerotinia sclerotiorum. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01314 PubMed DOI PMC
Wang C., Mao X., Zhao D., Yu H., Duo H., Sun E., et al. . (2022). Transcriptomic analysis reveals that cell wall-and hypersensitive response (HR)-related genes are involved in the responses of apple to valsa mali. Plant Biotechnol. Rep. 16 (5), 1–13. doi: 10.1007/s11816-022-00763-z DOI
Wang Y., Martins L. B., Sermons S., Balint-Kurti P. (2020). Genetic and physiological characterization of a calcium deficiency phenotype in maize. G3: Genes Genomes Genet. 10 (6), 1963–1970. doi: 10.1534/g3.120.401069 PubMed DOI PMC
White P. J., Broadley M. R. (2003). Calcium in plants. Ann. Bot. 92 (4), 487–511. doi: 10.1093/aob/mcg164 PubMed DOI PMC
Wurzinger B., Mair A., Pfister B., Teige M. (2011). Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signaling Behav. 6 (1), 8–12. doi: 10.4161/psb.6.1.14012 PubMed DOI PMC
Xing T., Wang X.-J., Malik K., Miki B. L. (2001). Ectopic expression of an arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Mol. Plant-Microbe Interact. 14 (10), 1261–1264. doi: 10.1094/MPMI.2001.14.10.1261 PubMed DOI
Xiong Y., Lin D., Ma S., Wang C., Lin S. (2022). Genome-wide identification of the calcium-dependent protein kinase gene family in fragaria vesca and expression analysis under different biotic stresses. Eur. J. Plant Pathol. 164 (2), 283–298. doi: 10.1007/s10658-022-02560-4 DOI
Xiong J.-S., Zhu H.-Y., Bai Y.-B., Liu H., Cheng Z.-M. (2018). RNA Sequencing-based transcriptome analysis of mature strawberry fruit infected by necrotrophic fungal pathogen botrytis cinerea. Physiol. Mol. Plant Pathol. 104, 77–85. doi: 10.1016/j.pmpp.2018.08.005 DOI
Yadav M., Pandey J., Chakraborty A., Hassan M. I., Kundu J. K., Roy A., et al. . (2022). A comprehensive analysis of calmodulin-like proteins of glycine max indicates their role in calcium signaling and plant defense against insect attack. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.817950 PubMed DOI PMC
Yang C., Li Z., Cao X., Duan W., Wei C., Zhang C., et al. . (2022). Genome-wide analysis of calmodulin binding transcription activator (CAMTA) gene family in peach (Prunus persica l. batsch) and ectopic expression of PpCAMTA1 in arabidopsis camta2, 3 mutant restore plant development. Int. J. Mol. Sci. 23 (18), 10500. doi: 10.3390/ijms231810500 PubMed DOI PMC
Yang D.-L., Shi Z., Bao Y., Yan J., Yang Z., Yu H., et al. . (2017). Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity. Plant Physiol. 175 (1), 424–437. doi: 10.1104/pp.17.00495 PubMed DOI PMC
Yu C., Ke Y., Qin J., Huang Y., Zhao Y., Liu Y., et al. . (2022). Genome-wide identification of calcineurin b-like protein-interacting protein kinase gene family reveals members participating in abiotic stress in the ornamental woody plant lagerstroemia indica. Front. Plant Sci. 13, 942217. doi: 10.3389/fpls.2022.942217 PubMed DOI PMC
Yu H., Xiao A., Dong R., Fan Y., Zhang X., Liu C., et al. . (2018). Suppression of innate immunity mediated by the CDPK-rboh complex is required for rhizobial colonization in medicago truncatula nodules. New Phytol. 220 (2), 425–434. doi: 10.1111/nph.15410 PubMed DOI
Yuan P., Jauregui E., Du L., Tanaka K., Poovaiah B. (2017). Calcium signatures and signaling events orchestrate plant–microbe interactions. Curr. Opin. Plant Biol. 38, 173–183. doi: 10.1016/j.pbi.2017.06.003 PubMed DOI
Yuan P., Tanaka K., Poovaiah B. (2022). Calcium/calmodulin-mediated defense signaling: What is looming on the horizon for AtSR1/CAMTA3-mediated signaling in plant immunity. Front. Plant Sci. 12, 3244. doi: 10.3389/fpls.2021.795353 PubMed DOI PMC
Zhang W., Wang Z., Dan Z., Zhang L., Xu M., Yang G., et al. . (2022. b). Transcriptome analysis of fusarium root-Rot-Resistant and-susceptible alfalfa (Medicago sativa l.) plants during plant–pathogen interactions. Genes 13 (5), 788. doi: 10.3390/genes13050788 PubMed DOI PMC
Zhang J., Zou A., Wen Y., Wei X., Liu C., Lv X., et al. . (2022. a). SlCML55, a novel solanum lycopersicum calmodulin-like gene, negatively regulates plant immunity to phytophthora pathogens. Scientia Hortic. 299, 111049. doi: 10.1016/j.scienta.2022.111049 DOI
Zhao C., Tang Y., Wang J., Zeng Y., Sun H., Zheng Z., et al. . (2021). A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in arabidopsis. New Phytol. 230 (3), 1078–1094. doi: 10.1111/nph.17218 PubMed DOI
Zhao L., Xie B., Hou Y., Zhao Y., Zheng Y., Jin P. (2022). Genome-wide identification of the CDPK gene family reveals the CDPK-RBOH pathway potential involved in improving chilling tolerance in peach fruit. Plant Physiol. Biochem. 191, 10–19. doi: 10.1016/j.plaphy.2022.09.015 PubMed DOI
Zhu X., Robe E., Jomat L., Aldon D., Mazars C., Galaud J.-P. (2017). CML8, an arabidopsis calmodulin-like protein, plays a role in pseudomonas syringae plant immunity. Plant Cell Physiol. 58 (2), 307–319. doi: 10.1093/pcp/pcw189 PubMed DOI
Zhu K., Yang L.-T., Li C.-X., Lakshmanan P., Xing Y.-X., Li Y.-R. (2021). A transcriptomic analysis of sugarcane response to leifsonia xyli subsp. xyli infection. PloS One 16 (2), e0245613. doi: 10.1371/journal.pone.0245613 PubMed DOI PMC