A Comprehensive Analysis of Calmodulin-Like Proteins of Glycine max Indicates Their Role in Calcium Signaling and Plant Defense Against Insect Attack
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35371141
PubMed Central
PMC8965522
DOI
10.3389/fpls.2022.817950
Knihovny.cz E-zdroje
- Klíčová slova
- Calmodulin like proteins (CMLs), Spodoptera litura, calcium signaling, plant-insect interaction, signaling compounds, soybean, wounding,
- Publikační typ
- časopisecké články MeSH
The calcium (Ca2+) signaling is a crucial event during plant-herbivore interaction, which involves a transient change in cytosolic Ca2+ concentration, which is sensed by Ca2+-sensors, and the received message is transduced to downstream target proteins leading to appropriate defense response. Calmodulin-like proteins (CMLs) are calcium-sensing plant-specific proteins. Although CMLs have been identified in a few plants, they remained uncharacterized in leguminous crop plants. Therefore, a wide-range analysis of CMLs of soybean was performed, which identified 41 true CMLs with greater than 50% similarity with Arabidopsis CMLs. The phylogenetic study revealed their evolutionary relatedness with known CMLs. Further, the identification of conserved motifs, gene structure analysis, and identification of cis-acting elements strongly supported their identity as members of this family and their involvement in stress responses. Only a few Glycine max CMLs (GmCMLs) exhibited differential expression in different tissue types, and rest of them had minimal expression. Additionally, differential expression patterns of GmCMLs were observed during Spodoptera litura-feeding, wounding, and signaling compound treatments, indicating their role in plant defense. The three-dimensional structure prediction, identification of interactive domains, and docking with Ca2+ ions of S. litura-inducible GmCMLs, indicated their identity as calcium sensors. This study on the characterization of GmCMLs provided insights into their roles in calcium signaling and plant defense during herbivory.
Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi India
DBC i4 Center Deshbandhu College University of Delhi New Delhi India
Department of Botany Hansraj College University of Delhi New Delhi India
Plant Virus and Vector Interactions Group Crop Research Institute Prague Czechia
Zobrazit více v PubMed
Aldon D., Mbengue M., Mazars C., Galaud J.-P. (2018). Calcium signalling in plant biotic interactions. Int. J. Mol. Sci. 19:665. 10.3390/ijms19030665 PubMed DOI PMC
Asano T., Tanaka N., Yang G., Hayashi N., Komatsu S. (2005). Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol. 46 356–366. 10.1093/pcp/pci035 PubMed DOI
Badole S. L., Bodhankar S. L. (2012). Glycine max (soybean) treatment for diabetes. Bioact. Food Diet. Interv. Diabetes 77 77–82. 10.1016/b978-0-12-397153-1.00008-1 DOI
Badole S. L., Mahamuni S. P. (2013). “Soybean: Key Role in Skin Cancer,” in Bioactive Dietary Factors and Plant Extracts in Dermatology, eds Watson R., Zibadi S. (Totowa, N J: Humana Press; ), 315–320. 10.1007/978-1-62703-167-7_28 DOI
Bender K. W., Snedden W. A. (2013). Calmodulin-related proteins step out from the shadow of their namesake. Plant Physiol. 163 486–495. 10.1104/pp.113.221069 PubMed DOI PMC
Bhatia G., Sharma S., Upadhyay S. K., Singh K. (2019). Long non-coding RNAs coordinate developmental transitions and other key biological processes in grapevine. Sci. Rep. 9:3552. 10.1038/s41598-019-38989-7 PubMed DOI PMC
Boonburapong B., Buaboocha T. (2007). Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol. 7:4. 10.1186/1471-2229-7-4 PubMed DOI PMC
Chen C.-Y., Mao Y.-B. (2020). Research advances in plant–insect molecular interaction. Faculty Rev. 9 F1000. 10.12688/f1000research.21502.1 PubMed DOI PMC
Chen F., Fasoli M., Tornielli G. B., Dal Santo S., Pezzotti M., Zhang L., et al. (2013). The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family. PLoS One 8:e80818. 10.1371/journal.pone.0080818 PubMed DOI PMC
Conrath U., Pieterse C. M. J., Mauch-Mani B. (2002). Priming in plant–pathogen interactions. Trends Plant Sci. 7 210–216. 10.1016/s1360-1385(02)02244-6 PubMed DOI
Cui Z.-L., Gai J.-Y., Ji D.-F., Ren Z.-J. (1997). A study on leaf-feeding insect species on soybeans in Nanjing area. Soybean Sci. 16 12–20.
DeFalco T. A., Bender K. W., Snedden W. A. (2010). Breaking the code: ca2+ sensors in plant signalling. Biochem. J. 425 27–40. 10.1042/BJ20091147 PubMed DOI
DeFalco T. A., Moeder W., Yoshioka K. (2016). Opening the gates: insights into cyclic nucleotide-gated channel-mediated signaling. Trends Plant Sci. 21 903–906. 10.1016/j.tplants.2016.08.011 PubMed DOI
DeFalco T. A., Zipfel C. (2021). Molecular mechanisms of early plant pattern-triggered immune signaling. Mol. Cell 81 3449–3467. 10.1016/j.molcel.2021.07.029 PubMed DOI
Delk N. A., Johnson K. A., Chowdhury N. I., Braam J. (2005). CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol. 139 240–253. 10.1104/pp.105.062612 PubMed DOI PMC
Dobney S., Chiasson D., Lam P., Smith S. P., Snedden W. A. (2009). The calmodulin-related calcium sensor CML42 plays a role in trichome branching. J. Biol. Chem. 284 31647–31657. 10.1074/jbc.M109.056770 PubMed DOI PMC
Dodd A. N., Kudla J., Sanders D. (2010). The language of calcium signaling. Ann. Rev. Plant Biol. 61 593–620. 10.1146/annurev-arplant-070109-104628 PubMed DOI
Fan R., Wang H., Wang Y., Yu D. (2012). Proteomic analysis of soybean defense response induced by cotton worm (Prodenia litura, fabricius) feeding. Proteome Sci. 10 16. 10.1186/1477-5956-10-16 PubMed DOI PMC
Gatehouse J. A. (2002). Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156 145–169. 10.1046/j.1469-8137.2002.00519.x PubMed DOI
Gifford J. L., Walsh M. P., Vogel H. J. (2007). Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem. J. 405 199–221. 10.1042/BJ20070255 PubMed DOI
Gresshoff P. M., Ferguson B. J. (2017). Molecular signals in nodulation control. Int. J. Mol. Sci. 18:125. 10.3390/ijms18010125 PubMed DOI PMC
Halitschke R., Baldwin I. T. (2004). Jasmonates and related compounds in plant-insect interactions. J. Plant Growth Regul. 23 238–245. 10.1007/s00344-004-0037-z DOI
Hammerschmidt R., Smith-Becker J. A. (1999). “The role of salicylic acid in disease resistance,” in Mechanisms of Resistance to Plant Diseases, eds Slusarenko A., Fraser R. S. S., Van Loon L. C. (Kluwer: AcademicPublisher; ), 37–53.
Hancock R. D., Hogenhout S., Foyer C. H. (2015). Mechanisms of plant–insect interaction. J. Exp. Bot. 66 421–424. PubMed PMC
Heyer M., Scholz S. S., Reichelt M., Kunert G., Oelmüller R., Mithöfer A. (2021). The Ca2+ sensor proteins CML37 and CML42 antagonistically regulate plant stress responses by altering phytohormone signals. Plant Mol. Biol. [Epub online ahead of print], 10.1007/s11103-021-01184-2 PubMed DOI PMC
Hu B., Jin J., Guo A.-Y., Zhang H., Luo J., Gao G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31 1296–1297. 10.1093/bioinformatics/btu817 PubMed DOI PMC
Hubbard K., Hotta C., Gardner M., Braam J., Webb A. (2008). The Arabidopsis thaliana calmodulin-like protein CML24 is a regulator of rhythmic Ca2+ signalling and flowering time. Comp. Biochem. Physiol. Part A 150:S153.
Hung C.-Y., Aspesi P., Jr., Hunter M. R., Lomax A. W., Perera I. Y. (2014). Phosphoinositide-signaling is one component of a robust plant defense response. Front. Plant Sci. 5:267. 10.3389/fpls.2014.00267 PubMed DOI PMC
Inzé A., Vanderauwera S., Hoeberichts F. A., Vandorpe M., Van Gaever T. I. M., Van Breusegem F. (2012). A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant. Cell Environ. 35 308–320. 10.1111/j.1365-3040.2011.02323.x PubMed DOI
Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10 845–858. 10.1038/nprot.2015.053 PubMed DOI PMC
Keshan R., Singh I. K., Singh A. (2021). Genome wide investigation of MAPKKKs from Cicer arietinum and their involvement in plant defense against Helicoverpa armigera. Physiol. Mol. Plant Pathol. 115:101685. 10.1016/j.pmpp.2021.101685 DOI
Kessler A., Baldwin I. T. (2002). Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53 299–328. 10.1146/annurev.arplant.53.100301.135207 PubMed DOI
Kiep V., Vadassery J., Lattke J., Maaß J. P., Boland W., Peiter E., et al. (2015). Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol. 207 996–1004. 10.1111/nph.13493 PubMed DOI
Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., et al. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47 D1102–D1109. 10.1093/nar/gky1033 PubMed DOI PMC
Kleist T. J., Spencley A. L., Luan S. (2014). Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. Front. Plant Sci. 5:187. 10.3389/fpls.2014.0018 PubMed DOI PMC
Kliebenstein D. J. (2004). Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant. Cell Environ. 27 675–684. 10.1111/j.1365-3040.2004.01180.x DOI
Kong X., Lv W., Jiang S., Zhang D., Cai G., Pan J., et al. (2013). Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics 14:433. 10.1186/1471-2164-14-433 PubMed DOI PMC
Kumar A., Panwar R., Singh A., Singh I. K. (2020). ““Role of Calcium Signalling During Plant–Herbivore Interaction”, in Plant Stress Biology, eds Giri B., Sharma M. P. (Singapore: Springer; ), 491–510. 10.3390/cells10092219 DOI
Laskowski R. A., Rullmann J. A. C., MacArthur M. W., Kaptein R., Thornton J. M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8 477–486. 10.1007/BF00228148 PubMed DOI
Lata C., Mishra A. K., Muthamilarasan M., Bonthala V. S., Khan Y., Prasad M. (2014). Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS One 9:e113092. 10.1371/journal.pone.0113092 PubMed DOI PMC
Leba L., Cheval C., Ortiz-Martín I., Ranty B., Beuzón C. R., Galaud J., et al. (2012). CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. Plant J. 71 976–989. 10.1111/j.1365-313X.2012.05045.x PubMed DOI
Lecourieux D., Mazars C., Pauly N., Ranjeva R., Pugin A. (2002). Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14 2627–2641. 10.1105/tpc.005579 PubMed DOI PMC
Lescot M., Déhais P., Thijs G., Marchal K., Moreau Y., Van De Peer Y., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30 325–327. 10.1093/nar/30.1.325 PubMed DOI PMC
Letunic I., Bork P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 W293–W296. 10.1093/nar/gkab301 PubMed DOI PMC
Liao J., Deng J., Qin Z., Tang J., Shu M., Ding C., et al. (2017). Genome-wide identification and analyses of calmodulins and calmodulin-like proteins in Lotus japonicas. Front. Plant Sci. 8:482. 10.3389/fpls.2017.00482 PubMed DOI PMC
Lortzing T., Steppuhn A. (2016). Jasmonate signalling in plants shapes plant–insect interaction ecology. Curr. Opin. Insect Sci. 14 32–39. 10.1016/j.cois.2016.01.002 PubMed DOI
Madeira F., Park Y. M., Lee J., Buso N., Gur T., Madhusoodanan N., et al. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47 W636–W641. 10.1093/nar/gkz268 PubMed DOI PMC
Maffei M., Bossi S., Spiteller D., Mithofer A., Boland W. (2004). Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol. 134 1752–1762. 10.1104/pp.103.034165 PubMed DOI PMC
Magnan F., Ranty B., Charpenteau M., Sotta B., Galaud J., Aldon D. (2008). Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J. 56 575–589. 10.1111/j.1365-313X.2008.03622.x PubMed DOI
Mashiach E., Schneidman-Duhovny D., Andrusier N., Nussinov R., Wolfson H. J. (2008). FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 36 W229–W232. 10.1093/nar/gkn186 PubMed DOI PMC
McCormack E., Braam J. (2003). Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol. 159 585–598. 10.1046/j.1469-8137.2003.00845.x PubMed DOI
McCormack E., Tsai Y.-C., Braam J. (2005). Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci. 10 383–389. 10.1016/j.tplants.2005.07.001 PubMed DOI
Meena M. K., Prajapati R., Krishna D., Divakaran K., Pandey Y., Reichelt M., et al. (2019). The Ca2+ channel CNGC19 regulates Arabidopsis defense against Spodoptera herbivory. Plant Cell 31 1539–1562. 10.1105/tpc.19.00057 PubMed DOI PMC
Mithöfer A., Boland W. (2008). Recognition of herbivory-associated molecular patterns. Plant Physiol. 146 825–831. 10.1104/pp.107.113118 PubMed DOI PMC
Munir S., Khan M. R. G., Song J., Munir S., Zhang Y., Ye Z., et al. (2016). Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum). Plant Physiol. Biochem. 102 167–179. 10.1016/j.plaphy.2016.02.020 PubMed DOI
Naresh R. K., Dhaliwal S. S., Chaudhary M., Chandra M. S., Kumar A. (2019). Legumes: An Option to enhance Productivity and Soil Health Sustainability. Singapore: Springer, 93.
O’Boyle N. M., Banck M., James C. A., Morley C., Vandermeersch T., Hutchison G. R. (2011). Open Babel: an open chemical toolbox. J. Cheminform. 3:33. 10.1186/1758-2946-3-33 PubMed DOI PMC
Park H. C., Kim M. L., Kang Y. H., Jeon J. M., Yoo J. H., Kim M. C., et al. (2004). Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135 2150–2161. 10.1104/pp.104.041442 PubMed DOI PMC
Park H. C., Park C. Y., Koo S. C., Cheong M. S., Kim K. E., Kim M. C., et al. (2010). AtCML8, a calmodulin-like protein, differentially activating CaM-dependent enzymes in Arabidopsis thaliana. Plant Cell Rep. 29 1297–1304. 10.1007/s00299-010-0916-7 PubMed DOI
Perochon A., Aldon D., Galaud J.-P., Ranty B. (2011). Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93 2048–2053. 10.1016/j.biochi.2011.07.012 PubMed DOI
Poovaiah B. W., Du L., Wang H., Yang T. (2013). Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Plant Physiol. 163 531–542. 10.1104/pp.113.220780 PubMed DOI PMC
Ranty B., Aldon D., Cotelle V., Galaud J.-P., Thuleau P., Mazars C. (2016). Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front. Plant Sci. 7:327. 10.3389/fpls.2016.00327 PubMed DOI PMC
Reddy A. S. N., Ben-Hur A., Day I. S. (2011). Experimental and computational approaches for the study of calmodulin interactions. Phytochemistry 72 1007–1019. 10.1016/j.phytochem.2010.12.022 PubMed DOI
Reymond P., Bodenhausen N., Van Poecke R. M. P., Krishnamurthy V., Dicke M., Farmer E. E. (2004). A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16 3132–3147. 10.1105/tpc.104.026120 PubMed DOI PMC
Reymond P., Weber H., Damond M., Farmer E. E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12 707–719. 10.1105/tpc.12.5.707 PubMed DOI PMC
Schneidman-Duhovny D., Inbar Y., Nussinov R., Wolfson H. J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33 W363–W367. 10.1093/nar/gki481 PubMed DOI PMC
Schuler M. A. (2011). P450s in plant–insect interactions. Biochim. Biophys. Acta 1814 36–45. 10.1016/j.bbapap.2010.09.012 PubMed DOI
Singh A., Kumar A., Hartley S., Singh I. K. (2020a). Silicon: its ameliorative effect on plant defense against herbivory. J. Exp. Bot. 71 6730–6743. 10.1093/jxb/eraa300 PubMed DOI
Singh S., Singh A., Kumar S., Mittal P., Singh I. K. (2020b). Protease inhibitors: recent advancement in its usage as a potential biocontrol agent for insect pest management. Insect Sci. 27 186–201. 10.1111/1744-7917.12641 PubMed DOI
Singh S., Tyagi C., Rather I. A., Sabir J. S. M., Hassan M., Singh A., et al. (2020c). Molecular modeling of chemosensory protein 3 from Spodoptera litura and its binding property with plant defensive metabolites. Int. J. Mol. Sci. 21:4073. 10.3390/ijms21114073 PubMed DOI PMC
Singh A., Panwar R., Mittal P., Hassan M. I., Singh I. K. (2021a). Plant cytochrome P450s: role in stress tolerance and potential applications for human welfare. Int. J. Biol. Macromol. 184 874–886. 10.1016/j.ijbiomac.2021.06.125 PubMed DOI
Singh A., Singh S., Singh R., Kumar S., Singh S. K., Singh I. K. (2021b). Dynamics of Zea mays transcriptome in response to a polyphagous herbivore, Spodoptera litura. Funct. Integr. Genom. 21 571–592. 10.1007/s10142-021-00796-7 PubMed DOI
Singh S., Singh A., Singh I. K. (2021c). “Transcriptomics Studies Revealing Enigma of Insect-Plant Interaction,” in Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology, eds Singh I. K., Singh A. (Singapore: Springer; ), 31–55. 10.1007/978-981-15-2467-7_2 DOI
Singh A., Singh I. K., Verma P. K. (2008). Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. J. Exp. Bot. 59 2379–2392. 10.1093/jxb/ern111 PubMed DOI
Singh A., Singh S., Singh I. K. (2016). Recent insights into the molecular mechanism of jasmonate signaling during insect-plant interaction. Australas. Plant Pathol. 45 123–133. 10.1007/s13313-015-0392-1 DOI
Singh A., Tyagi C., Nath O., Singh I. K. (2018). Helicoverpa-inducible Thioredoxin h from Cicer arietinum: structural modeling and potential targets. Int. J. Biol. Macromol. 109 231–243. 10.1016/j.ijbiomac.2017.12.079 PubMed DOI
Singh I. K., Singh A. (2021). Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. New York NY: Springer.
Soyastats (2010). A Reference Guide to Important Soybean Facts and Figure. American Soybean Association.
Stotz H. U., Pittendrigh B. R., Kroymann J., Weniger K., Fritsche J., Bauke A., et al. (2000). Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol. 124 1007–1018. 10.1104/pp.124.3.1007 PubMed DOI PMC
Szklarczyk D., Gable A. L., Nastou K. C., Lyon D., Kirsch R., Pyysalo S., et al. (2021). The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49 D605–D612. PubMed PMC
Thor K., Peiter E. (2014). Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. New Phytol. 204 873–881. 10.1111/nph.13064 PubMed DOI
Vadassery J., Reichelt M., Hause B., Gershenzon J., Boland W., Mithöfer A. (2012a). CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol. 159 1159–1175. 10.1104/pp.112.198150 PubMed DOI PMC
Vadassery J., Scholz S. S., Mithöfer A. (2012b). Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion. Plant Signal. Behav. 7 1277–1280. 10.4161/psb.21664 PubMed DOI PMC
Vandelle E., Vannozzi A., Wong D., Danzi D., Digby A.-M., Dal Santo S., et al. (2018). Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses. Plant Physiol. Biochem. 129 221–237. 10.1016/j.plaphy.2018.06.003 PubMed DOI
Vanderbeld B., Snedden W. A. (2007). Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37 CML38 and CML39. Plant Mol. Biol. 64 683–697. 10.1007/s11103-007-9189-0 PubMed DOI
Vasudev A., Sohal S. (2016). Partially purified Glycine max proteinase inhibitors: potential bioactive compounds against tobacco cutworm, Spodoptera litura (Fabricius, 1775)(Lepidoptera: Noctuidae). Turkish J. Zool. 40 379–387. 10.3906/zoo-1508-20 PubMed DOI
Vincent T. R., Avramova M., Canham J., Higgins P., Bilkey N., Mugford S. T., et al. (2017). Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. Plant Cell 29 1460–1479. 10.1105/tpc.17.00136 PubMed DOI PMC
Waese J., Fan J., Pasha A., Yu H., Fucile G., Shi R., et al. (2017). ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 29 1806–1821. 10.1105/tpc.17.00073 PubMed DOI PMC
Weinl S., Kudla J. (2009). The CBL–CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol. 184 517–528. 10.1111/j.1469-8137.2009.02938.x PubMed DOI
Zeng H., Zhang Y., Zhang X., Pi E., Zhu Y. (2017). Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Front. Plant Sci. 8:877. 10.3389/fpls.2017.00877 PubMed DOI PMC
Zhang B. Q., Yang X. B. (2000). Pathogenicity of Pythium populations from corn-soybean rotation fields. Plant Dis. 84 94–99. 10.1094/PDIS.2000.84.1.94 PubMed DOI
Calcium signalling in weeds under herbicide stress: An outlook
The captivating role of calcium in plant-microbe interaction