A Comprehensive Analysis of Calmodulin-Like Proteins of Glycine max Indicates Their Role in Calcium Signaling and Plant Defense Against Insect Attack

. 2022 ; 13 () : 817950. [epub] 20220309

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35371141

The calcium (Ca2+) signaling is a crucial event during plant-herbivore interaction, which involves a transient change in cytosolic Ca2+ concentration, which is sensed by Ca2+-sensors, and the received message is transduced to downstream target proteins leading to appropriate defense response. Calmodulin-like proteins (CMLs) are calcium-sensing plant-specific proteins. Although CMLs have been identified in a few plants, they remained uncharacterized in leguminous crop plants. Therefore, a wide-range analysis of CMLs of soybean was performed, which identified 41 true CMLs with greater than 50% similarity with Arabidopsis CMLs. The phylogenetic study revealed their evolutionary relatedness with known CMLs. Further, the identification of conserved motifs, gene structure analysis, and identification of cis-acting elements strongly supported their identity as members of this family and their involvement in stress responses. Only a few Glycine max CMLs (GmCMLs) exhibited differential expression in different tissue types, and rest of them had minimal expression. Additionally, differential expression patterns of GmCMLs were observed during Spodoptera litura-feeding, wounding, and signaling compound treatments, indicating their role in plant defense. The three-dimensional structure prediction, identification of interactive domains, and docking with Ca2+ ions of S. litura-inducible GmCMLs, indicated their identity as calcium sensors. This study on the characterization of GmCMLs provided insights into their roles in calcium signaling and plant defense during herbivory.

Zobrazit více v PubMed

Aldon D., Mbengue M., Mazars C., Galaud J.-P. (2018). Calcium signalling in plant biotic interactions. Int. J. Mol. Sci. 19:665. 10.3390/ijms19030665 PubMed DOI PMC

Asano T., Tanaka N., Yang G., Hayashi N., Komatsu S. (2005). Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol. 46 356–366. 10.1093/pcp/pci035 PubMed DOI

Badole S. L., Bodhankar S. L. (2012). Glycine max (soybean) treatment for diabetes. Bioact. Food Diet. Interv. Diabetes 77 77–82. 10.1016/b978-0-12-397153-1.00008-1 DOI

Badole S. L., Mahamuni S. P. (2013). “Soybean: Key Role in Skin Cancer,” in Bioactive Dietary Factors and Plant Extracts in Dermatology, eds Watson R., Zibadi S. (Totowa, N J: Humana Press; ), 315–320. 10.1007/978-1-62703-167-7_28 DOI

Bender K. W., Snedden W. A. (2013). Calmodulin-related proteins step out from the shadow of their namesake. Plant Physiol. 163 486–495. 10.1104/pp.113.221069 PubMed DOI PMC

Bhatia G., Sharma S., Upadhyay S. K., Singh K. (2019). Long non-coding RNAs coordinate developmental transitions and other key biological processes in grapevine. Sci. Rep. 9:3552. 10.1038/s41598-019-38989-7 PubMed DOI PMC

Boonburapong B., Buaboocha T. (2007). Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol. 7:4. 10.1186/1471-2229-7-4 PubMed DOI PMC

Chen C.-Y., Mao Y.-B. (2020). Research advances in plant–insect molecular interaction. Faculty Rev. 9 F1000. 10.12688/f1000research.21502.1 PubMed DOI PMC

Chen F., Fasoli M., Tornielli G. B., Dal Santo S., Pezzotti M., Zhang L., et al. (2013). The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family. PLoS One 8:e80818. 10.1371/journal.pone.0080818 PubMed DOI PMC

Conrath U., Pieterse C. M. J., Mauch-Mani B. (2002). Priming in plant–pathogen interactions. Trends Plant Sci. 7 210–216. 10.1016/s1360-1385(02)02244-6 PubMed DOI

Cui Z.-L., Gai J.-Y., Ji D.-F., Ren Z.-J. (1997). A study on leaf-feeding insect species on soybeans in Nanjing area. Soybean Sci. 16 12–20.

DeFalco T. A., Bender K. W., Snedden W. A. (2010). Breaking the code: ca2+ sensors in plant signalling. Biochem. J. 425 27–40. 10.1042/BJ20091147 PubMed DOI

DeFalco T. A., Moeder W., Yoshioka K. (2016). Opening the gates: insights into cyclic nucleotide-gated channel-mediated signaling. Trends Plant Sci. 21 903–906. 10.1016/j.tplants.2016.08.011 PubMed DOI

DeFalco T. A., Zipfel C. (2021). Molecular mechanisms of early plant pattern-triggered immune signaling. Mol. Cell 81 3449–3467. 10.1016/j.molcel.2021.07.029 PubMed DOI

Delk N. A., Johnson K. A., Chowdhury N. I., Braam J. (2005). CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol. 139 240–253. 10.1104/pp.105.062612 PubMed DOI PMC

Dobney S., Chiasson D., Lam P., Smith S. P., Snedden W. A. (2009). The calmodulin-related calcium sensor CML42 plays a role in trichome branching. J. Biol. Chem. 284 31647–31657. 10.1074/jbc.M109.056770 PubMed DOI PMC

Dodd A. N., Kudla J., Sanders D. (2010). The language of calcium signaling. Ann. Rev. Plant Biol. 61 593–620. 10.1146/annurev-arplant-070109-104628 PubMed DOI

Fan R., Wang H., Wang Y., Yu D. (2012). Proteomic analysis of soybean defense response induced by cotton worm (Prodenia litura, fabricius) feeding. Proteome Sci. 10 16. 10.1186/1477-5956-10-16 PubMed DOI PMC

Gatehouse J. A. (2002). Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156 145–169. 10.1046/j.1469-8137.2002.00519.x PubMed DOI

Gifford J. L., Walsh M. P., Vogel H. J. (2007). Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem. J. 405 199–221. 10.1042/BJ20070255 PubMed DOI

Gresshoff P. M., Ferguson B. J. (2017). Molecular signals in nodulation control. Int. J. Mol. Sci. 18:125. 10.3390/ijms18010125 PubMed DOI PMC

Halitschke R., Baldwin I. T. (2004). Jasmonates and related compounds in plant-insect interactions. J. Plant Growth Regul. 23 238–245. 10.1007/s00344-004-0037-z DOI

Hammerschmidt R., Smith-Becker J. A. (1999). “The role of salicylic acid in disease resistance,” in Mechanisms of Resistance to Plant Diseases, eds Slusarenko A., Fraser R. S. S., Van Loon L. C. (Kluwer: AcademicPublisher; ), 37–53.

Hancock R. D., Hogenhout S., Foyer C. H. (2015). Mechanisms of plant–insect interaction. J. Exp. Bot. 66 421–424. PubMed PMC

Heyer M., Scholz S. S., Reichelt M., Kunert G., Oelmüller R., Mithöfer A. (2021). The Ca2+ sensor proteins CML37 and CML42 antagonistically regulate plant stress responses by altering phytohormone signals. Plant Mol. Biol. [Epub online ahead of print], 10.1007/s11103-021-01184-2 PubMed DOI PMC

Hu B., Jin J., Guo A.-Y., Zhang H., Luo J., Gao G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31 1296–1297. 10.1093/bioinformatics/btu817 PubMed DOI PMC

Hubbard K., Hotta C., Gardner M., Braam J., Webb A. (2008). The Arabidopsis thaliana calmodulin-like protein CML24 is a regulator of rhythmic Ca2+ signalling and flowering time. Comp. Biochem. Physiol. Part A 150:S153.

Hung C.-Y., Aspesi P., Jr., Hunter M. R., Lomax A. W., Perera I. Y. (2014). Phosphoinositide-signaling is one component of a robust plant defense response. Front. Plant Sci. 5:267. 10.3389/fpls.2014.00267 PubMed DOI PMC

Inzé A., Vanderauwera S., Hoeberichts F. A., Vandorpe M., Van Gaever T. I. M., Van Breusegem F. (2012). A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant. Cell Environ. 35 308–320. 10.1111/j.1365-3040.2011.02323.x PubMed DOI

Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10 845–858. 10.1038/nprot.2015.053 PubMed DOI PMC

Keshan R., Singh I. K., Singh A. (2021). Genome wide investigation of MAPKKKs from Cicer arietinum and their involvement in plant defense against Helicoverpa armigera. Physiol. Mol. Plant Pathol. 115:101685. 10.1016/j.pmpp.2021.101685 DOI

Kessler A., Baldwin I. T. (2002). Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53 299–328. 10.1146/annurev.arplant.53.100301.135207 PubMed DOI

Kiep V., Vadassery J., Lattke J., Maaß J. P., Boland W., Peiter E., et al. (2015). Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol. 207 996–1004. 10.1111/nph.13493 PubMed DOI

Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., et al. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47 D1102–D1109. 10.1093/nar/gky1033 PubMed DOI PMC

Kleist T. J., Spencley A. L., Luan S. (2014). Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. Front. Plant Sci. 5:187. 10.3389/fpls.2014.0018 PubMed DOI PMC

Kliebenstein D. J. (2004). Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant. Cell Environ. 27 675–684. 10.1111/j.1365-3040.2004.01180.x DOI

Kong X., Lv W., Jiang S., Zhang D., Cai G., Pan J., et al. (2013). Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics 14:433. 10.1186/1471-2164-14-433 PubMed DOI PMC

Kumar A., Panwar R., Singh A., Singh I. K. (2020). ““Role of Calcium Signalling During Plant–Herbivore Interaction”, in Plant Stress Biology, eds Giri B., Sharma M. P. (Singapore: Springer; ), 491–510. 10.3390/cells10092219 DOI

Laskowski R. A., Rullmann J. A. C., MacArthur M. W., Kaptein R., Thornton J. M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8 477–486. 10.1007/BF00228148 PubMed DOI

Lata C., Mishra A. K., Muthamilarasan M., Bonthala V. S., Khan Y., Prasad M. (2014). Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS One 9:e113092. 10.1371/journal.pone.0113092 PubMed DOI PMC

Leba L., Cheval C., Ortiz-Martín I., Ranty B., Beuzón C. R., Galaud J., et al. (2012). CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. Plant J. 71 976–989. 10.1111/j.1365-313X.2012.05045.x PubMed DOI

Lecourieux D., Mazars C., Pauly N., Ranjeva R., Pugin A. (2002). Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14 2627–2641. 10.1105/tpc.005579 PubMed DOI PMC

Lescot M., Déhais P., Thijs G., Marchal K., Moreau Y., Van De Peer Y., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30 325–327. 10.1093/nar/30.1.325 PubMed DOI PMC

Letunic I., Bork P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 W293–W296. 10.1093/nar/gkab301 PubMed DOI PMC

Liao J., Deng J., Qin Z., Tang J., Shu M., Ding C., et al. (2017). Genome-wide identification and analyses of calmodulins and calmodulin-like proteins in Lotus japonicas. Front. Plant Sci. 8:482. 10.3389/fpls.2017.00482 PubMed DOI PMC

Lortzing T., Steppuhn A. (2016). Jasmonate signalling in plants shapes plant–insect interaction ecology. Curr. Opin. Insect Sci. 14 32–39. 10.1016/j.cois.2016.01.002 PubMed DOI

Madeira F., Park Y. M., Lee J., Buso N., Gur T., Madhusoodanan N., et al. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47 W636–W641. 10.1093/nar/gkz268 PubMed DOI PMC

Maffei M., Bossi S., Spiteller D., Mithofer A., Boland W. (2004). Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol. 134 1752–1762. 10.1104/pp.103.034165 PubMed DOI PMC

Magnan F., Ranty B., Charpenteau M., Sotta B., Galaud J., Aldon D. (2008). Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J. 56 575–589. 10.1111/j.1365-313X.2008.03622.x PubMed DOI

Mashiach E., Schneidman-Duhovny D., Andrusier N., Nussinov R., Wolfson H. J. (2008). FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 36 W229–W232. 10.1093/nar/gkn186 PubMed DOI PMC

McCormack E., Braam J. (2003). Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol. 159 585–598. 10.1046/j.1469-8137.2003.00845.x PubMed DOI

McCormack E., Tsai Y.-C., Braam J. (2005). Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci. 10 383–389. 10.1016/j.tplants.2005.07.001 PubMed DOI

Meena M. K., Prajapati R., Krishna D., Divakaran K., Pandey Y., Reichelt M., et al. (2019). The Ca2+ channel CNGC19 regulates Arabidopsis defense against Spodoptera herbivory. Plant Cell 31 1539–1562. 10.1105/tpc.19.00057 PubMed DOI PMC

Mithöfer A., Boland W. (2008). Recognition of herbivory-associated molecular patterns. Plant Physiol. 146 825–831. 10.1104/pp.107.113118 PubMed DOI PMC

Munir S., Khan M. R. G., Song J., Munir S., Zhang Y., Ye Z., et al. (2016). Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum). Plant Physiol. Biochem. 102 167–179. 10.1016/j.plaphy.2016.02.020 PubMed DOI

Naresh R. K., Dhaliwal S. S., Chaudhary M., Chandra M. S., Kumar A. (2019). Legumes: An Option to enhance Productivity and Soil Health Sustainability. Singapore: Springer, 93.

O’Boyle N. M., Banck M., James C. A., Morley C., Vandermeersch T., Hutchison G. R. (2011). Open Babel: an open chemical toolbox. J. Cheminform. 3:33. 10.1186/1758-2946-3-33 PubMed DOI PMC

Park H. C., Kim M. L., Kang Y. H., Jeon J. M., Yoo J. H., Kim M. C., et al. (2004). Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135 2150–2161. 10.1104/pp.104.041442 PubMed DOI PMC

Park H. C., Park C. Y., Koo S. C., Cheong M. S., Kim K. E., Kim M. C., et al. (2010). AtCML8, a calmodulin-like protein, differentially activating CaM-dependent enzymes in Arabidopsis thaliana. Plant Cell Rep. 29 1297–1304. 10.1007/s00299-010-0916-7 PubMed DOI

Perochon A., Aldon D., Galaud J.-P., Ranty B. (2011). Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93 2048–2053. 10.1016/j.biochi.2011.07.012 PubMed DOI

Poovaiah B. W., Du L., Wang H., Yang T. (2013). Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Plant Physiol. 163 531–542. 10.1104/pp.113.220780 PubMed DOI PMC

Ranty B., Aldon D., Cotelle V., Galaud J.-P., Thuleau P., Mazars C. (2016). Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front. Plant Sci. 7:327. 10.3389/fpls.2016.00327 PubMed DOI PMC

Reddy A. S. N., Ben-Hur A., Day I. S. (2011). Experimental and computational approaches for the study of calmodulin interactions. Phytochemistry 72 1007–1019. 10.1016/j.phytochem.2010.12.022 PubMed DOI

Reymond P., Bodenhausen N., Van Poecke R. M. P., Krishnamurthy V., Dicke M., Farmer E. E. (2004). A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16 3132–3147. 10.1105/tpc.104.026120 PubMed DOI PMC

Reymond P., Weber H., Damond M., Farmer E. E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12 707–719. 10.1105/tpc.12.5.707 PubMed DOI PMC

Schneidman-Duhovny D., Inbar Y., Nussinov R., Wolfson H. J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33 W363–W367. 10.1093/nar/gki481 PubMed DOI PMC

Schuler M. A. (2011). P450s in plant–insect interactions. Biochim. Biophys. Acta 1814 36–45. 10.1016/j.bbapap.2010.09.012 PubMed DOI

Singh A., Kumar A., Hartley S., Singh I. K. (2020a). Silicon: its ameliorative effect on plant defense against herbivory. J. Exp. Bot. 71 6730–6743. 10.1093/jxb/eraa300 PubMed DOI

Singh S., Singh A., Kumar S., Mittal P., Singh I. K. (2020b). Protease inhibitors: recent advancement in its usage as a potential biocontrol agent for insect pest management. Insect Sci. 27 186–201. 10.1111/1744-7917.12641 PubMed DOI

Singh S., Tyagi C., Rather I. A., Sabir J. S. M., Hassan M., Singh A., et al. (2020c). Molecular modeling of chemosensory protein 3 from Spodoptera litura and its binding property with plant defensive metabolites. Int. J. Mol. Sci. 21:4073. 10.3390/ijms21114073 PubMed DOI PMC

Singh A., Panwar R., Mittal P., Hassan M. I., Singh I. K. (2021a). Plant cytochrome P450s: role in stress tolerance and potential applications for human welfare. Int. J. Biol. Macromol. 184 874–886. 10.1016/j.ijbiomac.2021.06.125 PubMed DOI

Singh A., Singh S., Singh R., Kumar S., Singh S. K., Singh I. K. (2021b). Dynamics of Zea mays transcriptome in response to a polyphagous herbivore, Spodoptera litura. Funct. Integr. Genom. 21 571–592. 10.1007/s10142-021-00796-7 PubMed DOI

Singh S., Singh A., Singh I. K. (2021c). “Transcriptomics Studies Revealing Enigma of Insect-Plant Interaction,” in Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology, eds Singh I. K., Singh A. (Singapore: Springer; ), 31–55. 10.1007/978-981-15-2467-7_2 DOI

Singh A., Singh I. K., Verma P. K. (2008). Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. J. Exp. Bot. 59 2379–2392. 10.1093/jxb/ern111 PubMed DOI

Singh A., Singh S., Singh I. K. (2016). Recent insights into the molecular mechanism of jasmonate signaling during insect-plant interaction. Australas. Plant Pathol. 45 123–133. 10.1007/s13313-015-0392-1 DOI

Singh A., Tyagi C., Nath O., Singh I. K. (2018). Helicoverpa-inducible Thioredoxin h from Cicer arietinum: structural modeling and potential targets. Int. J. Biol. Macromol. 109 231–243. 10.1016/j.ijbiomac.2017.12.079 PubMed DOI

Singh I. K., Singh A. (2021). Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. New York NY: Springer.

Soyastats (2010). A Reference Guide to Important Soybean Facts and Figure. American Soybean Association.

Stotz H. U., Pittendrigh B. R., Kroymann J., Weniger K., Fritsche J., Bauke A., et al. (2000). Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol. 124 1007–1018. 10.1104/pp.124.3.1007 PubMed DOI PMC

Szklarczyk D., Gable A. L., Nastou K. C., Lyon D., Kirsch R., Pyysalo S., et al. (2021). The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49 D605–D612. PubMed PMC

Thor K., Peiter E. (2014). Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. New Phytol. 204 873–881. 10.1111/nph.13064 PubMed DOI

Vadassery J., Reichelt M., Hause B., Gershenzon J., Boland W., Mithöfer A. (2012a). CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol. 159 1159–1175. 10.1104/pp.112.198150 PubMed DOI PMC

Vadassery J., Scholz S. S., Mithöfer A. (2012b). Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion. Plant Signal. Behav. 7 1277–1280. 10.4161/psb.21664 PubMed DOI PMC

Vandelle E., Vannozzi A., Wong D., Danzi D., Digby A.-M., Dal Santo S., et al. (2018). Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses. Plant Physiol. Biochem. 129 221–237. 10.1016/j.plaphy.2018.06.003 PubMed DOI

Vanderbeld B., Snedden W. A. (2007). Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37 CML38 and CML39. Plant Mol. Biol. 64 683–697. 10.1007/s11103-007-9189-0 PubMed DOI

Vasudev A., Sohal S. (2016). Partially purified Glycine max proteinase inhibitors: potential bioactive compounds against tobacco cutworm, Spodoptera litura (Fabricius, 1775)(Lepidoptera: Noctuidae). Turkish J. Zool. 40 379–387. 10.3906/zoo-1508-20 PubMed DOI

Vincent T. R., Avramova M., Canham J., Higgins P., Bilkey N., Mugford S. T., et al. (2017). Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. Plant Cell 29 1460–1479. 10.1105/tpc.17.00136 PubMed DOI PMC

Waese J., Fan J., Pasha A., Yu H., Fucile G., Shi R., et al. (2017). ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 29 1806–1821. 10.1105/tpc.17.00073 PubMed DOI PMC

Weinl S., Kudla J. (2009). The CBL–CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol. 184 517–528. 10.1111/j.1469-8137.2009.02938.x PubMed DOI

Zeng H., Zhang Y., Zhang X., Pi E., Zhu Y. (2017). Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Front. Plant Sci. 8:877. 10.3389/fpls.2017.00877 PubMed DOI PMC

Zhang B. Q., Yang X. B. (2000). Pathogenicity of Pythium populations from corn-soybean rotation fields. Plant Dis. 84 94–99. 10.1094/PDIS.2000.84.1.94 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...