How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/ 15_003/0000433
Faculty of Forestry and Wood Sciences, Czech university of life Sciences
PubMed
35216108
PubMed Central
PMC8879091
DOI
10.3390/ijms23041995
PII: ijms23041995
Knihovny.cz E-zdroje
- Klíčová slova
- ROS, ROS scavenging, abiotic stress, antioxidants, global climate change, signal transduction,
- MeSH
- fyziologický stres fyziologie MeSH
- klimatické změny MeSH
- lidé MeSH
- peroxidace lipidů fyziologie MeSH
- poškození DNA fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostliny metabolismus MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants' growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•-) and hydroxyl (OH-)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.
DBC i4 Center Deshbandhu College University of Delhi Kalkaji New Delhi 110019 India
Department of Biotechnology Amity University Kolkata 700135 India
Department of Botany Hansraj College University of Delhi New Delhi 110007 India
Department of Botany Sri Venkateswara College University of Delhi Delhi 110021 India
School of Agricultural Sciences K R Mangalam University Sohna Rural Haryana 122103 India
Zobrazit více v PubMed
Mehta S., James D., Reddy M.K. Omics Technologies for Abiotic Stress Tolerance in Plants: Current Status and Prospects. In: Wani S., editor. Recent Approaches in Omics for Plant Resilience to Climate Change. Springer; Cham, Switzerland: 2019. pp. 1–34. DOI
Mehta S., Singh B., Patra A., Islam M. In: Databases: A Weapon from the Arsenal of Bioinformatics for Plant Abiotic Stress Research. In Recent Approaches in Omics for Plant Resilience to Climate Change. Wani S., editor. Springer; Cham, Switzerland: 2019. pp. 135–169. DOI
Ortiz-Bobea A., Ault T.R., Carrillo C.M., Chambers R.G., Lobell D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change. 2021;11:306–312. doi: 10.1038/s41558-021-01000-1. DOI
Wang J., Vanga S., Saxena R., Orsat V., Raghavan V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate. 2018;6:41. doi: 10.3390/cli6020041. DOI
Nogia P., Sidhu G.K., Mehrotra R., Mehrotra S. Capturing atmospheric carbon: Biological and nonbiological methods. Int. J. Low-Carbon Technol. 2016;11:266–274. doi: 10.1093/ijlct/ctt077. DOI
Abid M., Scheffran J., Schneider U.A., Ashfaq M. Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth Syst. Dyn. 2015;6:225–243. doi: 10.5194/esd-6-225-2015. DOI
Zilli M., Scarabello M., Soterroni A.C., Valin H., Mosnier A., Leclère D., Havlík P., Kraxner F., Lopes M.A., Ramos F.M. The impact of climate change on Brazil’s agriculture. Sci. Total Environ. 2020;740:139384. doi: 10.1016/j.scitotenv.2020.139384. PubMed DOI
Rahim S., Puay T.G. The impact of climate on economic growth in Malaysia. J. Adv. Res. Bus. Manag. Stud. 2017;6:108–119.
Kilicarslan Z., Dumrul Y. Economic Impacts of Climate Change on Agriculture: Empirical Evidence From The ARDL Approach for Turkey. Pressacademia. 2017;6:336–347. doi: 10.17261/Pressacademia.2017.766. DOI
WANG J., HUANG J., YANG J. Overview of Impacts of Climate Change and Adaptation in China’s Agriculture. J. Integr. Agric. 2014;13:1–17. doi: 10.1016/S2095-3119(13)60588-2. DOI
Chandio A.A., Jiang Y., Rehman A., Rauf A. Short and long-run impacts of climate change on agriculture: An empirical evidence from China. Int. J. Clim. Change Strateg. Manag. 2020;12:201–221. doi: 10.1108/IJCCSM-05-2019-0026. DOI
Gupta R., Mishra A. Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India. Agric. Syst. 2019;173:1–11. doi: 10.1016/j.agsy.2019.01.009. DOI
Pathak T., Maskey M., Dahlberg J., Kearns F., Bali K., Zaccaria D. Climate Change Trends and Impacts on California Agriculture: A Detailed Review. Agronomy. 2018;8:25. doi: 10.3390/agronomy8030025. DOI
Nguyen C.T., Scrimgeour F. Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis. Agric. Econ. 2022;53:37–51. doi: 10.1111/agec.12677. DOI
Ait-El-Mokhtar M., Boutasknit A., Ben-Laouane R., Anli M., El Amerany F., Toubali S., Lahbouki S., Wahbi S., Meddich A. Research Anthology on Environmental and Societal Impacts of Climate Change. IGI Global; Hershey, PA, USA: 2022. Vulnerability of Oasis Agriculture to Climate Change in Morocco; pp. 1195–1219. DOI
Affoh R., Zheng H., Dangui K., Dissani B.M. The Impact of Climate Variability and Change on Food Security in Sub-Saharan Africa: Perspective from Panel Data Analysis. Sustainability. 2022;14:759. doi: 10.3390/su14020759. DOI
Mall R.K., Singh R., Gupta A., Srinivasan G., Rathore L.S. Impact of climate change on Indian agriculture: A review. Clim. Change. 2006;78:445–478. doi: 10.1007/s10584-005-9042-x. DOI
Lal S.K., Kumar S., Sheri V., Mehta S., Varakumar P., Ram B., Borphukan B., James D., Fartyal D., Reddy M.K. Seed Priming: An Emerging Technology to Impart Abiotic Stress Tolerance in Crop Plants. In: Rakshit A., Singh H., editors. Advances in Seed Priming. Springer; Singapore: 2018. pp. 41–50. DOI
Khan M.I.R., Khan N.A. Reactive Oxygen Species and Antioxidant Systems in Plants. Springer; Singapore: 2017.
Khan T.A., Yusuf M., Ahmad A., Bashir Z., Saeed T., Fariduddin Q., Hayat S., Mock H.-P., Wu T. Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chem. 2019;289:500–511. doi: 10.1016/j.foodchem.2019.03.029. PubMed DOI
Gao J.-P., Chao D.-Y., Lin H.-X. Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice. J. Integr. Plant Biol. 2007;49:742–750. doi: 10.1111/j.1744-7909.2007.00495.x. DOI
Li Z., Wakao S., Fischer B.B., Niyogi K.K. Sensing and Responding to Excess Light. Annu. Rev. Plant Biol. 2009;60:239–260. doi: 10.1146/annurev.arplant.58.032806.103844. PubMed DOI
Foyer C.H., Ruban A.V., Noctor G. Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochem. J. 2017;474:877–883. doi: 10.1042/BCJ20160814. PubMed DOI PMC
Noctor G., Reichheld J.-P., Foyer C.H. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 2018;80:3–12. doi: 10.1016/j.semcdb.2017.07.013. PubMed DOI
Lamotte O., Bertoldo J.B., Besson-Bard A., Rosnoblet C., Aimé S., Hichami S., Terenzi H., Wendehenne D. Protein S-nitrosylation: Specificity and identification strategies in plants. Front. Chem. 2014;2:114. doi: 10.3389/fchem.2014.00114. PubMed DOI PMC
Choudhary A., Kumar A., Kaur N. ROS and oxidative burst: Roots in plant development. Plant Divers. 2020;42:33–43. doi: 10.1016/j.pld.2019.10.002. PubMed DOI PMC
del Río L.A. ROS and RNS in plant physiology: An overview. J. Exp. Bot. 2015;66:2827–2837. doi: 10.1093/jxb/erv099. PubMed DOI
Lushchak V.I. Free radicals, reactive oxygen species, oxidative stresses and their classifications. Ukr. Biochem. J. 2015;87:11–18. doi: 10.15407/ubj87.06.011. PubMed DOI
Mignolet-Spruyt L., Xu E., Idänheimo N., Hoeberichts F.A., Mühlenbock P., Brosché M., Van Breusegem F., Kangasjärvi J. Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 2016;67:3831–3844. doi: 10.1093/jxb/erw080. PubMed DOI
Foyer C.H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 2018;154:134–142. doi: 10.1016/j.envexpbot.2018.05.003. PubMed DOI PMC
Karpinska B., Zhang K., Rasool B., Pastok D., Morris J., Verrall S.R., Hedley P.E., Hancock R.D., Foyer C.H. The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance. Plant Cell Environ. 2018;41:1083–1097. doi: 10.1111/pce.12960. PubMed DOI PMC
Nath O., Singh A., Singh I.K. In-Silico Drug discovery approach targeting receptor tyrosine kinase-like orphan receptor 1 for cancer treatment. Sci. Rep. 2017;7:1029. doi: 10.1038/s41598-017-01254-w. PubMed DOI PMC
Sewelam N., Kazan K., Schenk P.M. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. Front. Plant Sci. 2016;7:187. doi: 10.3389/fpls.2016.00187. PubMed DOI PMC
Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development. Development. 2018;145:dev164376. doi: 10.1242/dev.164376. PubMed DOI
Navrot N., Rouhier N., Gelhaye E., Jacquot J.-P. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 2007;129:185–195. doi: 10.1111/j.1399-3054.2006.00777.x. DOI
Dvořák P., Krasylenko Y., Zeiner A., Šamaj J., Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. Front. Plant Sci. 2021;11:618835. doi: 10.3389/fpls.2020.618835. PubMed DOI PMC
Garg N., Manchanda G. ROS generation in plants: Boon or bane? Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2009;143:81–96. doi: 10.1080/11263500802633626. DOI
Quan L.-J., Zhang B., Shi W.-W., Li H.-Y. Hydrogen Peroxide in Plants: A Versatile Molecule of the Reactive Oxygen Species Network. J. Integr. Plant Biol. 2008;50:2–18. doi: 10.1111/j.1744-7909.2007.00599.x. PubMed DOI
Ozgur R., Turkan I., Uzilday B., Sekmen A.H. Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana. J. Exp. Bot. 2014;65:1377–1390. doi: 10.1093/jxb/eru034. PubMed DOI PMC
Nappi A.J., Vass E. Hydroxyl radical production by ascorbate and hydrogen peroxide. Neurotox. Res. 2000;2:343–355. doi: 10.1007/BF03033342. DOI
Signorelli S., Coitiño E.L., Borsani O., Monza J. Molecular Mechanisms for the Reaction Between • OH Radicals and Proline: Insights on the Role as Reactive Oxygen Species Scavenger in Plant Stress. J. Phys. Chem. B. 2014;118:37–47. doi: 10.1021/jp407773u. PubMed DOI
Klotz L.-O., Kröncke K.-D., Sies H. Singlet oxygen-induced signaling effects in mammalian cells. Photochem. Photobiol. Sci. 2003;2:88–94. doi: 10.1039/B210750C. PubMed DOI
Triantaphylidès C., Havaux M. Singlet oxygen in plants: Production, detoxification and signaling. Trends Plant Sci. 2009;14:219–228. doi: 10.1016/j.tplants.2009.01.008. PubMed DOI
Hideg É., Barta C., Kálai T., Vass I., Hideg K., Asada K. Detection of Singlet Oxygen and Superoxide with Fluorescent Sensors in Leaves Under Stress by Photoinhibition or UV Radiation. Plant Cell Physiol. 2002;43:1154–1164. doi: 10.1093/pcp/pcf145. PubMed DOI
Tripathy B.C., Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 2012;7:1621–1633. doi: 10.4161/psb.22455. PubMed DOI PMC
Havaux M. Carotenoid oxidation products as stress signals in plants. Plant J. 2014;79:597–606. doi: 10.1111/tpj.12386. PubMed DOI
Kohli S.K., Khanna K., Bhardwaj R., Abd_Allah E.F., Ahmad P., Corpas F.J. Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants. 2019;8:641. doi: 10.3390/antiox8120641. PubMed DOI PMC
Sachdev S., Ansari S.A., Ansari M.I., Fujita M., Hasanuzzaman M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants. 2021;10:277. doi: 10.3390/antiox10020277. PubMed DOI PMC
Breygina M., Klimenko E. ROS and Ions in Cell Signaling during Sexual Plant Reproduction. Int. J. Mol. Sci. 2020;21:9476. doi: 10.3390/ijms21249476. PubMed DOI PMC
Kiyono H., Katano K., Suzuki N. Links between Regulatory Systems of ROS and Carbohydrates in Reproductive Development. Plants. 2021;10:1652. doi: 10.3390/plants10081652. PubMed DOI PMC
Luo L., He Y., Zhao Y., Xu Q., Wu J., Ma H., Guo H., Bai L., Zuo J., Zhou J.-M., et al. Regulation of mitochondrial NAD pool via NAD+ transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis. Sci. China Life Sci. 2019;62:991–1002. doi: 10.1007/s11427-019-9563-y. PubMed DOI
Zhao Y., Yu H., Zhou J.-M., Smith S.M., Li J. Malate Circulation: Linking Chloroplast Metabolism to Mitochondrial ROS. Trends Plant Sci. 2020;25:446–454. doi: 10.1016/j.tplants.2020.01.010. PubMed DOI
Locato V., Cimini S., De Gara L. ROS and redox balance as multifaceted players of cross-tolerance: Epigenetic and retrograde control of gene expression. J. Exp. Bot. 2018;69:3373–3391. doi: 10.1093/jxb/ery168. PubMed DOI
Giacomelli L., Masi A., Ripoll D.R., Lee M.J., van Wijk K.J. Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol. Biol. 2007;65:627–644. doi: 10.1007/s11103-007-9227-y. PubMed DOI
Maruta T., Noshi M., Tanouchi A., Tamoi M., Yabuta Y., Yoshimura K., Ishikawa T., Shigeoka S. H2O2-triggered Retrograde Signaling from Chloroplasts to Nucleus Plays Specific Role in Response to Stress. J. Biol. Chem. 2012;287:11717–11729. doi: 10.1074/jbc.M111.292847. PubMed DOI PMC
Maruta T., Tanouchi A., Tamoi M., Yabuta Y., Yoshimura K., Ishikawa T., Shigeoka S. Arabidopsis Chloroplastic Ascorbate Peroxidase Isoenzymes Play a Dual Role in Photoprotection and Gene Regulation under Photooxidative Stress. Plant Cell Physiol. 2010;51:190–200. doi: 10.1093/pcp/pcp177. PubMed DOI
Awad J., Stotz H.U., Fekete A., Krischke M., Engert C., Havaux M., Berger S., Mueller M.J. 2-Cysteine Peroxiredoxins and Thylakoid Ascorbate Peroxidase Create a Water-Water Cycle That Is Essential to Protect the Photosynthetic Apparatus under High Light Stress Conditions. Plant Physiol. 2015;167:1592–1603. doi: 10.1104/pp.114.255356. PubMed DOI PMC
Broda M., Van Aken O. Methods in Molecular Biology. Volume 1743. Humana Press; Clifton, NJ, USA: 2018. Studying Retrograde Signaling in Plants; pp. 73–85. PubMed
Lin Y.-P., Lee T., Tanaka A., Charng Y. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover. Plant J. 2014;80:14–26. doi: 10.1111/tpj.12611. PubMed DOI
Carmody M., Crisp P.A., D’Alessandro S., Ganguly D., Gordon M., Havaux M., Albrecht-Borth V., Pogson B.J. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation. Plant Physiol. 2016;171:1734–1749. doi: 10.1104/pp.16.00404. PubMed DOI PMC
Kim C., Apel K. 1O2-Mediated and EXECUTER-Dependent Retrograde Plastid-to-Nucleus Signaling in Norflurazon-Treated Seedlings of Arabidopsis thaliana. Mol. Plant. 2013;6:1580–1591. doi: 10.1093/mp/sst020. PubMed DOI PMC
Ugalde J.M., Fuchs P., Nietzel T., Cutolo E.A., Homagk M., Vothknecht U.C., Holuigue L., Schwarzländer M., Müller-Schüssele S.J., Meyer A.J. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and E GSH in other subcellular compartments. Plant Physiol. 2021;186:125–141. doi: 10.1093/plphys/kiaa095. PubMed DOI PMC
Xiao Y., Savchenko T., Baidoo E.E.K., Chehab W.E., Hayden D.M., Tolstikov V., Corwin J.A., Kliebenstein D.J., Keasling J.D., Dehesh K. Retrograde Signaling by the Plastidial Metabolite MEcPP Regulates Expression of Nuclear Stress-Response Genes. Cell. 2012;149:1525–1535. doi: 10.1016/j.cell.2012.04.038. PubMed DOI
Castro B., Citterico M., Kimura S., Stevens D.M., Wrzaczek M., Coaker G. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat. Plants. 2021;7:403–412. doi: 10.1038/s41477-021-00887-0. PubMed DOI PMC
Estavillo G.M., Crisp P.A., Pornsiriwong W., Wirtz M., Collinge D., Carrie C., Giraud E., Whelan J., David P., Javot H., et al. Evidence for a SAL1-PAP Chloroplast Retrograde Pathway That Functions in Drought and High Light Signaling in Arabidopsis. Plant Cell. 2011;23:3992–4012. doi: 10.1105/tpc.111.091033. PubMed DOI PMC
Noren L., Kindgren P., Stachula P., Ruhl M., Eriksson M., Hurry V., Strand A. Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth. Plant Physiol. 2016;171:1392–1406. doi: 10.1104/pp.16.00374. PubMed DOI PMC
Xie X., He Z., Chen N., Tang Z., Wang Q., Cai Y. The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant. Biomed. Res. Int. 2019;2019:9732325. doi: 10.1155/2019/9732325. PubMed DOI PMC
Tikkanen M., Gollan P.J., Suorsa M., Kangasjärvi S., Aro E.-M. STN7 Operates in Retrograde Signaling through Controlling Redox Balance in the Electron Transfer Chain. Front. Plant Sci. 2012;3:277. doi: 10.3389/fpls.2012.00277. PubMed DOI PMC
Klein P., Seidel T., Stöcker B., Dietz K.-J. The membrane-tethered transcription factor ANAC089 serves as redox-dependent suppressor of stromal ascorbate peroxidase gene expression. Front. Plant Sci. 2012;3:247. doi: 10.3389/fpls.2012.00247. PubMed DOI PMC
Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–498. doi: 10.1016/j.tplants.2004.08.009. PubMed DOI
Yu Q., Sun L., Jin H., Chen Q., Chen Z., Xu M. Lead-Induced Nitric Oxide Generation Plays a Critical Role in Lead Uptake by Pogonatherum crinitum Root Cells. Plant Cell Physiol. 2012;53:1728–1736. doi: 10.1093/pcp/pcs116. PubMed DOI
Foyer C.H., Karpinska B., Krupinska K. The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: A hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20130226. doi: 10.1098/rstb.2013.0226. PubMed DOI PMC
Phukan U.J., Jeena G.S., Shukla R.K. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Front. Plant Sci. 2016;7:760. doi: 10.3389/fpls.2016.00760. PubMed DOI PMC
Dietzel L., Gläßer C., Liebers M., Hiekel S., Courtois F., Czarnecki O., Schlicke H., Zubo Y., Börner T., Mayer K., et al. Identification of Early Nuclear Target Genes of Plastidial Redox Signals that Trigger the Long-Term Response of Arabidopsis to Light Quality Shifts. Mol. Plant. 2015;8:1237–1252. doi: 10.1016/j.molp.2015.03.004. PubMed DOI
Virdi K.S., Wamboldt Y., Kundariya H., Laurie J.D., Keren I., Kumar K.R.S., Block A., Basset G., Luebker S., Elowsky C., et al. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development. Mol. Plant. 2016;9:245–260. doi: 10.1016/j.molp.2015.10.011. PubMed DOI
Radwan D.E.M., Mohamed A.K., Fayez K.A., Abdelrahman A.M. Oxidative stress caused by Basagran® herbicide is altered by salicylic acid treatments in peanut plants. Heliyon. 2019;5:e01791. doi: 10.1016/j.heliyon.2019.e01791. PubMed DOI PMC
Steffens B. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front. Plant Sci. 2014;5:685. doi: 10.3389/fpls.2014.00685. PubMed DOI PMC
Choudhury F.K., Rivero R.M., Blumwald E., Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90:856–867. doi: 10.1111/tpj.13299. PubMed DOI
Mittler R. ROS Are Good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI
Dong C.-H., Zolman B.K., Bartel B., Lee B., Stevenson B., Agarwal M., Zhu J.-K. Disruption of Arabidopsis CHY1 Reveals an Important Role of Metabolic Status in Plant Cold Stress Signaling. Mol. Plant. 2009;2:59–72. doi: 10.1093/mp/ssn063. PubMed DOI PMC
Ma X., Wang W., Bittner F., Schmidt N., Berkey R., Zhang L., King H., Zhang Y., Feng J., Wen Y., et al. Dual and Opposing Roles of Xanthine Dehydrogenase in Defense-Associated Reactive Oxygen Species Metabolism in Arabidopsis. Plant Cell. 2016;28:1108–1126. doi: 10.1105/tpc.15.00880. PubMed DOI PMC
Ivanova A., Law S.R., Narsai R., Duncan O., Lee J.-H., Zhang B., Van Aken O., Radomiljac J.D., van der Merwe M., Yi K., et al. A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1a Expression in Arabidopsis. Plant Physiol. 2014;165:1233–1254. doi: 10.1104/pp.114.237495. PubMed DOI PMC
Gechev T., Petrov V. Reactive Oxygen Species and Abiotic Stress in Plants. Int. J. Mol. Sci. 2020;21:7433. doi: 10.3390/ijms21207433. PubMed DOI PMC
Bailly C. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem. J. 2019;476:3019–3032. doi: 10.1042/BCJ20190159. PubMed DOI
Hajihashemi S., Skalicky M., Brestic M., Pavla V. Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiol. Biochem. 2020;154:657–664. doi: 10.1016/j.plaphy.2020.07.022. PubMed DOI
Gong F., Yao Z., Liu Y., Sun M., Peng X. H2O2 response gene 1/2 are novel sensors or responders of H2O2 and involve in maintaining embryonic root meristem activity in Arabidopsis thaliana. Plant Sci. 2021;310:110981. doi: 10.1016/j.plantsci.2021.110981. PubMed DOI
Farooq M.A., Zhang X., Zafar M.M., Ma W., Zhao J. Roles of Reactive Oxygen Species and Mitochondria in Seed Germination. Front. Plant Sci. 2021;12 doi: 10.3389/fpls.2021.781734. PubMed DOI PMC
Dahal K., Vanlerberghe G.C. Alternative oxidase respiration maintains both mitochondrial and chloroplast function during drought. New Phytol. 2017;213:560–571. doi: 10.1111/nph.14169. PubMed DOI
Sun X., Feng P., Xu X., Guo H., Ma J., Chi W., Lin R., Lu C., Zhang L. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat. Commun. 2011;2:477. doi: 10.1038/ncomms1486. PubMed DOI
León P., Gregorio J., Cordoba E. ABI4 and its role in chloroplast retrograde communication. Front. Plant Sci. 2013;3 doi: 10.3389/fpls.2012.00304. PubMed DOI PMC
Zandalinas S.I., Mittler R., Balfagón D., Arbona V., Gómez-Cadenas A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018;162 doi: 10.1111/ppl.12540. PubMed DOI
Suzuki N., Bassil E., Hamilton J.S., Inupakutika M.A., Zandalinas S.I., Tripathy D., Luo Y., Dion E., Fukui G., Kumazaki A., et al. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress. PLoS ONE. 2016;11:e0147625. doi: 10.1371/journal.pone.0147625. PubMed DOI PMC
Vanderauwera S., Vandenbroucke K., Inze A., van de Cotte B., Muhlenbock P., De Rycke R., Naouar N., Van Gaever T., Van Montagu M.C.E., Van Breusegem F. AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2012;109:20113–20118. doi: 10.1073/pnas.1217516109. PubMed DOI PMC
Martí M.C., Olmos E., Calvete J.J., Díaz I., Barranco-Medina S., Whelan J., Lázaro J.J., Sevilla F., Jiménez A. Mitochondrial and Nuclear Localization of a Novel Pea Thioredoxin: Identification of Its Mitochondrial Target Proteins. Plant Physiol. 2009;150:646–657. doi: 10.1104/pp.109.138073. PubMed DOI PMC
Yoshida K., Noguchi K., Motohashi K., Hisabori T. Systematic Exploration of Thioredoxin Target Proteins in Plant Mitochondria. Plant Cell Physiol. 2013;54:875–892. doi: 10.1093/pcp/pct037. PubMed DOI
Gelhaye E., Rouhier N., Navrot N., Jacquot J.P. The plant thioredoxin system. Cell. Mol. Life Sci. 2005;62:24–35. doi: 10.1007/s00018-004-4296-4. PubMed DOI PMC
Viola I.L., Güttlein L.N., Gonzalez D.H. Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family. Plant Physiol. 2013;162:1434–1447. doi: 10.1104/pp.113.216416. PubMed DOI PMC
Calderón A., Ortiz-Espín A., Iglesias-Fernández R., Carbonero P., Pallardó F.V., Sevilla F., Jiménez A. Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture. Redox Biol. 2017;11:688–700. doi: 10.1016/j.redox.2017.01.018. PubMed DOI PMC
Hasanuzzaman M., Nahar K., Anee T.I., Fujita M. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants. 2017;23:249–268. doi: 10.1007/s12298-017-0422-2. PubMed DOI PMC
Kumar S., Trivedi P.K. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants. Front. Plant Sci. 2018;9:751. doi: 10.3389/fpls.2018.00751. PubMed DOI PMC
Liebthal M., Maynard D., Dietz K.-J. Peroxiredoxins and Redox Signaling in Plants. Antioxid. Redox Signal. 2018;28:609–624. doi: 10.1089/ars.2017.7164. PubMed DOI PMC
Hasanuzzaman M., Raihan M.R.H., Masud A.A.C., Rahman K., Nowroz F., Rahman M., Nahar K., Fujita M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021;22:9326. doi: 10.3390/ijms22179326. PubMed DOI PMC
Garcia L., Welchen E., Gey U., Arce A.L., Steinebrunner I., Gonzalez D.H. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis. Plant Cell Environ. 2016;39:628–644. doi: 10.1111/pce.12647. PubMed DOI
Chen S., Liu A., Zhang S., Li C., Chang R., Liu D., Ahammed G.J., Lin X. Overexpression of mitochondrial uncoupling protein conferred resistance to heat stress and Botrytis cinerea infection in tomato. Plant Physiol. Biochem. 2013;73:245–253. doi: 10.1016/j.plaphy.2013.10.002. PubMed DOI
Barreto P., Yassitepe J.E.C.T., Wilson Z.A., Arruda P. Mitochondrial Uncoupling Protein 1 Overexpression Increases Yield in Nicotiana tabacum under Drought Stress by Improving Source and Sink Metabolism. Front. Plant Sci. 2017;8:1836. doi: 10.3389/fpls.2017.01836. PubMed DOI PMC
Dahal K., Martyn G.D., Vanlerberghe G.C. Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a nonenergy conserving respiratory electron sink. New Phytol. 2015;208:382–395. doi: 10.1111/nph.13479. PubMed DOI
Su T., Li W., Wang P., Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. Front. Plant Sci. 2019;10:705. doi: 10.3389/fpls.2019.00705. PubMed DOI PMC
Walter P., Ron D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science. 2011;334:1081–1086. doi: 10.1126/science.1209038. PubMed DOI
Liu J., Howell S.H. Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol. 2016;211:418–428. doi: 10.1111/nph.13915. PubMed DOI
Kerchev P., Waszczak C., Lewandowska A., Willems P., Shapiguzov A., Li Z., Alseekh S., Mühlenbock P., Hoeberichts F.A., Huang J., et al. Lack of GLYCOLATE OXIDASE1, but Not GLYCOLATE OXIDASE2, Attenuates the Photorespiratory Phenotype of CATALASE2-Deficient Arabidopsis. Plant Physiol. 2016;171:1704–1719. doi: 10.1104/pp.16.00359. PubMed DOI PMC
del Río L.A., López-Huertas E. ROS Generation in Peroxisomes and its Role in Cell Signaling. Plant Cell Physiol. 2016;57:pcw076. doi: 10.1093/pcp/pcw076. PubMed DOI
Tenhaken R. Cell wall remodeling under abiotic stress. Front. Plant Sci. 2015;5:771. doi: 10.3389/fpls.2014.00771. PubMed DOI PMC
Kurusu T., Kuchitsu K., Tada Y. Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front. Plant Sci. 2015;6:427. doi: 10.3389/fpls.2015.00427. PubMed DOI PMC
Marino D., Dunand C., Puppo A., Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci. 2012;17:9–15. doi: 10.1016/j.tplants.2011.10.001. PubMed DOI
Dmitrieva V.A., Tyutereva E.V., Voitsekhovskaja O.V. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int. J. Mol. Sci. 2020;21:3237. doi: 10.3390/ijms21093237. PubMed DOI PMC
Zhu J., Lee B.-H., Dellinger M., Cui X., Zhang C., Wu S., Nothnagel E.A., Zhu J.-K. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J. 2010;63:128–140. doi: 10.1111/j.1365-313X.2010.04227.x. PubMed DOI PMC
Endler A., Kesten C., Schneider R., Zhang Y., Ivakov A., Froehlich A., Funke N., Persson S. A Mechanism for Sustained Cellulose Synthesis during Salt Stress. Cell. 2015;162:1353–1364. doi: 10.1016/j.cell.2015.08.028. PubMed DOI
Bhattacharjee S. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr. Sci. 2005;89:1113–1121.
MILLER G., SUZUKI N., CIFTCI-YILMAZ S., MITTLER R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33:453–467. doi: 10.1111/j.1365-3040.2009.02041.x. PubMed DOI
Foyer C.H., Noctor G. Stress-triggered redox signalling: What’s in pROSpect? Plant Cell Environ. 2016;39:951–964. doi: 10.1111/pce.12621. PubMed DOI
Zinn K.E., Tunc-Ozdemir M., Harper J.F. Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 2010;61:1959–1968. doi: 10.1093/jxb/erq053. PubMed DOI PMC
Savchenko G.E., Klyuchareva E.A., Abramchik L.M., Serdyuchenko E.V. Effect of Periodic Heat Shock on the Inner Membrane System of Etioplasts. Russ. J. Plant Physiol. 2002;49:349–359. doi: 10.1023/A:1015592902659. DOI
Wang G.P., Zhang X.Y., Li F., Luo Y., Wang W. Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica. 2010;48:117–126. doi: 10.1007/s11099-010-0016-5. DOI
Liu X., Huang B. Heat Stress Injury in Relation to Membrane Lipid Peroxidation in Creeping Bentgrass. Crop. Sci. 2000;40:503. doi: 10.2135/cropsci2000.402503x. DOI
Ashraf M., Harris P.J.C. Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches. Food Products Press; New York, NY, USA: 2005.
Li M., Kim C. Chloroplast ROS and stress signaling. Plant Commun. 2022;3:100264. doi: 10.1016/j.xplc.2021.100264. PubMed DOI PMC
Zhang R.D., Zhou Y.F., Yue Z.X., Chen X.F., Cao X., Xu X.X., Xing Y.F., Jiang B., Ai X.Y., Huang R.D. Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica. 2019;57:1076–1083. doi: 10.32615/ps.2019.124. DOI
Maestri E., Klueva N., Perrotta C., Gulli M., Nguyen H.T., Marmiroli N. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 2002;48:667–681. doi: 10.1023/A:1014826730024. PubMed DOI
Ahammed G.J., Li X., Zhou J., Zhou Y.-H., Yu J.-Q. Plant Hormones under Challenging Environmental Factors. Springer; Dordrecht, The Netherlands: 2016. Role of Hormones in Plant Adaptation to Heat Stress; pp. 1–21.
Foyer C.H., Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 2003;119:355–364. doi: 10.1034/j.1399-3054.2003.00223.x. DOI
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012;2012:1–26. doi: 10.1155/2012/217037. DOI
Bela K., Horváth E., Gallé Á., Szabados L., Tari I., Csiszár J. Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses. J. Plant Physiol. 2015;176:192–201. doi: 10.1016/j.jplph.2014.12.014. PubMed DOI
Caverzan A., Piasecki C., Chavarria G., Stewart C., Vargas L. Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides. Int. J. Mol. Sci. 2019;20:1086. doi: 10.3390/ijms20051086. PubMed DOI PMC
Apel K., Hirt H. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI
Murshed R., Lopez-Lauri F., Sallanon H. Microplate quantification of enzymes of the plant ascorbate–glutathione cycle. Anal. Biochem. 2008;383:320–322. doi: 10.1016/j.ab.2008.07.020. PubMed DOI
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. Role of proline under changing environments. Plant Signal. Behav. 2012;7:1456–1466. doi: 10.4161/psb.21949. PubMed DOI PMC
Kaur G., Asthir B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant. 2015;59:609–619. doi: 10.1007/s10535-015-0549-3. DOI
Nadarajah K.K. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020;21:5208. doi: 10.3390/ijms21155208. PubMed DOI PMC
Tavanti T.R., de Melo A.A., Moreira L.D.K., Sanchez D.E.J., dos Santos Silva R., da Silva R.M., dos Reis A.R. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. Plant Physiol. Biochem. 2021;160:386–396. doi: 10.1016/j.plaphy.2021.01.040. PubMed DOI
Ahmad P., Sarwat M., Sharma S. Reactive oxygen species, antioxidants and signaling in plants. J. Plant Biol. 2008;51:167–173. doi: 10.1007/BF03030694. DOI
Chu C.-C., Lee W.-C., Guo W.-Y., Pan S.-M., Chen L.-J., Li H., Jinn T.-L. A Copper Chaperone for Superoxide Dismutase That Confers Three Types of Copper/Zinc Superoxide Dismutase Activity in Arabidopsis. Plant Physiol. 2005;139:425–436. doi: 10.1104/pp.105.065284. PubMed DOI PMC
Soares C., Carvalho M.E.A., Azevedo R.A., Fidalgo F. Plants facing oxidative challenges—A little help from the antioxidant networks. Environ. Exp. Bot. 2019;161:4–25. doi: 10.1016/j.envexpbot.2018.12.009. DOI
Medina E., Kim S.-H., Yun M., Choi W.-G. Recapitulation of the Function and Role of ROS Generated in Response to Heat Stress in Plants. Plants. 2021;10:371. doi: 10.3390/plants10020371. PubMed DOI PMC
Dumont S., Rivoal J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. Front. Plant Sci. 2019;10:166. doi: 10.3389/fpls.2019.00166. PubMed DOI PMC
Zhang W., Jeon B.W., Assmann S.M. Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells. J. Exp. Bot. 2011;62:2371–2379. doi: 10.1093/jxb/erq424. PubMed DOI
Khan M., Samrana S., Zhang Y., Malik Z., Khan M.D., Zhu S. Reduced Glutathione Protects Subcellular Compartments From Pb-Induced ROS Injury in Leaves and Roots of Upland Cotton (Gossypium hirsutum L.) Front. Plant Sci. 2020;11 doi: 10.3389/fpls.2020.00412. PubMed DOI PMC
Gill S.S., Anjum N.A., Hasanuzzaman M., Gill R., Trivedi D.K., Ahmad I., Pereira E., Tuteja N. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 2013;70:204–212. doi: 10.1016/j.plaphy.2013.05.032. PubMed DOI
Anjum N.A., Gill S.S., Gill R., Hasanuzzaman M., Duarte A.C., Pereira E., Ahmad I., Tuteja R., Tuteja N. Metal/metalloid stress tolerance in plants: Role of ascorbate, its redox couple, and associated enzymes. Protoplasma. 2014;251:1265–1283. doi: 10.1007/s00709-014-0636-x. PubMed DOI
Ozyigit I.I., Filiz E., Vatansever R., Kurtoglu K.Y., Koc I., Öztürk M.X., Anjum N.A. Identification and Comparative Analysis of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches. Front. Plant Sci. 2016;7:301. doi: 10.3389/fpls.2016.00301. PubMed DOI PMC
Passaia G., Spagnolo Fonini L., Caverzan A., Jardim-Messeder D., Christoff A.P., Gaeta M.L., de Araujo Mariath J.E., Margis R., Margis-Pinheiro M. The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci. 2013;208:93–101. doi: 10.1016/j.plantsci.2013.03.017. PubMed DOI
Asada K. THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:601–639. doi: 10.1146/annurev.arplant.50.1.601. PubMed DOI
Chen G., Asada K. Ascorbate Peroxidase in Tea Leaves: Occurrence of Two Isozymes and the Differences in Their Enzymatic and Molecular Properties. Plant Cell Physiol. 1989;30:987–998. doi: 10.1093/oxfordjournals.pcp.a077844. DOI
Broad R.C., Bonneau J.P., Beasley J.T., Roden S., Sadowski P., Jewell N., Brien C., Berger B., Tako E., Glahn R.P., et al. Effect of Rice GDP-L-Galactose Phosphorylase Constitutive Overexpression on Ascorbate Concentration, Stress Tolerance, and Iron Bioavailability in Rice. Front. Plant Sci. 2020;11:595439. doi: 10.3389/fpls.2020.595439. PubMed DOI PMC
Broad R.C., Bonneau J.P., Hellens R.P., Johnson A.A.T. Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020;21:1790. doi: 10.3390/ijms21051790. PubMed DOI PMC
Koua D., Cerutti L., Falquet L., Sigrist C.J.A., Theiler G., Hulo N., Dunand C. PeroxiBase: A database with new tools for peroxidase family classification. Nucleic Acids Res. 2009;37:D261–D266. doi: 10.1093/nar/gkn680. PubMed DOI PMC
Sugimoto M., Oono Y., Gusev O., Matsumoto T., Yazawa T., Levinskikh M.A., Sychev V.N., Bingham G.E., Wheeler R., Hummerick M. Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight. BMC Plant Biol. 2014;14:4. doi: 10.1186/1471-2229-14-4. PubMed DOI PMC
Salinas A.E., Wong M.G. Glutathione S-transferases—A review. Curr. Med. Chem. 1999;6:279–309. PubMed
Zhao T., Singhal S.S., Piper J.T., Cheng J., Pandya U., Clark-Wronski J., Awasthi S., Awasthi Y.C. The Role of Human Glutathione S-Transferases hGSTA1-1 and hGSTA2-2 in Protection against Oxidative Stress. Arch. Biochem. Biophys. 1999;367:216–224. doi: 10.1006/abbi.1999.1277. PubMed DOI
Ologundudu F. Antioxidant enzymes and non-enzymatic antioxidants as defense mechanism of salinity stress in cowpea (Vigna unguiculata L. Walp)—Ife brown and Ife bpc. Bull. Natl. Res. Cent. 2021;45:152. doi: 10.1186/s42269-021-00615-w. DOI
Isah T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019;52:39. doi: 10.1186/s40659-019-0246-3. PubMed DOI PMC
Khare S., Singh N.B., Singh A., Hussain I., Niharika K., Yadav V., Bano C., Yadav R.K., Amist N. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 2020;63:203–216. doi: 10.1007/s12374-020-09245-7. DOI
Miyake C., Asada K. Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes Compound I of ascorbate peroxidase. Plant Cell Physiol. 1996;37:423–430. doi: 10.1093/oxfordjournals.pcp.a028963. DOI
Eltayeb A.E., Kawano N., Badawi G.H., Kaminaka H., Sanekata T., Shibahara T., Inanaga S., Tanaka K. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta. 2007;225:1255–1264. doi: 10.1007/s00425-006-0417-7. PubMed DOI
Khorobrykh S., Havurinne V., Mattila H., Tyystjärvi E. Oxygen and ROS in Photosynthesis. Plants. 2020;9:91. doi: 10.3390/plants9010091. PubMed DOI PMC
Xiao M., Li Z., Zhu L., Wang J., Zhang B., Zheng F., Zhao B., Zhang H., Wang Y., Zhang Z. The Multiple Roles of Ascorbate in the Abiotic Stress Response of Plants: Antioxidant, Cofactor, and Regulator. Front. Plant Sci. 2021;12:173. doi: 10.3389/fpls.2021.598173. PubMed DOI PMC
Qi C., Lin X., Li S., Liu L., Wang Z., Li Y., Bai R., Xie Q., Zhang N., Ren S., et al. SoHSC70 positively regulates thermotolerance by alleviating cell membrane damage, reducing ROS accumulation, and improving activities of antioxidant enzymes. Plant Sci. 2019;283:385–395. doi: 10.1016/j.plantsci.2019.03.003. PubMed DOI
Li Y., Cao X., Zhu Y., Yang X., Zhang K., Xiao Z., Wang H., Zhao J., Zhang L., Li G., et al. Osa-miR398b boosts H 2 O 2 production and rice blast disease-resistance via multiple superoxide dismutases. New Phytol. 2019;222 doi: 10.1111/nph.15678. PubMed DOI PMC
Karpinska B., Karlsson M., Schinkel H., Streller S., Süss K.-H., Melzer M., Wingsle G. A Novel Superoxide Dismutase with a High Isoelectric Point in Higher Plants. Expression, Regulation, and Protein Localization. Plant Physiol. 2001;126:1668–1677. doi: 10.1104/pp.126.4.1668. PubMed DOI PMC
Dumanović J., Nepovimova E., Natić M., Kuča K., Jaćević V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front. Plant Sci. 2021;11:2106. doi: 10.3389/fpls.2020.552969. PubMed DOI PMC
Giri J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 2011;6:1746–1751. doi: 10.4161/psb.6.11.17801. PubMed DOI PMC
Chen T.H.H., Murata N. Glycinebetaine: An effective protectant against abiotic stress in plants. Trends Plant Sci. 2008;13:499–505. doi: 10.1016/j.tplants.2008.06.007. PubMed DOI
Kumar P. Stress amelioration response of glycine betaine and Arbuscular mycorrhizal fungi in sorghum under Cr toxicity. PLoS ONE. 2021;16:e0253878. doi: 10.1371/journal.pone.0253878. PubMed DOI PMC
Nishizawa A., Yabuta Y., Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 2008;147:1251–1263. doi: 10.1104/pp.108.122465. PubMed DOI PMC
Hernandez-Marin E., Martínez A. Carbohydrates and Their Free Radical Scavenging Capability: A Theoretical Study. J. Phys. Chem. B. 2012;116:9668–9675. doi: 10.1021/jp304814r. PubMed DOI
Schneider T., Keller F. Raffinose in Chloroplasts is Synthesized in the Cytosol and Transported across the Chloroplast Envelope. Plant Cell Physiol. 2009;50:2174–2182. doi: 10.1093/pcp/pcp151. PubMed DOI
Couée I., Sulmon C., Gouesbet G., El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 2006;57:449–459. doi: 10.1093/jxb/erj027. PubMed DOI
Price J., Laxmi A., St. Martin S.K., Jang J.-C. Global Transcription Profiling Reveals Multiple Sugar Signal Transduction Mechanisms in Arabidopsis. Plant Cell. 2004;16:2128–2150. doi: 10.1105/tpc.104.022616. PubMed DOI PMC
Nishikawa F., Kato M., Hyodo H., Ikoma Y., Sugiura M., Yano M. Effect of sucrose on ascorbate level and expression of genes involved in the ascorbate biosynthesis and recycling pathway in harvested broccoli florets. J. Exp. Bot. 2004;56:65–72. doi: 10.1093/jxb/eri007. PubMed DOI
Savchenko T., Tikhonov K. Oxidative Stress-Induced Alteration of Plant Central Metabolism. Life. 2021;11:304. doi: 10.3390/life11040304. PubMed DOI PMC
Benaroudj N., Lee D.H., Goldberg A.L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 2001;276:24261–24267. doi: 10.1074/jbc.M101487200. PubMed DOI
Yang L., Zhao X., Zhu H., Paul M., Zu Y., Tang Z. Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Front. Plant Sci. 2014;5:570. doi: 10.3389/fpls.2014.00570. PubMed DOI PMC
Davis J.M., Loescher W.H. [14C]-Assimilate translocation in the light and dark in celery (Apium graveokns) leaves of different ages. Physiol. Plant. 1990;79:656–662. doi: 10.1111/j.1399-3054.1990.tb00040.x. PubMed DOI
Shen B., Jensen R.G., Bohnert H.J. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 1997;113:1177–1183. doi: 10.1104/pp.113.4.1177. PubMed DOI PMC
Rathor P., Borza T., Liu Y., Qin Y., Stone S., Zhang J., Hui J.P.M., Berrue F., Groisillier A., Tonon T., et al. Low Mannitol Concentrations in Arabidopsis thaliana Expressing Ectocarpus Genes Improve Salt Tolerance. Plants. 2020;9:1508. doi: 10.3390/plants9111508. PubMed DOI PMC
Noiraud N., Maurousset L., Lemoine R. Transport of polyols in higher plants. Plant Physiol. Biochem. 2001;39:717–728. doi: 10.1016/S0981-9428(01)01292-X. DOI
Kolarovič L., Valentovič P., Luxová M., Gašparíková O. Changes in antioxidants and cell damage in heterotrophic maize seedlings differing in drought sensitivity after exposure to short-term osmotic stress. Plant Growth Regul. 2009;59:21–26. doi: 10.1007/s10725-009-9384-x. DOI
Krasensky J., Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012;63:1593–1608. doi: 10.1093/jxb/err460. PubMed DOI PMC
Batista-Silva W., Heinemann B., Rugen N., Nunes-Nesi A., Araújo W.L., Braun H., Hildebrandt T.M. The role of amino acid metabolism during abiotic stress release. Plant Cell Environ. 2019;42:1630–1644. doi: 10.1111/pce.13518. PubMed DOI
Zechmann B. Subcellular distribution of ascorbate in plants. Plant Signal. Behav. 2011;6:360–363. doi: 10.4161/psb.6.3.14342. PubMed DOI PMC
Bilska K., Wojciechowska N., Alipour S., Kalemba E.M. Ascorbic Acid—The Little-Known Antioxidant in Woody Plants. Antioxidants. 2019;8:645. doi: 10.3390/antiox8120645. PubMed DOI PMC
Foyer C.H., Kyndt T., Hancock R.D. Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues. Antioxid. Redox Signal. 2020;32:463–485. doi: 10.1089/ars.2019.7819. PubMed DOI
Tausz M., Sircelj H., Grill D. The glutathione system as a stress marker in plant ecophysiology: Is a stress-response concept valid? J. Exp. Bot. 2004;55:1955–1962. doi: 10.1093/jxb/erh194. PubMed DOI
Li A.-N., Li S., Zhang Y.-J., Xu X.-R., Chen Y.-M., Li H.-B. Resources and Biological Activities of Natural Polyphenols. Nutrients. 2014;6:6020–6047. doi: 10.3390/nu6126020. PubMed DOI PMC
Sato M., Ramarathnam N., Suzuki Y., Ohkubo T., Takeuchi M., Ochi H. Varietal Differences in the Phenolic Content and Superoxide Radical Scavenging Potential of Wines from Different Sources. J. Agric. Food Chem. 1996;44:37–41. doi: 10.1021/jf950190a. DOI
Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants. 2021;10:118. doi: 10.3390/plants10010118. PubMed DOI PMC
Ríos J.-L., Giner R., Marín M., Recio M. A Pharmacological Update of Ellagic Acid. Planta Med. 2018;84 doi: 10.1055/a-0633-9492. PubMed DOI
Alfei S., Marengo B., Zuccari G. Oxidative Stress, Antioxidant Capabilities, and Bioavailability: Ellagic Acid or Urolithins? Antioxidants. 2020;9:707. doi: 10.3390/antiox9080707. PubMed DOI PMC
Parvin K., Nahar K., Hasanuzzaman M., Bhuyan M.H.M.B., Mohsin S.M., Fujita M. Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems. Plant Physiol. Biochem. 2020;150:109–120. doi: 10.1016/j.plaphy.2020.02.030. PubMed DOI
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC
Takahashi A., Ohnishi T. The significance of the study about the biological effects of solar ultraviolet radiation using the Exposed Facility on the International Space Station. Biol. Sci. Space. 2004;18:255–260. doi: 10.2187/bss.18.255. PubMed DOI
Agati G., Matteini P., Goti A., Tattini M. Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 2007;174:77–89. doi: 10.1111/j.1469-8137.2007.01986.x. PubMed DOI
Petrussa E., Braidot E., Zancani M., Peresson C., Bertolini A., Patui S., Vianello A. Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses. Int. J. Mol. Sci. 2013;14:14950–14973. doi: 10.3390/ijms140714950. PubMed DOI PMC
Kamal-Eldin A., Appelqvist L.A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31:671–701. doi: 10.1007/BF02522884. PubMed DOI
Traber M.G., Stevens J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011;51:1000–1013. doi: 10.1016/j.freeradbiomed.2011.05.017. PubMed DOI PMC
Abbasi A.-R., Hajirezaei M., Hofius D., Sonnewald U., Voll L.M. Specific Roles of α- and γ-Tocopherol in Abiotic Stress Responses of Transgenic Tobacco. Plant Physiol. 2007;143:1720–1738. doi: 10.1104/pp.106.094771. PubMed DOI PMC
Xiang N., Hu J., Wen T., Brennan M.A., Brennan C.S., Guo X. Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn ( Zea mays L.) seedlings. J. Sci. Food Agric. 2020;100:1694–1701. doi: 10.1002/jsfa.10184. PubMed DOI
Nisar N., Li L., Lu S., Khin N.C., Pogson B.J. Carotenoid Metabolism in Plants. Mol. Plant. 2015;8:68–82. doi: 10.1016/j.molp.2014.12.007. PubMed DOI
Su T., Wang P., Li H., Zhao Y., Lu Y., Dai P., Ren T., Wang X., Li X., Shao Q., et al. The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. J. Integr. Plant Biol. 2018;60 doi: 10.1111/jipb.12649. PubMed DOI
Yang Z., Mhamdi A., Noctor G. Analysis of catalase mutants underscores the essential role of CATALASE2 for plant growth and day length-dependent oxidative signalling. Plant Cell Environ. 2019;42:688–700. doi: 10.1111/pce.13453. PubMed DOI
Zhang S., Li C., Ren H., Zhao T., Li Q., Wang S., Zhang Y., Xiao F., Wang X. BAK1 Mediates Light Intensity to Phosphorylate and Activate Catalases to Regulate Plant Growth and Development. Int. J. Mol. Sci. 2020;21:1437. doi: 10.3390/ijms21041437. PubMed DOI PMC
Palma J.M., Mateos R.M., López-Jaramillo J., Rodríguez-Ruiz M., González-Gordo S., Lechuga-Sancho A.M., Corpas F.J. Plant catalases as NO and H2S targets. Redox Biol. 2020;34:101525. doi: 10.1016/j.redox.2020.101525. PubMed DOI PMC
Gohari G., Molaei S., Kheiry A., Ghafouri M., Razavi F., Lorenzo J.M., Juárez-Maldonado A. Exogenous application of proline and L-cysteine alleviates internal browning and maintains eating quality of cold stored flat ‘maleki’ peach fruits. Horticulturae. 2021;7:469. doi: 10.3390/horticulturae7110469. DOI
Abdelaal K.A.A., Attia K.A., Alamery S.F., El-Afry M.M., Ghazy A.I., Tantawy D.S., Al-Doss A.A., El-Shawy E.-S.E., Abu-Elsaoud A., Hafez Y.M. Exogenous Application of Proline and Salicylic Acid can Mitigate the Injurious Impacts of Drought Stress on Barley Plants Associated with Physiological and Histological Characters. Sustainability. 2020;12:1736. doi: 10.3390/su12051736. DOI
Molaei S., Soleimani A., Rabiei V., Razavi F. Impact of chitosan in combination with potassium sorbate treatment on chilling injury and quality attributes of pomegranate fruit during cold storage. J. Food Biochem. 2021;45:e13633. doi: 10.1111/jfbc.13633. PubMed DOI
Mittler R., Finka A., Goloubinoff P. How do plants feel the heat? Trends Biochem. Sci. 2012;37:118–125. doi: 10.1016/j.tibs.2011.11.007. PubMed DOI
Gilroy S., Suzuki N., Miller G., Choi W.-G., Toyota M., Devireddy A.R., Mittler R. A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 2014;19:623–630. doi: 10.1016/j.tplants.2014.06.013. PubMed DOI
Ouyang S.-Q., Liu Y.-F., Liu P., Lei G., He S.-J., Ma B., Zhang W.-K., Zhang J.-S., Chen S.-Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J. 2010;62:316–329. doi: 10.1111/j.1365-313X.2010.04146.x. PubMed DOI
Bargmann B.O.R., Laxalt A.M., Riet B.T., van Schooten B., Merquiol E., Testerink C., Haring M.A., Bartels D., Munnik T. Multiple PLDs Required for High Salinity and Water Deficit Tolerance in Plants. Plant Cell Physiol. 2009;50:78–89. doi: 10.1093/pcp/pcn173. PubMed DOI PMC
Guo L., Wang X. Crosstalk between Phospholipase D and Sphingosine Kinase in Plant Stress Signaling. Front. Plant Sci. 2012;3:51. doi: 10.3389/fpls.2012.00051. PubMed DOI PMC
Oda T., Hashimoto H., Kuwabara N., Akashi S., Hayashi K., Kojima C., Wong H.L., Kawasaki T., Shimamoto K., Sato M., et al. Structure of the N-terminal Regulatory Domain of a Plant NADPH Oxidase and Its Functional Implications. J. Biol. Chem. 2010;285:1435–1445. doi: 10.1074/jbc.M109.058909. PubMed DOI PMC
Huang H., Ullah F., Zhou D.-X., Yi M., Zhao Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019;10:193–198. doi: 10.3389/fpls.2019.00800. PubMed DOI PMC
Costello J.L., Kershaw C.J., Castelli L.M., Talavera D., Rowe W., Sims P.F.G., Ashe M.P., Grant C.M., Hubbard S.J., Pavitt G.D. Dynamic changes in eIF4F-mRNA interactions revealed by global analyses of environmental stress responses. Genome Biol. 2017;18:201. doi: 10.1186/s13059-017-1338-4. PubMed DOI PMC
Willems P., Mhamdi A., Stael S., Storme V., Kerchev P., Noctor G., Gevaert K., Van Breusegem F. The ROS wheel: Refining ROS transcriptional footprints. Plant Physiol. 2016;171:1720–1733. doi: 10.1104/pp.16.00420. PubMed DOI PMC
Delaney K.J., Xu R., Zhang J., Li Q.Q., Yun K.-Y., Falcone D.L., Hunt A.G. Calmodulin Interacts with and Regulates the RNA-Binding Activity of an Arabidopsis Polyadenylation Factor Subunit. Plant Physiol. 2006;140:1507. doi: 10.1104/pp.105.070672. PubMed DOI PMC
SCHMITZLINNEWEBER C., SMALL I. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci. 2008;13:663–670. doi: 10.1016/j.tplants.2008.10.001. PubMed DOI
Chung J.-S., Zhu J.-K., Bressan R.A., Hasegawa P.M., Shi H. Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. Plant J. 2007;53:554–565. doi: 10.1111/j.1365-313X.2007.03364.x. PubMed DOI PMC
de Jong M., van Breukelen B., Wittink F.R., Menke F.L.H., Weisbeek P.J., Ackerveken G. Van den Membrane-associated transcripts in Arabidopsis; their isolation and characterization by DNA microarray analysis and bioinformatics. Plant J. 2006;46:708–721. doi: 10.1111/j.1365-313X.2006.02724.x. PubMed DOI
Monzingo A.F., Dhaliwal S., Dutt-Chaudhuri A., Lyon A., Sadow J.H., Hoffman D.W., Robertus J.D., Browning K.S. The Structure of Eukaryotic Translation Initiation Factor-4E from Wheat Reveals a Novel Disulfide Bond. Plant Physiol. 2007;143:1504–1518. doi: 10.1104/pp.106.093146. PubMed DOI PMC
Gallie D.R. Eukaryotic Initiation Factor eIFiso4G1 and eIFiso4G2 Are Isoforms Exhibiting Distinct Functional Differences in Supporting Translation in Arabidopsis. J. Biol. Chem. 2016;291:1501–1513. doi: 10.1074/jbc.M115.692939. PubMed DOI PMC
Waszczak C., Akter S., Eeckhout D., Persiau G., Wahni K., Bodra N., Van Molle I., De Smet B., Vertommen D., Gevaert K., et al. Sulfenome mining in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2014;111:11545–11550. doi: 10.1073/pnas.1411607111. PubMed DOI PMC
Akter S., Huang J., Bodra N., De Smet B., Wahni K., Rombaut D., Pauwels J., Gevaert K., Carroll K., Van Breusegem F., et al. DYn-2 Based Identification of Arabidopsis Sulfenomes. Mol. Cell. Proteom. 2015;14:1183–1200. doi: 10.1074/mcp.M114.046896. PubMed DOI PMC
Meyer K., Köster T., Nolte C., Weinholdt C., Lewinski M., Grosse I., Staiger D. Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biol. 2017;18:204. doi: 10.1186/s13059-017-1332-x. PubMed DOI PMC
Waszczak C., Carmody M., Kangasjärvi J. Reactive Oxygen Species in Plant Signaling. Annu. Rev. Plant Biol. 2018;69:209–236. doi: 10.1146/annurev-arplant-042817-040322. PubMed DOI
Lin K.-F., Tsai M.-Y., Lu C.-A., Wu S.-J., Yeh C.-H. The roles of Arabidopsis HSFA2, HSFA4a, and HSFA7a in the heat shock response and cytosolic protein response. Bot. Stud. 2018;59:15. doi: 10.1186/s40529-018-0231-0. PubMed DOI PMC
Boraiah K.M., Basavaraj P.S., Harisha C.B., Kochewad S.A., Khapte P.S., Bhendarkar M.P., Kakade V.D., Rane J., Kulshreshtha N., Pathak H. Abiotic Stress Tolerant Crop Varieties, Livestock Breeds and Fish Species. Tech. Bull. 2021;32:1–83.
Calcium signalling in weeds under herbicide stress: An outlook
The captivating role of calcium in plant-microbe interaction