How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants

. 2022 Feb 11 ; 23 (4) : . [epub] 20220211

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35216108

Grantová podpora
CZ.02.1.01/0.0/0.0/ 15_003/0000433 Faculty of Forestry and Wood Sciences, Czech university of life Sciences

With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants' growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•-) and hydroxyl (OH-)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.

Zobrazit více v PubMed

Mehta S., James D., Reddy M.K. Omics Technologies for Abiotic Stress Tolerance in Plants: Current Status and Prospects. In: Wani S., editor. Recent Approaches in Omics for Plant Resilience to Climate Change. Springer; Cham, Switzerland: 2019. pp. 1–34. DOI

Mehta S., Singh B., Patra A., Islam M. In: Databases: A Weapon from the Arsenal of Bioinformatics for Plant Abiotic Stress Research. In Recent Approaches in Omics for Plant Resilience to Climate Change. Wani S., editor. Springer; Cham, Switzerland: 2019. pp. 135–169. DOI

Ortiz-Bobea A., Ault T.R., Carrillo C.M., Chambers R.G., Lobell D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change. 2021;11:306–312. doi: 10.1038/s41558-021-01000-1. DOI

Wang J., Vanga S., Saxena R., Orsat V., Raghavan V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate. 2018;6:41. doi: 10.3390/cli6020041. DOI

Nogia P., Sidhu G.K., Mehrotra R., Mehrotra S. Capturing atmospheric carbon: Biological and nonbiological methods. Int. J. Low-Carbon Technol. 2016;11:266–274. doi: 10.1093/ijlct/ctt077. DOI

Abid M., Scheffran J., Schneider U.A., Ashfaq M. Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth Syst. Dyn. 2015;6:225–243. doi: 10.5194/esd-6-225-2015. DOI

Zilli M., Scarabello M., Soterroni A.C., Valin H., Mosnier A., Leclère D., Havlík P., Kraxner F., Lopes M.A., Ramos F.M. The impact of climate change on Brazil’s agriculture. Sci. Total Environ. 2020;740:139384. doi: 10.1016/j.scitotenv.2020.139384. PubMed DOI

Rahim S., Puay T.G. The impact of climate on economic growth in Malaysia. J. Adv. Res. Bus. Manag. Stud. 2017;6:108–119.

Kilicarslan Z., Dumrul Y. Economic Impacts of Climate Change on Agriculture: Empirical Evidence From The ARDL Approach for Turkey. Pressacademia. 2017;6:336–347. doi: 10.17261/Pressacademia.2017.766. DOI

WANG J., HUANG J., YANG J. Overview of Impacts of Climate Change and Adaptation in China’s Agriculture. J. Integr. Agric. 2014;13:1–17. doi: 10.1016/S2095-3119(13)60588-2. DOI

Chandio A.A., Jiang Y., Rehman A., Rauf A. Short and long-run impacts of climate change on agriculture: An empirical evidence from China. Int. J. Clim. Change Strateg. Manag. 2020;12:201–221. doi: 10.1108/IJCCSM-05-2019-0026. DOI

Gupta R., Mishra A. Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India. Agric. Syst. 2019;173:1–11. doi: 10.1016/j.agsy.2019.01.009. DOI

Pathak T., Maskey M., Dahlberg J., Kearns F., Bali K., Zaccaria D. Climate Change Trends and Impacts on California Agriculture: A Detailed Review. Agronomy. 2018;8:25. doi: 10.3390/agronomy8030025. DOI

Nguyen C.T., Scrimgeour F. Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis. Agric. Econ. 2022;53:37–51. doi: 10.1111/agec.12677. DOI

Ait-El-Mokhtar M., Boutasknit A., Ben-Laouane R., Anli M., El Amerany F., Toubali S., Lahbouki S., Wahbi S., Meddich A. Research Anthology on Environmental and Societal Impacts of Climate Change. IGI Global; Hershey, PA, USA: 2022. Vulnerability of Oasis Agriculture to Climate Change in Morocco; pp. 1195–1219. DOI

Affoh R., Zheng H., Dangui K., Dissani B.M. The Impact of Climate Variability and Change on Food Security in Sub-Saharan Africa: Perspective from Panel Data Analysis. Sustainability. 2022;14:759. doi: 10.3390/su14020759. DOI

Mall R.K., Singh R., Gupta A., Srinivasan G., Rathore L.S. Impact of climate change on Indian agriculture: A review. Clim. Change. 2006;78:445–478. doi: 10.1007/s10584-005-9042-x. DOI

Lal S.K., Kumar S., Sheri V., Mehta S., Varakumar P., Ram B., Borphukan B., James D., Fartyal D., Reddy M.K. Seed Priming: An Emerging Technology to Impart Abiotic Stress Tolerance in Crop Plants. In: Rakshit A., Singh H., editors. Advances in Seed Priming. Springer; Singapore: 2018. pp. 41–50. DOI

Khan M.I.R., Khan N.A. Reactive Oxygen Species and Antioxidant Systems in Plants. Springer; Singapore: 2017.

Khan T.A., Yusuf M., Ahmad A., Bashir Z., Saeed T., Fariduddin Q., Hayat S., Mock H.-P., Wu T. Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chem. 2019;289:500–511. doi: 10.1016/j.foodchem.2019.03.029. PubMed DOI

Gao J.-P., Chao D.-Y., Lin H.-X. Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice. J. Integr. Plant Biol. 2007;49:742–750. doi: 10.1111/j.1744-7909.2007.00495.x. DOI

Li Z., Wakao S., Fischer B.B., Niyogi K.K. Sensing and Responding to Excess Light. Annu. Rev. Plant Biol. 2009;60:239–260. doi: 10.1146/annurev.arplant.58.032806.103844. PubMed DOI

Foyer C.H., Ruban A.V., Noctor G. Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochem. J. 2017;474:877–883. doi: 10.1042/BCJ20160814. PubMed DOI PMC

Noctor G., Reichheld J.-P., Foyer C.H. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 2018;80:3–12. doi: 10.1016/j.semcdb.2017.07.013. PubMed DOI

Lamotte O., Bertoldo J.B., Besson-Bard A., Rosnoblet C., Aimé S., Hichami S., Terenzi H., Wendehenne D. Protein S-nitrosylation: Specificity and identification strategies in plants. Front. Chem. 2014;2:114. doi: 10.3389/fchem.2014.00114. PubMed DOI PMC

Choudhary A., Kumar A., Kaur N. ROS and oxidative burst: Roots in plant development. Plant Divers. 2020;42:33–43. doi: 10.1016/j.pld.2019.10.002. PubMed DOI PMC

del Río L.A. ROS and RNS in plant physiology: An overview. J. Exp. Bot. 2015;66:2827–2837. doi: 10.1093/jxb/erv099. PubMed DOI

Lushchak V.I. Free radicals, reactive oxygen species, oxidative stresses and their classifications. Ukr. Biochem. J. 2015;87:11–18. doi: 10.15407/ubj87.06.011. PubMed DOI

Mignolet-Spruyt L., Xu E., Idänheimo N., Hoeberichts F.A., Mühlenbock P., Brosché M., Van Breusegem F., Kangasjärvi J. Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 2016;67:3831–3844. doi: 10.1093/jxb/erw080. PubMed DOI

Foyer C.H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 2018;154:134–142. doi: 10.1016/j.envexpbot.2018.05.003. PubMed DOI PMC

Karpinska B., Zhang K., Rasool B., Pastok D., Morris J., Verrall S.R., Hedley P.E., Hancock R.D., Foyer C.H. The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance. Plant Cell Environ. 2018;41:1083–1097. doi: 10.1111/pce.12960. PubMed DOI PMC

Nath O., Singh A., Singh I.K. In-Silico Drug discovery approach targeting receptor tyrosine kinase-like orphan receptor 1 for cancer treatment. Sci. Rep. 2017;7:1029. doi: 10.1038/s41598-017-01254-w. PubMed DOI PMC

Sewelam N., Kazan K., Schenk P.M. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. Front. Plant Sci. 2016;7:187. doi: 10.3389/fpls.2016.00187. PubMed DOI PMC

Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development. Development. 2018;145:dev164376. doi: 10.1242/dev.164376. PubMed DOI

Navrot N., Rouhier N., Gelhaye E., Jacquot J.-P. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 2007;129:185–195. doi: 10.1111/j.1399-3054.2006.00777.x. DOI

Dvořák P., Krasylenko Y., Zeiner A., Šamaj J., Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. Front. Plant Sci. 2021;11:618835. doi: 10.3389/fpls.2020.618835. PubMed DOI PMC

Garg N., Manchanda G. ROS generation in plants: Boon or bane? Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2009;143:81–96. doi: 10.1080/11263500802633626. DOI

Quan L.-J., Zhang B., Shi W.-W., Li H.-Y. Hydrogen Peroxide in Plants: A Versatile Molecule of the Reactive Oxygen Species Network. J. Integr. Plant Biol. 2008;50:2–18. doi: 10.1111/j.1744-7909.2007.00599.x. PubMed DOI

Ozgur R., Turkan I., Uzilday B., Sekmen A.H. Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana. J. Exp. Bot. 2014;65:1377–1390. doi: 10.1093/jxb/eru034. PubMed DOI PMC

Nappi A.J., Vass E. Hydroxyl radical production by ascorbate and hydrogen peroxide. Neurotox. Res. 2000;2:343–355. doi: 10.1007/BF03033342. DOI

Signorelli S., Coitiño E.L., Borsani O., Monza J. Molecular Mechanisms for the Reaction Between • OH Radicals and Proline: Insights on the Role as Reactive Oxygen Species Scavenger in Plant Stress. J. Phys. Chem. B. 2014;118:37–47. doi: 10.1021/jp407773u. PubMed DOI

Klotz L.-O., Kröncke K.-D., Sies H. Singlet oxygen-induced signaling effects in mammalian cells. Photochem. Photobiol. Sci. 2003;2:88–94. doi: 10.1039/B210750C. PubMed DOI

Triantaphylidès C., Havaux M. Singlet oxygen in plants: Production, detoxification and signaling. Trends Plant Sci. 2009;14:219–228. doi: 10.1016/j.tplants.2009.01.008. PubMed DOI

Hideg É., Barta C., Kálai T., Vass I., Hideg K., Asada K. Detection of Singlet Oxygen and Superoxide with Fluorescent Sensors in Leaves Under Stress by Photoinhibition or UV Radiation. Plant Cell Physiol. 2002;43:1154–1164. doi: 10.1093/pcp/pcf145. PubMed DOI

Tripathy B.C., Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 2012;7:1621–1633. doi: 10.4161/psb.22455. PubMed DOI PMC

Havaux M. Carotenoid oxidation products as stress signals in plants. Plant J. 2014;79:597–606. doi: 10.1111/tpj.12386. PubMed DOI

Kohli S.K., Khanna K., Bhardwaj R., Abd_Allah E.F., Ahmad P., Corpas F.J. Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants. 2019;8:641. doi: 10.3390/antiox8120641. PubMed DOI PMC

Sachdev S., Ansari S.A., Ansari M.I., Fujita M., Hasanuzzaman M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants. 2021;10:277. doi: 10.3390/antiox10020277. PubMed DOI PMC

Breygina M., Klimenko E. ROS and Ions in Cell Signaling during Sexual Plant Reproduction. Int. J. Mol. Sci. 2020;21:9476. doi: 10.3390/ijms21249476. PubMed DOI PMC

Kiyono H., Katano K., Suzuki N. Links between Regulatory Systems of ROS and Carbohydrates in Reproductive Development. Plants. 2021;10:1652. doi: 10.3390/plants10081652. PubMed DOI PMC

Luo L., He Y., Zhao Y., Xu Q., Wu J., Ma H., Guo H., Bai L., Zuo J., Zhou J.-M., et al. Regulation of mitochondrial NAD pool via NAD+ transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis. Sci. China Life Sci. 2019;62:991–1002. doi: 10.1007/s11427-019-9563-y. PubMed DOI

Zhao Y., Yu H., Zhou J.-M., Smith S.M., Li J. Malate Circulation: Linking Chloroplast Metabolism to Mitochondrial ROS. Trends Plant Sci. 2020;25:446–454. doi: 10.1016/j.tplants.2020.01.010. PubMed DOI

Locato V., Cimini S., De Gara L. ROS and redox balance as multifaceted players of cross-tolerance: Epigenetic and retrograde control of gene expression. J. Exp. Bot. 2018;69:3373–3391. doi: 10.1093/jxb/ery168. PubMed DOI

Giacomelli L., Masi A., Ripoll D.R., Lee M.J., van Wijk K.J. Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol. Biol. 2007;65:627–644. doi: 10.1007/s11103-007-9227-y. PubMed DOI

Maruta T., Noshi M., Tanouchi A., Tamoi M., Yabuta Y., Yoshimura K., Ishikawa T., Shigeoka S. H2O2-triggered Retrograde Signaling from Chloroplasts to Nucleus Plays Specific Role in Response to Stress. J. Biol. Chem. 2012;287:11717–11729. doi: 10.1074/jbc.M111.292847. PubMed DOI PMC

Maruta T., Tanouchi A., Tamoi M., Yabuta Y., Yoshimura K., Ishikawa T., Shigeoka S. Arabidopsis Chloroplastic Ascorbate Peroxidase Isoenzymes Play a Dual Role in Photoprotection and Gene Regulation under Photooxidative Stress. Plant Cell Physiol. 2010;51:190–200. doi: 10.1093/pcp/pcp177. PubMed DOI

Awad J., Stotz H.U., Fekete A., Krischke M., Engert C., Havaux M., Berger S., Mueller M.J. 2-Cysteine Peroxiredoxins and Thylakoid Ascorbate Peroxidase Create a Water-Water Cycle That Is Essential to Protect the Photosynthetic Apparatus under High Light Stress Conditions. Plant Physiol. 2015;167:1592–1603. doi: 10.1104/pp.114.255356. PubMed DOI PMC

Broda M., Van Aken O. Methods in Molecular Biology. Volume 1743. Humana Press; Clifton, NJ, USA: 2018. Studying Retrograde Signaling in Plants; pp. 73–85. PubMed

Lin Y.-P., Lee T., Tanaka A., Charng Y. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover. Plant J. 2014;80:14–26. doi: 10.1111/tpj.12611. PubMed DOI

Carmody M., Crisp P.A., D’Alessandro S., Ganguly D., Gordon M., Havaux M., Albrecht-Borth V., Pogson B.J. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation. Plant Physiol. 2016;171:1734–1749. doi: 10.1104/pp.16.00404. PubMed DOI PMC

Kim C., Apel K. 1O2-Mediated and EXECUTER-Dependent Retrograde Plastid-to-Nucleus Signaling in Norflurazon-Treated Seedlings of Arabidopsis thaliana. Mol. Plant. 2013;6:1580–1591. doi: 10.1093/mp/sst020. PubMed DOI PMC

Ugalde J.M., Fuchs P., Nietzel T., Cutolo E.A., Homagk M., Vothknecht U.C., Holuigue L., Schwarzländer M., Müller-Schüssele S.J., Meyer A.J. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and E GSH in other subcellular compartments. Plant Physiol. 2021;186:125–141. doi: 10.1093/plphys/kiaa095. PubMed DOI PMC

Xiao Y., Savchenko T., Baidoo E.E.K., Chehab W.E., Hayden D.M., Tolstikov V., Corwin J.A., Kliebenstein D.J., Keasling J.D., Dehesh K. Retrograde Signaling by the Plastidial Metabolite MEcPP Regulates Expression of Nuclear Stress-Response Genes. Cell. 2012;149:1525–1535. doi: 10.1016/j.cell.2012.04.038. PubMed DOI

Castro B., Citterico M., Kimura S., Stevens D.M., Wrzaczek M., Coaker G. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat. Plants. 2021;7:403–412. doi: 10.1038/s41477-021-00887-0. PubMed DOI PMC

Estavillo G.M., Crisp P.A., Pornsiriwong W., Wirtz M., Collinge D., Carrie C., Giraud E., Whelan J., David P., Javot H., et al. Evidence for a SAL1-PAP Chloroplast Retrograde Pathway That Functions in Drought and High Light Signaling in Arabidopsis. Plant Cell. 2011;23:3992–4012. doi: 10.1105/tpc.111.091033. PubMed DOI PMC

Noren L., Kindgren P., Stachula P., Ruhl M., Eriksson M., Hurry V., Strand A. Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth. Plant Physiol. 2016;171:1392–1406. doi: 10.1104/pp.16.00374. PubMed DOI PMC

Xie X., He Z., Chen N., Tang Z., Wang Q., Cai Y. The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant. Biomed. Res. Int. 2019;2019:9732325. doi: 10.1155/2019/9732325. PubMed DOI PMC

Tikkanen M., Gollan P.J., Suorsa M., Kangasjärvi S., Aro E.-M. STN7 Operates in Retrograde Signaling through Controlling Redox Balance in the Electron Transfer Chain. Front. Plant Sci. 2012;3:277. doi: 10.3389/fpls.2012.00277. PubMed DOI PMC

Klein P., Seidel T., Stöcker B., Dietz K.-J. The membrane-tethered transcription factor ANAC089 serves as redox-dependent suppressor of stromal ascorbate peroxidase gene expression. Front. Plant Sci. 2012;3:247. doi: 10.3389/fpls.2012.00247. PubMed DOI PMC

Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–498. doi: 10.1016/j.tplants.2004.08.009. PubMed DOI

Yu Q., Sun L., Jin H., Chen Q., Chen Z., Xu M. Lead-Induced Nitric Oxide Generation Plays a Critical Role in Lead Uptake by Pogonatherum crinitum Root Cells. Plant Cell Physiol. 2012;53:1728–1736. doi: 10.1093/pcp/pcs116. PubMed DOI

Foyer C.H., Karpinska B., Krupinska K. The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: A hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20130226. doi: 10.1098/rstb.2013.0226. PubMed DOI PMC

Phukan U.J., Jeena G.S., Shukla R.K. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Front. Plant Sci. 2016;7:760. doi: 10.3389/fpls.2016.00760. PubMed DOI PMC

Dietzel L., Gläßer C., Liebers M., Hiekel S., Courtois F., Czarnecki O., Schlicke H., Zubo Y., Börner T., Mayer K., et al. Identification of Early Nuclear Target Genes of Plastidial Redox Signals that Trigger the Long-Term Response of Arabidopsis to Light Quality Shifts. Mol. Plant. 2015;8:1237–1252. doi: 10.1016/j.molp.2015.03.004. PubMed DOI

Virdi K.S., Wamboldt Y., Kundariya H., Laurie J.D., Keren I., Kumar K.R.S., Block A., Basset G., Luebker S., Elowsky C., et al. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development. Mol. Plant. 2016;9:245–260. doi: 10.1016/j.molp.2015.10.011. PubMed DOI

Radwan D.E.M., Mohamed A.K., Fayez K.A., Abdelrahman A.M. Oxidative stress caused by Basagran® herbicide is altered by salicylic acid treatments in peanut plants. Heliyon. 2019;5:e01791. doi: 10.1016/j.heliyon.2019.e01791. PubMed DOI PMC

Steffens B. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front. Plant Sci. 2014;5:685. doi: 10.3389/fpls.2014.00685. PubMed DOI PMC

Choudhury F.K., Rivero R.M., Blumwald E., Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90:856–867. doi: 10.1111/tpj.13299. PubMed DOI

Mittler R. ROS Are Good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI

Dong C.-H., Zolman B.K., Bartel B., Lee B., Stevenson B., Agarwal M., Zhu J.-K. Disruption of Arabidopsis CHY1 Reveals an Important Role of Metabolic Status in Plant Cold Stress Signaling. Mol. Plant. 2009;2:59–72. doi: 10.1093/mp/ssn063. PubMed DOI PMC

Ma X., Wang W., Bittner F., Schmidt N., Berkey R., Zhang L., King H., Zhang Y., Feng J., Wen Y., et al. Dual and Opposing Roles of Xanthine Dehydrogenase in Defense-Associated Reactive Oxygen Species Metabolism in Arabidopsis. Plant Cell. 2016;28:1108–1126. doi: 10.1105/tpc.15.00880. PubMed DOI PMC

Ivanova A., Law S.R., Narsai R., Duncan O., Lee J.-H., Zhang B., Van Aken O., Radomiljac J.D., van der Merwe M., Yi K., et al. A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1a Expression in Arabidopsis. Plant Physiol. 2014;165:1233–1254. doi: 10.1104/pp.114.237495. PubMed DOI PMC

Gechev T., Petrov V. Reactive Oxygen Species and Abiotic Stress in Plants. Int. J. Mol. Sci. 2020;21:7433. doi: 10.3390/ijms21207433. PubMed DOI PMC

Bailly C. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem. J. 2019;476:3019–3032. doi: 10.1042/BCJ20190159. PubMed DOI

Hajihashemi S., Skalicky M., Brestic M., Pavla V. Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiol. Biochem. 2020;154:657–664. doi: 10.1016/j.plaphy.2020.07.022. PubMed DOI

Gong F., Yao Z., Liu Y., Sun M., Peng X. H2O2 response gene 1/2 are novel sensors or responders of H2O2 and involve in maintaining embryonic root meristem activity in Arabidopsis thaliana. Plant Sci. 2021;310:110981. doi: 10.1016/j.plantsci.2021.110981. PubMed DOI

Farooq M.A., Zhang X., Zafar M.M., Ma W., Zhao J. Roles of Reactive Oxygen Species and Mitochondria in Seed Germination. Front. Plant Sci. 2021;12 doi: 10.3389/fpls.2021.781734. PubMed DOI PMC

Dahal K., Vanlerberghe G.C. Alternative oxidase respiration maintains both mitochondrial and chloroplast function during drought. New Phytol. 2017;213:560–571. doi: 10.1111/nph.14169. PubMed DOI

Sun X., Feng P., Xu X., Guo H., Ma J., Chi W., Lin R., Lu C., Zhang L. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat. Commun. 2011;2:477. doi: 10.1038/ncomms1486. PubMed DOI

León P., Gregorio J., Cordoba E. ABI4 and its role in chloroplast retrograde communication. Front. Plant Sci. 2013;3 doi: 10.3389/fpls.2012.00304. PubMed DOI PMC

Zandalinas S.I., Mittler R., Balfagón D., Arbona V., Gómez-Cadenas A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018;162 doi: 10.1111/ppl.12540. PubMed DOI

Suzuki N., Bassil E., Hamilton J.S., Inupakutika M.A., Zandalinas S.I., Tripathy D., Luo Y., Dion E., Fukui G., Kumazaki A., et al. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress. PLoS ONE. 2016;11:e0147625. doi: 10.1371/journal.pone.0147625. PubMed DOI PMC

Vanderauwera S., Vandenbroucke K., Inze A., van de Cotte B., Muhlenbock P., De Rycke R., Naouar N., Van Gaever T., Van Montagu M.C.E., Van Breusegem F. AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2012;109:20113–20118. doi: 10.1073/pnas.1217516109. PubMed DOI PMC

Martí M.C., Olmos E., Calvete J.J., Díaz I., Barranco-Medina S., Whelan J., Lázaro J.J., Sevilla F., Jiménez A. Mitochondrial and Nuclear Localization of a Novel Pea Thioredoxin: Identification of Its Mitochondrial Target Proteins. Plant Physiol. 2009;150:646–657. doi: 10.1104/pp.109.138073. PubMed DOI PMC

Yoshida K., Noguchi K., Motohashi K., Hisabori T. Systematic Exploration of Thioredoxin Target Proteins in Plant Mitochondria. Plant Cell Physiol. 2013;54:875–892. doi: 10.1093/pcp/pct037. PubMed DOI

Gelhaye E., Rouhier N., Navrot N., Jacquot J.P. The plant thioredoxin system. Cell. Mol. Life Sci. 2005;62:24–35. doi: 10.1007/s00018-004-4296-4. PubMed DOI PMC

Viola I.L., Güttlein L.N., Gonzalez D.H. Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family. Plant Physiol. 2013;162:1434–1447. doi: 10.1104/pp.113.216416. PubMed DOI PMC

Calderón A., Ortiz-Espín A., Iglesias-Fernández R., Carbonero P., Pallardó F.V., Sevilla F., Jiménez A. Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture. Redox Biol. 2017;11:688–700. doi: 10.1016/j.redox.2017.01.018. PubMed DOI PMC

Hasanuzzaman M., Nahar K., Anee T.I., Fujita M. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants. 2017;23:249–268. doi: 10.1007/s12298-017-0422-2. PubMed DOI PMC

Kumar S., Trivedi P.K. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants. Front. Plant Sci. 2018;9:751. doi: 10.3389/fpls.2018.00751. PubMed DOI PMC

Liebthal M., Maynard D., Dietz K.-J. Peroxiredoxins and Redox Signaling in Plants. Antioxid. Redox Signal. 2018;28:609–624. doi: 10.1089/ars.2017.7164. PubMed DOI PMC

Hasanuzzaman M., Raihan M.R.H., Masud A.A.C., Rahman K., Nowroz F., Rahman M., Nahar K., Fujita M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021;22:9326. doi: 10.3390/ijms22179326. PubMed DOI PMC

Garcia L., Welchen E., Gey U., Arce A.L., Steinebrunner I., Gonzalez D.H. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis. Plant Cell Environ. 2016;39:628–644. doi: 10.1111/pce.12647. PubMed DOI

Chen S., Liu A., Zhang S., Li C., Chang R., Liu D., Ahammed G.J., Lin X. Overexpression of mitochondrial uncoupling protein conferred resistance to heat stress and Botrytis cinerea infection in tomato. Plant Physiol. Biochem. 2013;73:245–253. doi: 10.1016/j.plaphy.2013.10.002. PubMed DOI

Barreto P., Yassitepe J.E.C.T., Wilson Z.A., Arruda P. Mitochondrial Uncoupling Protein 1 Overexpression Increases Yield in Nicotiana tabacum under Drought Stress by Improving Source and Sink Metabolism. Front. Plant Sci. 2017;8:1836. doi: 10.3389/fpls.2017.01836. PubMed DOI PMC

Dahal K., Martyn G.D., Vanlerberghe G.C. Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a nonenergy conserving respiratory electron sink. New Phytol. 2015;208:382–395. doi: 10.1111/nph.13479. PubMed DOI

Su T., Li W., Wang P., Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. Front. Plant Sci. 2019;10:705. doi: 10.3389/fpls.2019.00705. PubMed DOI PMC

Walter P., Ron D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science. 2011;334:1081–1086. doi: 10.1126/science.1209038. PubMed DOI

Liu J., Howell S.H. Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol. 2016;211:418–428. doi: 10.1111/nph.13915. PubMed DOI

Kerchev P., Waszczak C., Lewandowska A., Willems P., Shapiguzov A., Li Z., Alseekh S., Mühlenbock P., Hoeberichts F.A., Huang J., et al. Lack of GLYCOLATE OXIDASE1, but Not GLYCOLATE OXIDASE2, Attenuates the Photorespiratory Phenotype of CATALASE2-Deficient Arabidopsis. Plant Physiol. 2016;171:1704–1719. doi: 10.1104/pp.16.00359. PubMed DOI PMC

del Río L.A., López-Huertas E. ROS Generation in Peroxisomes and its Role in Cell Signaling. Plant Cell Physiol. 2016;57:pcw076. doi: 10.1093/pcp/pcw076. PubMed DOI

Tenhaken R. Cell wall remodeling under abiotic stress. Front. Plant Sci. 2015;5:771. doi: 10.3389/fpls.2014.00771. PubMed DOI PMC

Kurusu T., Kuchitsu K., Tada Y. Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front. Plant Sci. 2015;6:427. doi: 10.3389/fpls.2015.00427. PubMed DOI PMC

Marino D., Dunand C., Puppo A., Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci. 2012;17:9–15. doi: 10.1016/j.tplants.2011.10.001. PubMed DOI

Dmitrieva V.A., Tyutereva E.V., Voitsekhovskaja O.V. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int. J. Mol. Sci. 2020;21:3237. doi: 10.3390/ijms21093237. PubMed DOI PMC

Zhu J., Lee B.-H., Dellinger M., Cui X., Zhang C., Wu S., Nothnagel E.A., Zhu J.-K. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J. 2010;63:128–140. doi: 10.1111/j.1365-313X.2010.04227.x. PubMed DOI PMC

Endler A., Kesten C., Schneider R., Zhang Y., Ivakov A., Froehlich A., Funke N., Persson S. A Mechanism for Sustained Cellulose Synthesis during Salt Stress. Cell. 2015;162:1353–1364. doi: 10.1016/j.cell.2015.08.028. PubMed DOI

Bhattacharjee S. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr. Sci. 2005;89:1113–1121.

MILLER G., SUZUKI N., CIFTCI-YILMAZ S., MITTLER R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33:453–467. doi: 10.1111/j.1365-3040.2009.02041.x. PubMed DOI

Foyer C.H., Noctor G. Stress-triggered redox signalling: What’s in pROSpect? Plant Cell Environ. 2016;39:951–964. doi: 10.1111/pce.12621. PubMed DOI

Zinn K.E., Tunc-Ozdemir M., Harper J.F. Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 2010;61:1959–1968. doi: 10.1093/jxb/erq053. PubMed DOI PMC

Savchenko G.E., Klyuchareva E.A., Abramchik L.M., Serdyuchenko E.V. Effect of Periodic Heat Shock on the Inner Membrane System of Etioplasts. Russ. J. Plant Physiol. 2002;49:349–359. doi: 10.1023/A:1015592902659. DOI

Wang G.P., Zhang X.Y., Li F., Luo Y., Wang W. Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica. 2010;48:117–126. doi: 10.1007/s11099-010-0016-5. DOI

Liu X., Huang B. Heat Stress Injury in Relation to Membrane Lipid Peroxidation in Creeping Bentgrass. Crop. Sci. 2000;40:503. doi: 10.2135/cropsci2000.402503x. DOI

Ashraf M., Harris P.J.C. Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches. Food Products Press; New York, NY, USA: 2005.

Li M., Kim C. Chloroplast ROS and stress signaling. Plant Commun. 2022;3:100264. doi: 10.1016/j.xplc.2021.100264. PubMed DOI PMC

Zhang R.D., Zhou Y.F., Yue Z.X., Chen X.F., Cao X., Xu X.X., Xing Y.F., Jiang B., Ai X.Y., Huang R.D. Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica. 2019;57:1076–1083. doi: 10.32615/ps.2019.124. DOI

Maestri E., Klueva N., Perrotta C., Gulli M., Nguyen H.T., Marmiroli N. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 2002;48:667–681. doi: 10.1023/A:1014826730024. PubMed DOI

Ahammed G.J., Li X., Zhou J., Zhou Y.-H., Yu J.-Q. Plant Hormones under Challenging Environmental Factors. Springer; Dordrecht, The Netherlands: 2016. Role of Hormones in Plant Adaptation to Heat Stress; pp. 1–21.

Foyer C.H., Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 2003;119:355–364. doi: 10.1034/j.1399-3054.2003.00223.x. DOI

Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012;2012:1–26. doi: 10.1155/2012/217037. DOI

Bela K., Horváth E., Gallé Á., Szabados L., Tari I., Csiszár J. Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses. J. Plant Physiol. 2015;176:192–201. doi: 10.1016/j.jplph.2014.12.014. PubMed DOI

Caverzan A., Piasecki C., Chavarria G., Stewart C., Vargas L. Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides. Int. J. Mol. Sci. 2019;20:1086. doi: 10.3390/ijms20051086. PubMed DOI PMC

Apel K., Hirt H. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI

Murshed R., Lopez-Lauri F., Sallanon H. Microplate quantification of enzymes of the plant ascorbate–glutathione cycle. Anal. Biochem. 2008;383:320–322. doi: 10.1016/j.ab.2008.07.020. PubMed DOI

Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI

Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. Role of proline under changing environments. Plant Signal. Behav. 2012;7:1456–1466. doi: 10.4161/psb.21949. PubMed DOI PMC

Kaur G., Asthir B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant. 2015;59:609–619. doi: 10.1007/s10535-015-0549-3. DOI

Nadarajah K.K. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020;21:5208. doi: 10.3390/ijms21155208. PubMed DOI PMC

Tavanti T.R., de Melo A.A., Moreira L.D.K., Sanchez D.E.J., dos Santos Silva R., da Silva R.M., dos Reis A.R. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. Plant Physiol. Biochem. 2021;160:386–396. doi: 10.1016/j.plaphy.2021.01.040. PubMed DOI

Ahmad P., Sarwat M., Sharma S. Reactive oxygen species, antioxidants and signaling in plants. J. Plant Biol. 2008;51:167–173. doi: 10.1007/BF03030694. DOI

Chu C.-C., Lee W.-C., Guo W.-Y., Pan S.-M., Chen L.-J., Li H., Jinn T.-L. A Copper Chaperone for Superoxide Dismutase That Confers Three Types of Copper/Zinc Superoxide Dismutase Activity in Arabidopsis. Plant Physiol. 2005;139:425–436. doi: 10.1104/pp.105.065284. PubMed DOI PMC

Soares C., Carvalho M.E.A., Azevedo R.A., Fidalgo F. Plants facing oxidative challenges—A little help from the antioxidant networks. Environ. Exp. Bot. 2019;161:4–25. doi: 10.1016/j.envexpbot.2018.12.009. DOI

Medina E., Kim S.-H., Yun M., Choi W.-G. Recapitulation of the Function and Role of ROS Generated in Response to Heat Stress in Plants. Plants. 2021;10:371. doi: 10.3390/plants10020371. PubMed DOI PMC

Dumont S., Rivoal J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. Front. Plant Sci. 2019;10:166. doi: 10.3389/fpls.2019.00166. PubMed DOI PMC

Zhang W., Jeon B.W., Assmann S.M. Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells. J. Exp. Bot. 2011;62:2371–2379. doi: 10.1093/jxb/erq424. PubMed DOI

Khan M., Samrana S., Zhang Y., Malik Z., Khan M.D., Zhu S. Reduced Glutathione Protects Subcellular Compartments From Pb-Induced ROS Injury in Leaves and Roots of Upland Cotton (Gossypium hirsutum L.) Front. Plant Sci. 2020;11 doi: 10.3389/fpls.2020.00412. PubMed DOI PMC

Gill S.S., Anjum N.A., Hasanuzzaman M., Gill R., Trivedi D.K., Ahmad I., Pereira E., Tuteja N. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 2013;70:204–212. doi: 10.1016/j.plaphy.2013.05.032. PubMed DOI

Anjum N.A., Gill S.S., Gill R., Hasanuzzaman M., Duarte A.C., Pereira E., Ahmad I., Tuteja R., Tuteja N. Metal/metalloid stress tolerance in plants: Role of ascorbate, its redox couple, and associated enzymes. Protoplasma. 2014;251:1265–1283. doi: 10.1007/s00709-014-0636-x. PubMed DOI

Ozyigit I.I., Filiz E., Vatansever R., Kurtoglu K.Y., Koc I., Öztürk M.X., Anjum N.A. Identification and Comparative Analysis of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches. Front. Plant Sci. 2016;7:301. doi: 10.3389/fpls.2016.00301. PubMed DOI PMC

Passaia G., Spagnolo Fonini L., Caverzan A., Jardim-Messeder D., Christoff A.P., Gaeta M.L., de Araujo Mariath J.E., Margis R., Margis-Pinheiro M. The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci. 2013;208:93–101. doi: 10.1016/j.plantsci.2013.03.017. PubMed DOI

Asada K. THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:601–639. doi: 10.1146/annurev.arplant.50.1.601. PubMed DOI

Chen G., Asada K. Ascorbate Peroxidase in Tea Leaves: Occurrence of Two Isozymes and the Differences in Their Enzymatic and Molecular Properties. Plant Cell Physiol. 1989;30:987–998. doi: 10.1093/oxfordjournals.pcp.a077844. DOI

Broad R.C., Bonneau J.P., Beasley J.T., Roden S., Sadowski P., Jewell N., Brien C., Berger B., Tako E., Glahn R.P., et al. Effect of Rice GDP-L-Galactose Phosphorylase Constitutive Overexpression on Ascorbate Concentration, Stress Tolerance, and Iron Bioavailability in Rice. Front. Plant Sci. 2020;11:595439. doi: 10.3389/fpls.2020.595439. PubMed DOI PMC

Broad R.C., Bonneau J.P., Hellens R.P., Johnson A.A.T. Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020;21:1790. doi: 10.3390/ijms21051790. PubMed DOI PMC

Koua D., Cerutti L., Falquet L., Sigrist C.J.A., Theiler G., Hulo N., Dunand C. PeroxiBase: A database with new tools for peroxidase family classification. Nucleic Acids Res. 2009;37:D261–D266. doi: 10.1093/nar/gkn680. PubMed DOI PMC

Sugimoto M., Oono Y., Gusev O., Matsumoto T., Yazawa T., Levinskikh M.A., Sychev V.N., Bingham G.E., Wheeler R., Hummerick M. Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight. BMC Plant Biol. 2014;14:4. doi: 10.1186/1471-2229-14-4. PubMed DOI PMC

Salinas A.E., Wong M.G. Glutathione S-transferases—A review. Curr. Med. Chem. 1999;6:279–309. PubMed

Zhao T., Singhal S.S., Piper J.T., Cheng J., Pandya U., Clark-Wronski J., Awasthi S., Awasthi Y.C. The Role of Human Glutathione S-Transferases hGSTA1-1 and hGSTA2-2 in Protection against Oxidative Stress. Arch. Biochem. Biophys. 1999;367:216–224. doi: 10.1006/abbi.1999.1277. PubMed DOI

Ologundudu F. Antioxidant enzymes and non-enzymatic antioxidants as defense mechanism of salinity stress in cowpea (Vigna unguiculata L. Walp)—Ife brown and Ife bpc. Bull. Natl. Res. Cent. 2021;45:152. doi: 10.1186/s42269-021-00615-w. DOI

Isah T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019;52:39. doi: 10.1186/s40659-019-0246-3. PubMed DOI PMC

Khare S., Singh N.B., Singh A., Hussain I., Niharika K., Yadav V., Bano C., Yadav R.K., Amist N. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 2020;63:203–216. doi: 10.1007/s12374-020-09245-7. DOI

Miyake C., Asada K. Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes Compound I of ascorbate peroxidase. Plant Cell Physiol. 1996;37:423–430. doi: 10.1093/oxfordjournals.pcp.a028963. DOI

Eltayeb A.E., Kawano N., Badawi G.H., Kaminaka H., Sanekata T., Shibahara T., Inanaga S., Tanaka K. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta. 2007;225:1255–1264. doi: 10.1007/s00425-006-0417-7. PubMed DOI

Khorobrykh S., Havurinne V., Mattila H., Tyystjärvi E. Oxygen and ROS in Photosynthesis. Plants. 2020;9:91. doi: 10.3390/plants9010091. PubMed DOI PMC

Xiao M., Li Z., Zhu L., Wang J., Zhang B., Zheng F., Zhao B., Zhang H., Wang Y., Zhang Z. The Multiple Roles of Ascorbate in the Abiotic Stress Response of Plants: Antioxidant, Cofactor, and Regulator. Front. Plant Sci. 2021;12:173. doi: 10.3389/fpls.2021.598173. PubMed DOI PMC

Qi C., Lin X., Li S., Liu L., Wang Z., Li Y., Bai R., Xie Q., Zhang N., Ren S., et al. SoHSC70 positively regulates thermotolerance by alleviating cell membrane damage, reducing ROS accumulation, and improving activities of antioxidant enzymes. Plant Sci. 2019;283:385–395. doi: 10.1016/j.plantsci.2019.03.003. PubMed DOI

Li Y., Cao X., Zhu Y., Yang X., Zhang K., Xiao Z., Wang H., Zhao J., Zhang L., Li G., et al. Osa-miR398b boosts H 2 O 2 production and rice blast disease-resistance via multiple superoxide dismutases. New Phytol. 2019;222 doi: 10.1111/nph.15678. PubMed DOI PMC

Karpinska B., Karlsson M., Schinkel H., Streller S., Süss K.-H., Melzer M., Wingsle G. A Novel Superoxide Dismutase with a High Isoelectric Point in Higher Plants. Expression, Regulation, and Protein Localization. Plant Physiol. 2001;126:1668–1677. doi: 10.1104/pp.126.4.1668. PubMed DOI PMC

Dumanović J., Nepovimova E., Natić M., Kuča K., Jaćević V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front. Plant Sci. 2021;11:2106. doi: 10.3389/fpls.2020.552969. PubMed DOI PMC

Giri J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 2011;6:1746–1751. doi: 10.4161/psb.6.11.17801. PubMed DOI PMC

Chen T.H.H., Murata N. Glycinebetaine: An effective protectant against abiotic stress in plants. Trends Plant Sci. 2008;13:499–505. doi: 10.1016/j.tplants.2008.06.007. PubMed DOI

Kumar P. Stress amelioration response of glycine betaine and Arbuscular mycorrhizal fungi in sorghum under Cr toxicity. PLoS ONE. 2021;16:e0253878. doi: 10.1371/journal.pone.0253878. PubMed DOI PMC

Nishizawa A., Yabuta Y., Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 2008;147:1251–1263. doi: 10.1104/pp.108.122465. PubMed DOI PMC

Hernandez-Marin E., Martínez A. Carbohydrates and Their Free Radical Scavenging Capability: A Theoretical Study. J. Phys. Chem. B. 2012;116:9668–9675. doi: 10.1021/jp304814r. PubMed DOI

Schneider T., Keller F. Raffinose in Chloroplasts is Synthesized in the Cytosol and Transported across the Chloroplast Envelope. Plant Cell Physiol. 2009;50:2174–2182. doi: 10.1093/pcp/pcp151. PubMed DOI

Couée I., Sulmon C., Gouesbet G., El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 2006;57:449–459. doi: 10.1093/jxb/erj027. PubMed DOI

Price J., Laxmi A., St. Martin S.K., Jang J.-C. Global Transcription Profiling Reveals Multiple Sugar Signal Transduction Mechanisms in Arabidopsis. Plant Cell. 2004;16:2128–2150. doi: 10.1105/tpc.104.022616. PubMed DOI PMC

Nishikawa F., Kato M., Hyodo H., Ikoma Y., Sugiura M., Yano M. Effect of sucrose on ascorbate level and expression of genes involved in the ascorbate biosynthesis and recycling pathway in harvested broccoli florets. J. Exp. Bot. 2004;56:65–72. doi: 10.1093/jxb/eri007. PubMed DOI

Savchenko T., Tikhonov K. Oxidative Stress-Induced Alteration of Plant Central Metabolism. Life. 2021;11:304. doi: 10.3390/life11040304. PubMed DOI PMC

Benaroudj N., Lee D.H., Goldberg A.L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 2001;276:24261–24267. doi: 10.1074/jbc.M101487200. PubMed DOI

Yang L., Zhao X., Zhu H., Paul M., Zu Y., Tang Z. Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Front. Plant Sci. 2014;5:570. doi: 10.3389/fpls.2014.00570. PubMed DOI PMC

Davis J.M., Loescher W.H. [14C]-Assimilate translocation in the light and dark in celery (Apium graveokns) leaves of different ages. Physiol. Plant. 1990;79:656–662. doi: 10.1111/j.1399-3054.1990.tb00040.x. PubMed DOI

Shen B., Jensen R.G., Bohnert H.J. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 1997;113:1177–1183. doi: 10.1104/pp.113.4.1177. PubMed DOI PMC

Rathor P., Borza T., Liu Y., Qin Y., Stone S., Zhang J., Hui J.P.M., Berrue F., Groisillier A., Tonon T., et al. Low Mannitol Concentrations in Arabidopsis thaliana Expressing Ectocarpus Genes Improve Salt Tolerance. Plants. 2020;9:1508. doi: 10.3390/plants9111508. PubMed DOI PMC

Noiraud N., Maurousset L., Lemoine R. Transport of polyols in higher plants. Plant Physiol. Biochem. 2001;39:717–728. doi: 10.1016/S0981-9428(01)01292-X. DOI

Kolarovič L., Valentovič P., Luxová M., Gašparíková O. Changes in antioxidants and cell damage in heterotrophic maize seedlings differing in drought sensitivity after exposure to short-term osmotic stress. Plant Growth Regul. 2009;59:21–26. doi: 10.1007/s10725-009-9384-x. DOI

Krasensky J., Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012;63:1593–1608. doi: 10.1093/jxb/err460. PubMed DOI PMC

Batista-Silva W., Heinemann B., Rugen N., Nunes-Nesi A., Araújo W.L., Braun H., Hildebrandt T.M. The role of amino acid metabolism during abiotic stress release. Plant Cell Environ. 2019;42:1630–1644. doi: 10.1111/pce.13518. PubMed DOI

Zechmann B. Subcellular distribution of ascorbate in plants. Plant Signal. Behav. 2011;6:360–363. doi: 10.4161/psb.6.3.14342. PubMed DOI PMC

Bilska K., Wojciechowska N., Alipour S., Kalemba E.M. Ascorbic Acid—The Little-Known Antioxidant in Woody Plants. Antioxidants. 2019;8:645. doi: 10.3390/antiox8120645. PubMed DOI PMC

Foyer C.H., Kyndt T., Hancock R.D. Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues. Antioxid. Redox Signal. 2020;32:463–485. doi: 10.1089/ars.2019.7819. PubMed DOI

Tausz M., Sircelj H., Grill D. The glutathione system as a stress marker in plant ecophysiology: Is a stress-response concept valid? J. Exp. Bot. 2004;55:1955–1962. doi: 10.1093/jxb/erh194. PubMed DOI

Li A.-N., Li S., Zhang Y.-J., Xu X.-R., Chen Y.-M., Li H.-B. Resources and Biological Activities of Natural Polyphenols. Nutrients. 2014;6:6020–6047. doi: 10.3390/nu6126020. PubMed DOI PMC

Sato M., Ramarathnam N., Suzuki Y., Ohkubo T., Takeuchi M., Ochi H. Varietal Differences in the Phenolic Content and Superoxide Radical Scavenging Potential of Wines from Different Sources. J. Agric. Food Chem. 1996;44:37–41. doi: 10.1021/jf950190a. DOI

Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants. 2021;10:118. doi: 10.3390/plants10010118. PubMed DOI PMC

Ríos J.-L., Giner R., Marín M., Recio M. A Pharmacological Update of Ellagic Acid. Planta Med. 2018;84 doi: 10.1055/a-0633-9492. PubMed DOI

Alfei S., Marengo B., Zuccari G. Oxidative Stress, Antioxidant Capabilities, and Bioavailability: Ellagic Acid or Urolithins? Antioxidants. 2020;9:707. doi: 10.3390/antiox9080707. PubMed DOI PMC

Parvin K., Nahar K., Hasanuzzaman M., Bhuyan M.H.M.B., Mohsin S.M., Fujita M. Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems. Plant Physiol. Biochem. 2020;150:109–120. doi: 10.1016/j.plaphy.2020.02.030. PubMed DOI

Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC

Takahashi A., Ohnishi T. The significance of the study about the biological effects of solar ultraviolet radiation using the Exposed Facility on the International Space Station. Biol. Sci. Space. 2004;18:255–260. doi: 10.2187/bss.18.255. PubMed DOI

Agati G., Matteini P., Goti A., Tattini M. Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 2007;174:77–89. doi: 10.1111/j.1469-8137.2007.01986.x. PubMed DOI

Petrussa E., Braidot E., Zancani M., Peresson C., Bertolini A., Patui S., Vianello A. Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses. Int. J. Mol. Sci. 2013;14:14950–14973. doi: 10.3390/ijms140714950. PubMed DOI PMC

Kamal-Eldin A., Appelqvist L.A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31:671–701. doi: 10.1007/BF02522884. PubMed DOI

Traber M.G., Stevens J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011;51:1000–1013. doi: 10.1016/j.freeradbiomed.2011.05.017. PubMed DOI PMC

Abbasi A.-R., Hajirezaei M., Hofius D., Sonnewald U., Voll L.M. Specific Roles of α- and γ-Tocopherol in Abiotic Stress Responses of Transgenic Tobacco. Plant Physiol. 2007;143:1720–1738. doi: 10.1104/pp.106.094771. PubMed DOI PMC

Xiang N., Hu J., Wen T., Brennan M.A., Brennan C.S., Guo X. Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn ( Zea mays L.) seedlings. J. Sci. Food Agric. 2020;100:1694–1701. doi: 10.1002/jsfa.10184. PubMed DOI

Nisar N., Li L., Lu S., Khin N.C., Pogson B.J. Carotenoid Metabolism in Plants. Mol. Plant. 2015;8:68–82. doi: 10.1016/j.molp.2014.12.007. PubMed DOI

Su T., Wang P., Li H., Zhao Y., Lu Y., Dai P., Ren T., Wang X., Li X., Shao Q., et al. The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. J. Integr. Plant Biol. 2018;60 doi: 10.1111/jipb.12649. PubMed DOI

Yang Z., Mhamdi A., Noctor G. Analysis of catalase mutants underscores the essential role of CATALASE2 for plant growth and day length-dependent oxidative signalling. Plant Cell Environ. 2019;42:688–700. doi: 10.1111/pce.13453. PubMed DOI

Zhang S., Li C., Ren H., Zhao T., Li Q., Wang S., Zhang Y., Xiao F., Wang X. BAK1 Mediates Light Intensity to Phosphorylate and Activate Catalases to Regulate Plant Growth and Development. Int. J. Mol. Sci. 2020;21:1437. doi: 10.3390/ijms21041437. PubMed DOI PMC

Palma J.M., Mateos R.M., López-Jaramillo J., Rodríguez-Ruiz M., González-Gordo S., Lechuga-Sancho A.M., Corpas F.J. Plant catalases as NO and H2S targets. Redox Biol. 2020;34:101525. doi: 10.1016/j.redox.2020.101525. PubMed DOI PMC

Gohari G., Molaei S., Kheiry A., Ghafouri M., Razavi F., Lorenzo J.M., Juárez-Maldonado A. Exogenous application of proline and L-cysteine alleviates internal browning and maintains eating quality of cold stored flat ‘maleki’ peach fruits. Horticulturae. 2021;7:469. doi: 10.3390/horticulturae7110469. DOI

Abdelaal K.A.A., Attia K.A., Alamery S.F., El-Afry M.M., Ghazy A.I., Tantawy D.S., Al-Doss A.A., El-Shawy E.-S.E., Abu-Elsaoud A., Hafez Y.M. Exogenous Application of Proline and Salicylic Acid can Mitigate the Injurious Impacts of Drought Stress on Barley Plants Associated with Physiological and Histological Characters. Sustainability. 2020;12:1736. doi: 10.3390/su12051736. DOI

Molaei S., Soleimani A., Rabiei V., Razavi F. Impact of chitosan in combination with potassium sorbate treatment on chilling injury and quality attributes of pomegranate fruit during cold storage. J. Food Biochem. 2021;45:e13633. doi: 10.1111/jfbc.13633. PubMed DOI

Mittler R., Finka A., Goloubinoff P. How do plants feel the heat? Trends Biochem. Sci. 2012;37:118–125. doi: 10.1016/j.tibs.2011.11.007. PubMed DOI

Gilroy S., Suzuki N., Miller G., Choi W.-G., Toyota M., Devireddy A.R., Mittler R. A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 2014;19:623–630. doi: 10.1016/j.tplants.2014.06.013. PubMed DOI

Ouyang S.-Q., Liu Y.-F., Liu P., Lei G., He S.-J., Ma B., Zhang W.-K., Zhang J.-S., Chen S.-Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J. 2010;62:316–329. doi: 10.1111/j.1365-313X.2010.04146.x. PubMed DOI

Bargmann B.O.R., Laxalt A.M., Riet B.T., van Schooten B., Merquiol E., Testerink C., Haring M.A., Bartels D., Munnik T. Multiple PLDs Required for High Salinity and Water Deficit Tolerance in Plants. Plant Cell Physiol. 2009;50:78–89. doi: 10.1093/pcp/pcn173. PubMed DOI PMC

Guo L., Wang X. Crosstalk between Phospholipase D and Sphingosine Kinase in Plant Stress Signaling. Front. Plant Sci. 2012;3:51. doi: 10.3389/fpls.2012.00051. PubMed DOI PMC

Oda T., Hashimoto H., Kuwabara N., Akashi S., Hayashi K., Kojima C., Wong H.L., Kawasaki T., Shimamoto K., Sato M., et al. Structure of the N-terminal Regulatory Domain of a Plant NADPH Oxidase and Its Functional Implications. J. Biol. Chem. 2010;285:1435–1445. doi: 10.1074/jbc.M109.058909. PubMed DOI PMC

Huang H., Ullah F., Zhou D.-X., Yi M., Zhao Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019;10:193–198. doi: 10.3389/fpls.2019.00800. PubMed DOI PMC

Costello J.L., Kershaw C.J., Castelli L.M., Talavera D., Rowe W., Sims P.F.G., Ashe M.P., Grant C.M., Hubbard S.J., Pavitt G.D. Dynamic changes in eIF4F-mRNA interactions revealed by global analyses of environmental stress responses. Genome Biol. 2017;18:201. doi: 10.1186/s13059-017-1338-4. PubMed DOI PMC

Willems P., Mhamdi A., Stael S., Storme V., Kerchev P., Noctor G., Gevaert K., Van Breusegem F. The ROS wheel: Refining ROS transcriptional footprints. Plant Physiol. 2016;171:1720–1733. doi: 10.1104/pp.16.00420. PubMed DOI PMC

Delaney K.J., Xu R., Zhang J., Li Q.Q., Yun K.-Y., Falcone D.L., Hunt A.G. Calmodulin Interacts with and Regulates the RNA-Binding Activity of an Arabidopsis Polyadenylation Factor Subunit. Plant Physiol. 2006;140:1507. doi: 10.1104/pp.105.070672. PubMed DOI PMC

SCHMITZLINNEWEBER C., SMALL I. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci. 2008;13:663–670. doi: 10.1016/j.tplants.2008.10.001. PubMed DOI

Chung J.-S., Zhu J.-K., Bressan R.A., Hasegawa P.M., Shi H. Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. Plant J. 2007;53:554–565. doi: 10.1111/j.1365-313X.2007.03364.x. PubMed DOI PMC

de Jong M., van Breukelen B., Wittink F.R., Menke F.L.H., Weisbeek P.J., Ackerveken G. Van den Membrane-associated transcripts in Arabidopsis; their isolation and characterization by DNA microarray analysis and bioinformatics. Plant J. 2006;46:708–721. doi: 10.1111/j.1365-313X.2006.02724.x. PubMed DOI

Monzingo A.F., Dhaliwal S., Dutt-Chaudhuri A., Lyon A., Sadow J.H., Hoffman D.W., Robertus J.D., Browning K.S. The Structure of Eukaryotic Translation Initiation Factor-4E from Wheat Reveals a Novel Disulfide Bond. Plant Physiol. 2007;143:1504–1518. doi: 10.1104/pp.106.093146. PubMed DOI PMC

Gallie D.R. Eukaryotic Initiation Factor eIFiso4G1 and eIFiso4G2 Are Isoforms Exhibiting Distinct Functional Differences in Supporting Translation in Arabidopsis. J. Biol. Chem. 2016;291:1501–1513. doi: 10.1074/jbc.M115.692939. PubMed DOI PMC

Waszczak C., Akter S., Eeckhout D., Persiau G., Wahni K., Bodra N., Van Molle I., De Smet B., Vertommen D., Gevaert K., et al. Sulfenome mining in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2014;111:11545–11550. doi: 10.1073/pnas.1411607111. PubMed DOI PMC

Akter S., Huang J., Bodra N., De Smet B., Wahni K., Rombaut D., Pauwels J., Gevaert K., Carroll K., Van Breusegem F., et al. DYn-2 Based Identification of Arabidopsis Sulfenomes. Mol. Cell. Proteom. 2015;14:1183–1200. doi: 10.1074/mcp.M114.046896. PubMed DOI PMC

Meyer K., Köster T., Nolte C., Weinholdt C., Lewinski M., Grosse I., Staiger D. Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biol. 2017;18:204. doi: 10.1186/s13059-017-1332-x. PubMed DOI PMC

Waszczak C., Carmody M., Kangasjärvi J. Reactive Oxygen Species in Plant Signaling. Annu. Rev. Plant Biol. 2018;69:209–236. doi: 10.1146/annurev-arplant-042817-040322. PubMed DOI

Lin K.-F., Tsai M.-Y., Lu C.-A., Wu S.-J., Yeh C.-H. The roles of Arabidopsis HSFA2, HSFA4a, and HSFA7a in the heat shock response and cytosolic protein response. Bot. Stud. 2018;59:15. doi: 10.1186/s40529-018-0231-0. PubMed DOI PMC

Boraiah K.M., Basavaraj P.S., Harisha C.B., Kochewad S.A., Khapte P.S., Bhendarkar M.P., Kakade V.D., Rane J., Kulshreshtha N., Pathak H. Abiotic Stress Tolerant Crop Varieties, Livestock Breeds and Fish Species. Tech. Bull. 2021;32:1–83.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...