Non-equivalence in old- and new-flagellum daughter cells of a proliferative division in Trypanosoma brucei
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
103261/Z/13/Z
Wellcome Trust - United Kingdom
104627/Z/14/Z
Wellcome Trust - United Kingdom
211075/Z/18/Z
Wellcome Trust - United Kingdom
BB/M000532/1
BBSRC - International
PubMed
31286583
PubMed Central
PMC6771564
DOI
10.1111/mmi.14345
Knihovny.cz E-zdroje
- MeSH
- buněčné dělení MeSH
- cytokineze MeSH
- flagella genetika metabolismus MeSH
- proliferace buněk MeSH
- protozoální proteiny genetika metabolismus MeSH
- stadia vývoje MeSH
- Trypanosoma brucei brucei cytologie genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny MeSH
Differentiation of Trypanosoma brucei, a flagellated protozoan parasite, between life cycle stages typically occurs through an asymmetric cell division process, producing two morphologically distinct daughter cells. Conversely, proliferative cell divisions produce two daughter cells, which look similar but are not identical. To examine in detail differences between the daughter cells of a proliferative division of procyclic T. brucei we used the recently identified constituents of the flagella connector. These segregate asymmetrically during cytokinesis allowing the new-flagellum and the old-flagellum daughters to be distinguished. We discovered that there are distinct morphological differences between the two daughters, with the new-flagellum daughter in particular re-modelling rapidly and extensively in early G1. This re-modelling process involves an increase in cell body, flagellum and flagellum attachment zone length and is accompanied by architectural changes to the anterior cell end. The old-flagellum daughter undergoes a different G1 re-modelling, however, despite this there was no difference in G1 duration of their respective cell cycles. This work demonstrates that the two daughters of a proliferative division of T. brucei are non-equivalent and enables more refined morphological analysis of mutant phenotypes. We suggest all proliferative divisions in T. brucei and related organisms will involve non-equivalence.
Department of Biological and Medical Sciences Oxford Brookes University Oxford OX3 0BP UK
Sir William Dunn School of Pathology University of Oxford Oxford OX1 3RE UK
Zobrazit více v PubMed
Ainavarapu, S.R.K. , Brujić, J. , Huang, H.H. , Wiita, A.P. , Lu, H. , Li, L. , et al (2007) Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Biophysical Journal, 92, 225–233. PubMed PMC
Anderson, C.T. and Stearns, T. (2009) Centriole age underlies asynchronous primary cilium growth in mammalian cells. Current Biology, 19, 1498–1502. PubMed PMC
Archer, S.K. , Inchaustegui, D. , Queiroz, R. and Clayton, C. (2011) The cell cycle regulated transcriptome of Trypanosoma brucei . PLoS One, 6, e18425. PubMed PMC
Benz, C. , Dondelinger, F. , McKean, P.G. and Urbaniak, M.D. (2017) Cell cycle synchronisation of Trypanosoma brucei by centrifugal counter‐flow elutriation reveals the timing of nuclear and kinetoplast DNA replication. Scientific Reports, 7, 17599. PubMed PMC
Briggs, L.J. , McKean, P.G. , Baines, A. , Moreira‐Leite, F. , Davidge, J. , Vaughan, S. and Gull, K. (2004) The flagella connector of Trypanosoma brucei: an unusual mobile transmembrane junction. Journal of Cell Science, 117, 1641–1651. PubMed
Brun, R. and Schönenberger, M. (1979) Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi‐defined medium. Short communication. Acta Tropica, 36, 289–292. PubMed
Davidge, J.A. , Chambers, E. , Dickinson, H.A. , Towers, K. , Ginger, M.L. , McKean, P.G. , et al (2006) Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. Journal of Cell Science, 119, 3935–3943. PubMed
Edelstein, A. , Amodaj, N. , Hoover, K. , Vale, R. and Stuurman, N. (2010) Computer Control of Microscopes Using μManager. Current Protocols in Molecular Biology, 92, 14–20. PubMed PMC
Farr, H. and Gull, K. (2009) Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post‐division axonemal growth in trypanosomes. Cell Motility and the Cytoskeleton, 66, 24–35. PubMed
Gull, K. (1999) The cytoskeleton of trypanosomatid parasites. Annual Review of Microbiology, 53, 629–655. PubMed
Hartwell, L.H. and Unger, M.W. (1977) Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. Journal of Cell Biology, 75, 422–435. PubMed PMC
Hayes, P. , Varga, V. , Olego‐Fernandez, S. , Sunter, J. , Ginger, M.L. and Gull, K. (2014) Modulation of a cytoskeletal calpain‐like protein induces major transitions in trypanosome morphology. Journal of Cell Biology, 206, 377–384. PubMed PMC
Hoffmann, A. , Käser, S. , Jakob, M. , Amodeo, S. , Peitsch, C. , Týč, J. , et al (2018) Molecular model of the mitochondrial genome segregation machinery in Trypanosoma brucei . Proceedings of the National Academy of Sciences of the United States of America, 115, E1809–E1818. PubMed PMC
Höög, J.L. , Lacomble, S. , Bouchet‐Marquis, C. , Briggs, L. , Park, K. , Hoenger, A. , et al (2016) 3D architecture of the Trypanosoma brucei flagella connector, a mobile transmembrane junction. PLoS Neglected Tropical Diseases, 10, e0004312. PubMed PMC
Hughes, L. , Towers, K. , Starborg, T. , Gull, K. and Vaughan, S. (2013) A cell‐body groove housing the new flagellum tip suggests an adaptation of cellular morphogenesis for parasitism in the bloodstream form of Trypanosoma brucei . Journal of Cell Science, 126, 5748–5757. PubMed PMC
Kohl, L. , Sherwin, T. and Gull, K. (1999) Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle. Journal of Eukaryotic Microbiology, 46, 105–109. PubMed
Kohl, L. , Robinson, D. and Bastin, P. (2003) Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO Journal, 22, 5336–5346. PubMed PMC
Kron, S.J. , Styles, C.A. and Fink, G.R. (1994) Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae . Molecular Biology of the Cell, 5, 1003–1022. PubMed PMC
Kurup, S.P. and Tarleton, R.L. (2014) The Trypanosoma cruzi flagellum is discarded via asymmetric cell division following invasion and provides early targets for protective CD8+ T cells. Cell Host & Microbe, 16, 439–449. PubMed PMC
Lengefeld, J. and Barral, Y. (2018) Asymmetric segregation of aged spindle pole bodies during cell division: mechanisms and relevance beyond budding yeast? BioEssays, 40, e1800038. PubMed
Matthews, K.R. (2005) The developmental cell biology of Trypanosoma brucei . Journal of Cell Science, 118, 283–290. PubMed PMC
McCulloch, R. , Vassella, E. , Burton, P. , Boshart, M. and Barry, J.D. (2004) Transformation of monomorphic and pleomorphic Trypanosoma brucei . Methods in Molecular Biology Clifton NJ, 262, 53–86. PubMed
Moreira‐Leite, F.F. , Sherwin, T. , Kohl, L. and Gull, K. (2001) A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science, 294, 610–612. PubMed
Morrison, S.J. and Kimble, J. (2006) Asymmetric and symmetric stem‐cell divisions in development and cancer. Nature, 441, 1068–1074. PubMed
Nigg, E.A. and Stearns, T. (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nature Cell Biology, 13, 1154–1160. PubMed PMC
Ooi, C.‐P. , Schuster, S. , Cren‐Travaillé, C. , Bertiaux, E. , Cosson, A. , Goyard, S. , et al (2016) The cyclical development of trypanosoma vivax in the tsetse fly involves an asymmetric division. Frontiers in Cellular and Infection Microbiology, 6, 1–16. PubMed PMC
Paridaen, J.T.M.L. , Wilsch‐Bräuninger, M. and Huttner, W.B. (2013) Asymmetric inheritance of centrosome‐associated primary cilium membrane directs ciliogenesis after cell division. Cell, 155, 333–344. PubMed
Peacock, L. , Kay, C. , Bailey, M. and Gibson, W. (2018) Shape‐shifting trypanosomes: flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus. PLoS Pathogens, 14, e1007043. PubMed PMC
Poon, S.K. , Peacock, L. , Gibson, W. , Gull, K. and Kelly, S. (2012) A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biology, 2, 110037. PubMed PMC
Robinson, D.R. , Sherwin, T. , Ploubidou, A. , Byard, E.H. and Gull, K. (1995) Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. Journal of Cell Biology, 128, 1163–1172. PubMed PMC
Rotureau, B. , Subota, I. , Buisson, J. and Bastin, P. (2012) A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly. Development, 139, 1842–1850. PubMed
Santoro, A. , Vlachou, T. , Carminati, M. , Pelicci, P.G. and Mapelli, M. (2016) Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Reports, 17, 1700–1720. PubMed PMC
Schneider, C.A. , Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. PubMed PMC
Sharma, R. , Peacock, L. , Gluenz, E. , Gull, K. , Gibson, W. and Carrington, M. (2008) Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes. Protist, 159, 137–151. PubMed
Sherwin, T. and Gull, K. (1989a) Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes. Cell, 57, 211–221. PubMed
Sherwin, T. and Gull, K. (1989b) The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 323, 573–588. PubMed
Stewart, E.J. , Madden, R. , Paul, G. and Taddei, F. (2005) Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, e45. PubMed PMC
Sunter, J.D. , Varga, V. , Dean, S. and Gull, K. (2015) A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes. Journal of Cell Science, 128, 1580–1594. PubMed PMC
Varga, V. , Moreira‐Leite, F. , Portman, N. and Gull, K. (2017) Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proceedings of the National Academy of Sciences of the United States of America, 114, E6546–E6555. PubMed PMC
Vincensini, L. , Blisnick, T. , Bertiaux, E. , Hutchinson, S. , Georgikou, C. , Ooi, C.‐P. , et al (2018) Flagellar incorporation of proteins follows at least two different routes in trypanosomes. Biology of the Cell, 110, 33–47. PubMed
Wheeler, R.J. (2015) Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles. Molecular Biology of the Cell, 26, 3898–3903. PubMed PMC
Wheeler, R.J. , Scheumann, N. , Wickstead, B. , Gull, K. and Vaughan, S. (2013) Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule‐based morphogenesis and mutant analysis. Molecular Microbiology, 90, 1339–1355. PubMed PMC
Wirtz, E. , Leal, S. , Ochatt, C. and Cross, G.A. (1999) A tightly regulated inducible expression system for conditional gene knock‐outs and dominant‐negative genetics in Trypanosoma brucei . Molecular and Biochemical Parasitology, 99, 89–101. PubMed
Woods, A. , Sherwin, T. , Sasse, R. , MacRae, T.H. , Baines, A.J. and Gull, K. (1989) Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. Journal of Cell Science, 93(Pt 3), 491–500. PubMed
Woodward, R. and Gull, K. (1990) Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei . Journal of Cell Science, 95(Pt 1), 49–57. PubMed
Zhou, Q. , Liu, B. , Sun, Y. and He, C.Y. (2011) A coiled‐coil‐ and C2‐domain‐containing protein is required for FAZ assembly and cell morphology in Trypanosoma brucei . Journal of Cell Science, 124, 3848–3858. PubMed
Whole cell reconstructions of Leishmania mexicana through the cell cycle