Genome-Wide Transcriptomic and Metabolomic Analyses Unveiling the Defence Mechanisms of Populus tremula against Sucking and Chewing Insect Herbivores

. 2024 Jun 01 ; 25 (11) : . [epub] 20240601

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38892311

Grantová podpora
EVA4.0", No. CZ.02.1.01/0.0/0.0/16_019/0000803 financed by OP RDE OP RDE

Plants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific defence strategies against insect herbivory. However, current knowledge on the molecular underpinnings of fine-tuned tree defence responses against different herbivore insects is still restricted. In the current study, using a multi-omics approach, we unveiled the defence response of Populus tremula against aphids (Chaitophorus populialbae) and spongy moths (Lymantria dispar) herbivory. Comparative differential gene expression (DGE) analyses revealed that around 272 and 1203 transcripts were differentially regulated in P. tremula after moth and aphid herbivory compared to uninfested controls. Interestingly, 5716 transcripts were differentially regulated in P. tremula between aphids and moth infestation. Further investigation showed that defence-related stress hormones and their lipid precursors, transcription factors, and signalling molecules were over-expressed, whereas the growth-related counterparts were suppressed in P. tremula after aphid and moth herbivory. Metabolomics analysis documented that around 37% of all significantly abundant metabolites were associated with biochemical pathways related to tree growth and defence. However, the metabolic profiles of aphid and moth-fed trees were quite distinct, indicating species-specific response optimization. After identifying the suitable reference genes in P. tremula, the omics data were further validated using RT-qPCR. Nevertheless, our findings documented species-specific fine-tuning of the defence response of P. tremula, showing conservation on resource allocation for defence overgrowth under aphid and moth herbivory. Such findings can be exploited to enhance our current understanding of molecular orchestration of tree responses against herbivory and aid in developing insect pest resistance P. tremula varieties.

Zobrazit více v PubMed

Gatehouse J.A. Plant resistance towards insect herbivores: A dynamic interaction. New Phytol. 2002;156:145–169. doi: 10.1046/j.1469-8137.2002.00519.x. PubMed DOI

Zunjarrao S.S., Tellis M.B., Joshi S.N., Joshi R.S. Co-Evolution of Secondary Metabolites. Springer; Berlin/Heidelberg, Germany: 2020. Plant-insect interaction: The saga of molecular coevolution; pp. 19–45. DOI

Howe G.A., Jander G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 2008;59:41–66. doi: 10.1146/annurev.arplant.59.032607.092825. PubMed DOI

Huang X., Kou J., Jing W., Han X., Liu D., Ghasemzadeh S., Sun P., Shi W., Zhang Y. Transcriptomic and metabolomic reprogramming in cotton after Apolygus lucorum feeding implicated in enhancing recruitment of the parasitoid Peristenus spretus. J. Pest Sci. 2022;95:249–262. doi: 10.1007/s10340-021-01369-0. DOI

Kumar S., Kanakachari M., Gurusamy D., Kumar K., Narayanasamy P., Kethireddy Venkata P., Solanke A., Gamanagatti S., Hiremath V., Katageri I.S., et al. Genome-wide transcriptomic and proteomic analyses of bollworm-infested developing cotton bolls revealed the genes and pathways involved in the insect pest defence mechanism. Plant Biotechnol. J. 2016;14:1438–1455. doi: 10.1111/pbi.12508. PubMed DOI PMC

Roy A., Chakraborty A. Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology: Chemical Ecology. Springer; Berlin/Heidelberg, Germany: 2021. Natural Insecticidal Proteins and Their Potential in Future IPM; pp. 265–303.

Singh A., Mehta S., Yadav S., Nagar G., Ghosh R., Roy A., Chakraborty A., Singh I.K. How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. Int. J. Mol. Sci. 2022;23:1995. doi: 10.3390/ijms23041995. PubMed DOI PMC

Sumanti G., Roy A. Molecular Aspects of Plant-Pathogen Interaction. Springer; Berlin/Heidelberg, Germany: 2018. Plant Cell Wall: A Simple Physical Barrier or a Complex Defense Modulator–Exploring Its Dynamic Role at Plant-Fungus Interface; pp. 333–351.

War A.R., Paulraj M.G., Ahmad T., Buhroo A.A., Hussain B., Ignacimuthu S., Sharma H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012;7:1306–1320. doi: 10.4161/psb.21663. PubMed DOI PMC

Zhang Z., Chen Q., Tan Y., Shuang S., Dai R., Jiang X., Temuer B. Combined transcriptome and metabolome analysis of alfalfa response to thrips infection. Genes. 2021;12:1967. doi: 10.3390/genes12121967. PubMed DOI PMC

Züst T., Agrawal A.A. Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis. Annu. Rev. Plant Biol. 2017;68:513–534. doi: 10.1146/annurev-arplant-042916-040856. PubMed DOI

Michel W., Seidling A.K. Prescher Forest Condition in Europe: 2018 Technical Report of ICP Forests 2018, Report under the UNECE Convention on Long-Range Transboundary Air Pollution (Air Convention) (No. BFW-Dokumentation 25/2018) [(accessed on 25 January 2018)]. Available online: https://www.icp-forests.org/pdf/TR2018.pdf.

Stange E.E., Ayres M.P. Encyclopedia of Life Sciences (ELS) John Wiley & Sons, Ltd.; Chichester, UK: 2010. Climate Change Impacts: Insects. DOI

Clark J.S., Iverson L., Woodall C.W., Allen C.D., Bell D.M., Bragg D.C., D’Amato A.W., Davis F.W., Hersh M.H., Ibanez I., et al. Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis. United States Department of Agriculture; Washington, DC, USA: 2016. [(accessed on 21 February 2016)]. Impacts of increasing drought on forest dynamics, structure, diversity, and management; pp. 59–96. Available online: https://www.fs.usda.gov/nrs/pubs/jrnl/2016/nrs_2016_clark_002_gtrwo93b.pdf.

Netherer S., Lehmanski L., Bachlehner A., Rosner S., Savi T., Schmidt A., Huang J., Paiva M.R., Mateus E., Hartmann H., et al. Drought increases Norway spruce susceptibility to the Eurasian spruce bark beetle and its associated fungi. New Phytol. 2024;242:1000–1017. doi: 10.1111/nph.19635. PubMed DOI

De Bobadilla M.F., Vitiello A., Erb E., Poelman E.H. Plant defense strategies against attack by multiple herbivores. Trends Plant Sci. 2022;27:528–535. doi: 10.1016/j.tplants.2021.12.010. PubMed DOI

Naidu S., Suman S., Roy A., Chakraborty A., Singh I.K., Singh A. Genomics of Plant–Pathogen Interaction and the Stress Response. CRC Press; Boca Raton, FL, USA: 2023. Impact of Genomics Tools and Techniques on Crop Improvement; pp. 123–156.

Rathnasamy S.A., Gothandapani S., Chellamuthu S., Chakraborty A., Gurusamy D., Roy A. Genomics of Plant–Pathogen Interaction and the Stress Response. CRC Press; Boca Raton, FL, USA: 2023. Omics technologies unravelling the plant–pathogen interaction and stress response; pp. 74–110.

Biselli C., Vietto L., Rosso L., Cattivelli L., Nervo G., Fricano A. Advanced breeding for biotic stress resistance in poplar. Plants. 2022;11:2032. doi: 10.3390/plants11152032. PubMed DOI PMC

Burdon J.J., Zhan J. Climate change and disease in plant communities. PLoS Biol. 2020;18:e3000949. doi: 10.1371/journal.pbio.3000949. PubMed DOI PMC

De Tillesse V., Nef L., Charles J., Hopkin A., Augustin S. Damaging Poplar Insects. FAO; Rome, Italy: 2007. [(accessed on 25 April 2024)]. Available online: https://foris.fao.org/static/pdf/ipc/damaging_poplar_insects_eBook.pdf.

Escobar-Bravo R., Klinkhamer P.G., Leiss K.A. Induction of jasmonic acid-associated defenses by thrips alters host suitability for conspecifics and correlates with increased trichome densities in tomato. Plant Cell Physiol. 2017;58:622–634. doi: 10.1093/pcp/pcx014. PubMed DOI PMC

Jacob T.K., Senthil Kumar C.M., Devasahayam S., D’Silva S., Kumar R.S., Biju C.N., Praveena R., Ankegowda S.K. Plant morphological traits associated with field resistance to cardamom thrips (Sciothrips cardamomi) in cardamom (Elettaria cardamomum) Ann. Appl. Biol. 2020;177:143–151. doi: 10.1111/aab.12592. DOI

Kaur B., Kuraparthy V., Bacheler J., Fang H., Bowman D.T. Screening germplasm and quantification of components contributing to thrips resistance in cotton. J. Econ. Entomol. 2018;111:2426–2434. doi: 10.1093/jee/toy201. PubMed DOI

Steenbergen M., Abd-el-Haliem A., Bleeker P., Dicke M., Escobar-Bravo R., Cheng G., Haring M.A., Kant M.R., Kappers I., Klinkhamer P.G., et al. Thrips advisor: Exploiting thrips-induced defences to combat pests on crops. J. Exp. Bot. 2018;69:1837–1848. doi: 10.1093/jxb/ery060. PubMed DOI

Bhar A., Chakraborty A., Roy A. Plant Responses to Biotic Stress: Old Memories Matter. Plants. 2021;11:84. doi: 10.3390/plants11010084. PubMed DOI PMC

Apuli R.P., Bernhardsson C., Schiffthaler B., Robinson K.M., Jansson S., Street N.R., Ingvarsson P.K. Inferring the genomic landscape of recombination rate variation in European aspen (Populus tremula) G3 Genes Genomes Genet. 2020;10:299–309. doi: 10.1534/g3.119.400504. PubMed DOI PMC

Legeai F., Shigenobu S., Gauthier J.P., Colbourne J., Rispe C., Collin O., Richards S., Wilson A.C., Murphy T., Tagu D. AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome. Insect Mol. Biol. 2010;19:5–12. doi: 10.1111/j.1365-2583.2009.00930.x. PubMed DOI PMC

Schiffthaler B., Delhomme N., Bernhardsson C., Jenkins J., Jansson S., Ingvarsson P., Schmutz J., Street N. An improved genome assembly of the European aspen Populus tremula. bioRxiv. 2019:805614. doi: 10.1101/805614. DOI

Sparks M.E., Hebert F.O., Johnston J.S., Hamelin R.C., Cusson M., Levesque R.C., Gundersen-Rindal D.E. Sequencing, assembly, and annotation of the whole-insect genome of Lymantria dispar dispar, the European gypsy moth. Genes Genomes Genet. 2021;11:jkab150. doi: 10.1093/g3journal/jkab150. PubMed DOI PMC

Wenger J.A., Cassone B.J., Legeai F., Johnston J.S., Bansal R., Yates A.D., Coates B.S., Pavinato V.A., Michel A. Whole genome sequence of the soybean aphid, Aphis glycines. Insect Biochem. Mol. Biol. 2020;123:102917. doi: 10.1016/j.ibmb.2017.01.005. PubMed DOI

Zhang J., Cong Q., Rex E.A., Hallwachs W., Janzen D.H., Grishin N.V., Gammon D.B. Gypsy moth genome provides insights into flight capability and virus-host interactions. Proc. Natl. Acad. Sci. USA. 2019;116:1669–1678. doi: 10.1073/pnas.1818283116. PubMed DOI PMC

Sharma H.C., Ortiz R. Host plant resistance to insects: An eco-friendly approach for pest management and environment conservation. [(accessed on 25 April 2024)];J. Environ. Biol. 2002 23:111–135. Available online: https://hdl.handle.net/10568/107586. PubMed

Pieterse C.M., Van der Does D., Zamioudis C., Leon-Reyes A., Van Wees S.C. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012;28:489–521. doi: 10.1146/annurev-cellbio-092910-154055. PubMed DOI

Sarde S.J., Bouwmeester K., Venegas-Molina J., David A., Boland W., Dicke M. Involvement of sweet pepper CaLOX2 in jasmonate-dependent induced defence against Western flower thrips. J. Integr. Plant Biol. 2019;61:1085–1098. doi: 10.1111/jipb.12742. PubMed DOI PMC

Thaler J.S., Humphrey P.T., Whiteman N.K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012;17:260–270. doi: 10.1016/j.tplants.2012.02.010. PubMed DOI

Patrick J.M., Gary A. Thompson, Molecular Responses to Aphid Feeding in Arabidopsis in Relation to Plant Defense Pathways. Plant Physiol. 2001;125:1074–1085. doi: 10.1104/pp.125.2.1074. PubMed DOI PMC

Moran P.J., Cheng Y., Cassell J.L., Thompson G.A. Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Arch. Insect Biochem. Physiol. 2002;51:182–203. doi: 10.1002/arch.10064. PubMed DOI

De Vos M., Van Oosten V.R., Van Poecke R.M.P., Van Pelt J.A., Pozo M.J., Mueller M.J., Buchala A.J., Metraux J.P., Van Loon L.C., Dicke M., et al. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant-Microbe Interact. 2005;18:923–937. doi: 10.1094/MPMI-18-0923. PubMed DOI

Zarate S.I., Kempema L.A., Walling L.L. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol. 2007;143:866–875. doi: 10.1104/pp.106.090035. PubMed DOI PMC

Puthoff D.P., Holzer F.M., Perring T.M., Walling L.L. Tomato Pathogenesis-related Protein Genes are Expressed in Response to Trialeurodes vaporariorum and Bemisia tabaci Biotype B Feeding. J. Chem. Ecol. 2010;36:1271–1285. doi: 10.1007/s10886-010-9868-1. PubMed DOI PMC

Pegadaraju V., Knepper C., Reese J., Shah J. Premature Leaf Senescence Modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 Gene Is Associated with Defense against the Phloem-Feeding Green Peach Aphid. Plant Physiol. 2005;139:1927–1934. doi: 10.1104/pp.105.070433. PubMed DOI PMC

Thompson G.A., Goggin F.L. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. Exp. Bot. 2006;57:755–766. doi: 10.1093/jxb/erj135. PubMed DOI

Li Y., Feng Z., Swihart R., Bryant J., Huntly N. Modeling the Impact of Plant Toxicity on Plant–Herbivore Dynamics. J. Dyn. Differ. Equ. 2006;18:1021–1042. doi: 10.1007/s10884-006-9029-y. DOI

Zhou G., Qi J., Ren N., Cheng J., Erb M., Mao B., Lou Y. Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J. 2009;60:638–648. doi: 10.1111/j.1365-313X.2009.03988.x. PubMed DOI

Pieterse C.M.J., Dicke M. Plant interactions with microbes and insects: From molecular mechanisms to ecology. Trends Plant Sci. 2007;12:564–569. doi: 10.1016/j.tplants.2007.09.004. PubMed DOI

Walling L.L. The myriad plant responses to herbivores. J. Plant Growth Regul. 2000;19:195–216. doi: 10.1007/s003440000026. PubMed DOI

Walling L.L. Avoiding effective defenses: Strategies employed by phloem-feeding insects. Plant Physiol. 2008;146:859–866. doi: 10.1104/pp.107.113142. PubMed DOI PMC

Howe G.A., Lightner J., Browse J., Ryan C.A. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell. 1996;8:2067–2077. doi: 10.1105/tpc.8.11.2067. PubMed DOI PMC

Constabel C.P., Yip L., Patton J.J., Christopher M.E. Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol. 2000;124:285–296. doi: 10.1104/pp.124.1.285. PubMed DOI PMC

Green T.R., Ryan C.A. Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects. Science. 1972;175:776–777. doi: 10.1126/science.175.4023.776. PubMed DOI

Glawe G.A., Zavala A., Kessler A., Van Dam N.M., Baldwin I.T. Ecological costs and benefits correlated with trypsin protease inhibitor production in Nicotiana attenuata. Ecology. 2003;84:79–90. doi: 10.1890/0012-9658(2003)084[0079:ECABCW]2.0.CO;2. DOI

Thaler J.S., Farag M.A., Pare P.W., Dicke M. Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecol. Lett. 2002;5:764–774. doi: 10.1046/j.1461-0248.2002.00388.x. DOI

Avdiushko S.A., Brown G.C., Dahlman D.L., Hildebrand D.F. Methyl jasmonate exposure induces insect resistance in cabbage and tobacco. Environ. Entomol. 1997;26:642–654. doi: 10.1093/ee/26.3.642. DOI

Stout M.J., Workman K.V., Bostock R.M., Duffey S.S. Stimulation and attenuation of induced resistance by elicitors and inhibitors of chemical induction in tomato (Lycopersicon esculentum) foliage. Entomol. Exp. Et Appl. 1998;86:267–279. doi: 10.1046/j.1570-7458.1998.00289.x. DOI

Cipollini D.F., Redman A.M. Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. J. Chem. Ecol. 1999;25:271–281. doi: 10.1023/A:1020842712349. DOI

Omer A.D., Granett J., Karban R., Villa E.M. Chemically induced resistance against multiple pests in cotton. Int. J. Pest Manag. 2001;47:49–54. doi: 10.1080/09670870150215595. DOI

Boughton A.J., Hoover K., Felton G.W. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J. Chem. Ecol. 2005;31:2211–2216. doi: 10.1007/s10886-005-6228-7. PubMed DOI

De Vos M., Van Zaanen W., Koorneef A., Korzelius J.P., Dicke M., Van Loon L.C., Pieterse C.M.J. Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol. 2006;142:352–363. doi: 10.1104/pp.106.083907. PubMed DOI PMC

Diezel C., von Dahl C., Gaquerel E., Baldwin I.T. Different lepidopteran elicitors account for crosstalk in herbivory-induced phytohormone signaling. Plant Physiol. 2009;150:1576–1586. doi: 10.1104/pp.109.139550. PubMed DOI PMC

Wu J., Baldwin I.T. Herbivory-induced signalling in plants: Perception and action. Plant Cell Environ. 2009;32:1161–1174. doi: 10.1111/j.1365-3040.2009.01943.x. PubMed DOI

Ellis C., Karafyllidis I., Turner J.G. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol. Plant-Microbe Interact. 2002;15:1025–1030. doi: 10.1094/MPMI.2002.15.10.1025. PubMed DOI

Wang L., Allmann S., Wu J.S., Baldwin I.T. Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiol. 2008;146:904–915. doi: 10.1104/pp.107.109264. PubMed DOI PMC

Spoel S.H., Koornneef A., Claessens S.M.C., Korzelius J.P., Van Pelt J.A., Mueller M.J., Buchala A.J., Me’traux J.P., Brown R., Kazan K., et al. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell. 2003;15:760–770. doi: 10.1105/tpc.009159. PubMed DOI PMC

Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005;43:205–227. doi: 10.1146/annurev.phyto.43.040204.135923. PubMed DOI

Mur L.A.J., Kenton P., Atzorn R., Miersch O., Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 2006;140:249–262. doi: 10.1104/pp.105.072348. PubMed DOI PMC

Kawazu K., Mochizuki A., Sato Y., Sugeno W., Murata M., Seo S., Mitsuhara I. Different expression profiles of jasmonic acid and salicylic acid inducible genes in the tomato plant against herbivores with various feeding modes. Arthropod-Plant Interact. 2012;6:221–230. doi: 10.1007/s11829-011-9174-z. DOI

Tetreault H.M., Grover S., Scully E.D., Gries T., Palmer N.A., Sarath G., Louis J., Sattler S.E. Global responses of resistant and susceptible sorghum (Sorghum bicolor) to sugarcane aphid (Melanaphis sacchari) Front. Plant Sci. 2019;10:426693. doi: 10.3389/fpls.2019.00145. PubMed DOI PMC

Shalileh S., Ogada P.A., Moualeu D.P., Poehling H.M. Manipulation of Frankliniella occidentalis (Thysanoptera: Thripidae) by Tomato Spotted Wilt Virus (Tospovirus) via the host plant nutrients to enhance its transmission and spread. Environ. Entomol. 2016;45:1235–1242. doi: 10.1093/ee/nvw102. PubMed DOI PMC

Hettenhausen C., Schuman M.C., Wu J. MAPK signaling: A key element in plant defense response to insects. Insect Sci. 2015;22:157–164. doi: 10.1111/1744-7917.12128. PubMed DOI PMC

Manjeet K., Yadav S. Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology: Chemical Ecology. Springer; Berlin/Heidelberg, Germany: 2021. Role of Mapks During Plant-Insect Interaction; pp. 93–106. DOI

Yadav M., Pandey J., Chakraborty A., Hassan M.I., Kundu J.K., Roy A., Singh I.K., Singh A. A Comprehensive Analysis of Calmodulin-Like Proteins of Glycine max Indicates Their Role in Calcium Signaling and Plant Defense Against Insect Attack. Front. Plant Sci. 2022;13:817950. doi: 10.3389/fpls.2022.817950. PubMed DOI PMC

Abidallha E.H., Li Y., Li H., Chen Y., Tambel L.I., Hu D., Chen Y., Zhang X., Chen D. Amino acid composition and level affect Bt protein concentration in Bt cotton. Plant Growth Regul. 2017;82:439–446. doi: 10.1007/s10725-017-0270-7. DOI

Zhou S., Lou Y.R., Tzin V., Jander G. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol. 2015;169:1488–1498. doi: 10.1104/pp.15.01405. PubMed DOI PMC

Abebe W. Review on plant defense mechanisms against insect pests. [(accessed on 25 April 2024)];Int. J. Nov. Res. Interdiscip. Stud. 2021 8:15–39. Available online: https://www.noveltyjournals.com/upload/paper/REVIEW%20ON%20PLANT%20DEFENSE%20MECHANISMS.pdf.

Morin S., Atkinson P.W., Walling L.L. Whitefly–Plant Interactions: An Integrated Molecular Perspective. Annu. Rev. Entomol. 2023;69:503–525. doi: 10.1146/annurev-ento-120120-093940. PubMed DOI

Sanchez-Mahecha O., Klink S., Heinen R., Rothballer M., Zytynska S. Impaired microbial N-acyl homoserine lactone signalling increases plant resistance to aphids across variable abiotic and biotic environments. Plant Cell Environ. 2022;45:3052–3069. doi: 10.1111/pce.14399. PubMed DOI

Appel H.M., Fescemyer H., Ehlting J., Weston D., Rehrig E., Joshi T., Xu D., Bohlmann J., Schultz J. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores. Front. Plant Sci. 2014;5:110818. doi: 10.3389/fpls.2014.00565. PubMed DOI PMC

Steinbrenner A.D., Gómez S., Osorio S., Fernie A.R., Orians C.M. Herbivore-induced changes in tomato (Solanum lycopersicum) primary metabolism: A whole plant perspective. J. Chem. Ecol. 2011;37:1294–1303. doi: 10.1007/s10886-011-0042-1. PubMed DOI

Sandström J., Telang A., Moran N.A. Nutritional enhancement of host plants by aphids—A comparison of three aphid species on grasses. J. Insect Physiol. 2000;46:33–40. doi: 10.1016/S0022-1910(99)00098-0. PubMed DOI

Koyama Y., Yao I., Akimoto S.I. Aphid galls accumulate high concentrations of amino acids: A support for the nutrition hypothesis for gall formation. Entomol. Exp. Et Appl. 2004;113:35–44. doi: 10.1111/j.0013-8703.2004.00207.x. DOI

Marti G., Erb M., Boccard J., Glauser G., Doyen G.R., Villard N., Robert C.A.M., Turlings T.C., Rudaz S., Wolfender J.L. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ. 2013;36:621–639. doi: 10.1111/pce.12002. PubMed DOI

Karmakar A., Malik U., Barik A. Effects of leaf epicuticular wax compounds from Solena amplexicaulis (Lam.) Gandhi on olfactory responses of a generalist insect herbivore. Allelopath. J. 2016;37:253–272.

Reina-Pinto J.J., Yephremov A. Surface lipids and plant defenses. Plant Physiol. Biochem. 2009;47:540–549. doi: 10.1016/j.plaphy.2009.01.004. PubMed DOI

Zogli P., Pingault L., Grover S., Louis J. Ento(o)mics: The intersection of ‘omic’approaches to decipher plant defense against sap-sucking insect pests. Curr. Opin. Plant Biol. 2020;56:153–161. doi: 10.1016/j.pbi.2020.06.002. PubMed DOI

Mehta S., Chakraborty A., Roy A., Singh I.K., Singh A. Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant-Pathogen Interaction. Plants. 2021;10:1098. doi: 10.3390/plants10061098. PubMed DOI PMC

Botha A.M., Lacock L., van Niekerk C., Matsioloko M.T., du Preez F.B., Loots S., Venter E., Kunert K.J., Cullis C.A. Is photosynthetic transcriptional regulation in Triticum aestivum L. cv.‘TugelaDN’a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)? Plant Cell Rep. 2006;25:41–54. doi: 10.1007/s00299-005-0001-9. PubMed DOI

Gutsche A., Heng-Moss T., Sarath G., Twigg P.A.U.L., Xia Y., Lu G., Mornhinweg D. Gene expression profiling of tolerant barley in response to Diuraphis noxia (Hemiptera: Aphididae) feeding. Bull. Entomol. Res. 2009;99:163–173. doi: 10.1017/S0007485308006184. PubMed DOI

Coppola V., Coppola M., Rocco M., Digilio M.C., D’Ambrosio C., Renzone G., Martinelli R., Scaloni A., Pennacchio F., Rao R., et al. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genom. 2013;14:515. doi: 10.1186/1471-2164-14-515. PubMed DOI PMC

Lawrence S.D., Novak N.G., Ju C.J.T., Cooke J.E. Potato, Solanum tuberosum, defense against Colorado potato beetle, Leptinotarsa decemlineata (Say): Microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves. J. Chem. Ecol. 2008;34:1013–1025. doi: 10.1007/s10886-008-9507-2. PubMed DOI

Arimura G.I., Ozawa R., Shimoda T., Nishioka T., Boland W., Takabayashi J. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature. 2000;406:512–515. doi: 10.1038/35020072. PubMed DOI

Velikova V., Salerno G., Frati F., Peri E., Conti E., Colazza S., Loreto F. Influence of feeding and oviposition by phytophagous pentatomids on photosynthesis of herbaceous plants. J. Chem. Ecol. 2010;36:629–641. doi: 10.1007/s10886-010-9801-7. PubMed DOI

Castrillón-Arbeláez P.A., Martínez-Gallardo N., Arnaut H.A., Tiessen A., Délano-Frier J.P. Metabolic and enzymatic changes associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus) in response to partial defoliation by mechanical injury or insect herbivory. BMC Plant Biol. 2012;12:163. doi: 10.1186/1471-2229-12-163. PubMed DOI PMC

Priyanka S.L., Navya R.N., Chandrasekaran M., Hasan W. Role of Secondary Plant Metabolites against Insects. Biotech Books; Mumbai, India: 2022. pp. 325–340.

Grayson D.H. Monoterpenoids. Nat. Prod. Rep. 1998;5:497–521. doi: 10.1039/a815439y. DOI

López-Goldar X., Villari C., Bonello P., Borg-Karlson A.K., Grivet D., Zas R., Sampedro L. Inducibility of plant secondary metabolites in the stem predicts genetic variation in resistance against a key insect herbivore in maritime pine. Front. Plant Sci. 2018;9:1651. doi: 10.3389/fpls.2018.01651. PubMed DOI PMC

Ren X., Wu S., Xing Z., Gao Y., Cai W., Lei Z. Abundances of thrips on plants in vegetative and flowering stages are related to plant volatiles. J. Appl. Entomol. 2020;144:732–742. doi: 10.1111/jen.12794. DOI

Soltis N.E., Kliebenstein D.J. Natural variation of plant metabolism: Genetic mechanisms, interpretive caveats, and evolutionary and mechanistic insights. Plant Physiol. 2015;169:1456–1468. doi: 10.1104/pp.15.01108. PubMed DOI PMC

Wink M. Plant secondary metabolites modulate insect behavior-steps toward addiction? Front. Physiol. 2018;9:364. doi: 10.3389/fphys.2018.00364. PubMed DOI PMC

Falcone Ferreyra M.L., Rius S.P., Casati P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012;3:222. doi: 10.3389/fpls.2012.00222. PubMed DOI PMC

Li L., Li T., Jiang Y., Yang Y., Zhang L., Jiang Z., Wei C., Wan X., Yang H. Alteration of local and systemic amino acids metabolism for the inducible defense in tea plant (Camellia sinensis) in response to leaf herbivory by Ectropis oblique. Arch. Biochem. Biophys. 2020;683:108301. doi: 10.1016/j.abb.2020.108301. PubMed DOI

Jin S., Ren Q., Lian L., Cai X., Bian L., Luo Z., Li Z., Ye N., Wei R., He W., et al. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. Planta. 2020;252:10. doi: 10.1007/s00425-020-03407-0. PubMed DOI

Jing T., Du W., Qian X., Wang K., Luo L., Zhang X., Deng Y., Li B., Gao T., Zhang M., et al. UGT89AC1-mediated quercetin glucosylation is induced upon herbivore damage and enhances Camellia sinensis resistance to insect feeding. Plant Cell Environ. 2024;47:682–697. doi: 10.1111/pce.14751. PubMed DOI

Zhao X., Chen S., Wang S., Shan W., Wang X., Lin Y., Su F., Yang Z., Yu X. Defensive responses of tea plants (Camellia sinensis) against tea green leafhopper attack: A multi-omics study. Front. Plant Sci. 2020;10:1705. doi: 10.3389/fpls.2019.01705. PubMed DOI PMC

Sun Y., Xia X.L., Jiang J.F., Chen S.M., Chen F.D., Lv G.S. Salicylic acid-induced changes in physiological parameters and genes of the flavonoid biosynthesis pathway in Artemisia vulgaris and Dendranthema nankingense during aphid feeding. Genet. Mol. Res. 2016;15:gmr.15017546. doi: 10.4238/gmr.15017546. PubMed DOI

War A.R., Buhroo A.A., Hussain B., Ahmad T., Nair R.M., Sharma H.C. Co-Evolution of Secondary Metabolites. Springer; Berlin/Heidelberg, Germany: 2020. Plant defense and insect adaptation with reference to secondary metabolites; pp. 795–822. DOI

Wari D., Aboshi T., Shinya T., Galis I. Integrated view of plant metabolic defense with particular focus on chewing herbivores. J. Integr. Plant Biol. 2022;64:449–475. doi: 10.1111/jipb.13204. PubMed DOI

Chen H., Su H., Zhang S., Jing T., Liu Z., Yang Y. Transcriptomic and Metabolomic Responses in Cotton Plant to Apolygus lucorum Infestation. Insects. 2022;13:391. doi: 10.3390/insects13040391. PubMed DOI PMC

Dixit G., Srivastava A., Rai K.M., Dubey R.S., Srivastava R., Verma P.C. Distinct defensive activity of phenolics and phenylpropanoid pathway genes in different cotton varieties toward chewing pests. Plant Signal. Behav. 2020;15:1747689. doi: 10.1080/15592324.2020.1747689. PubMed DOI PMC

Boruah J. Effect of 0.1% HgCl2 on Surface Sterilization of Som (Persea bombycina King) Explant during Tissue Culture—A Major Host Plant of Muga Silkworm. Int. J. Curr. Microbiol. App. Sci. 2020;9:954–958. doi: 10.20546/ijcmas.2020.907.111. DOI

Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Hajek A. Larval behavior in Lymantria dispar increases risk of fungal infection. Oecologia. 2001;126:285–291. doi: 10.1007/s004420000509. PubMed DOI

Mewis I., Appel H.M., Hom A., Raina R., Schultz J.C. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol. 2005;138:1149–1162. doi: 10.1104/pp.104.053389. PubMed DOI PMC

Mewis I., Tokuhisa J.G., Schultz J.C., Appel H.M., Ulrichs C., Gershenzon J. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry. 2006;67:2450–2462. doi: 10.1016/j.phytochem.2006.09.004. PubMed DOI

Sellamuthu G., Naseer A., Hradecký J., Chakraborty A., Synek J., Modlinger R., Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae) Insect Biochem. Mol. Biol. 2024;165:104061. doi: 10.1016/j.ibmb.2023.104061. PubMed DOI

Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Eisen M.B., Spellman P.T., Brown P.O., Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA. 1998;95:14863–14868. doi: 10.1073/pnas.95.25.14863. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Sen M.K., Hamouzová K., Košnarová P., Roy A., Soukup J. Identification of the most suitable reference gene for gene expression studies with development and abiotic stress response in Bromus sterilis. Sci. Rep. 2021;11:13393. doi: 10.1038/s41598-021-92780-1. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...