• Je něco špatně v tomto záznamu ?

A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors

D. Bohaciakova, M. Hruska-Plochan, R. Tsunemoto, WD. Gifford, SP. Driscoll, TD. Glenn, S. Wu, S. Marsala, M. Navarro, T. Tadokoro, S. Juhas, J. Juhasova, O. Platoshyn, D. Piper, V. Sheckler, D. Ditsworth, SL. Pfaff, M. Marsala,

. 2019 ; 10 (1) : 83. [pub] 20190312

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20022841

Grantová podpora
F32 NS093938 NINDS NIH HHS - United States

BACKGROUND: A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. METHODS: Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. RESULTS: In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2-6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. CONCLUSIONS: These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022841
003      
CZ-PrNML
005      
20201214124850.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s13287-019-1163-7 $2 doi
035    __
$a (PubMed)30867054
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Bohaciakova, Dasa $u Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA. Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Kamenice 3, 62500, Brno, Czech Republic.
245    12
$a A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors / $c D. Bohaciakova, M. Hruska-Plochan, R. Tsunemoto, WD. Gifford, SP. Driscoll, TD. Glenn, S. Wu, S. Marsala, M. Navarro, T. Tadokoro, S. Juhas, J. Juhasova, O. Platoshyn, D. Piper, V. Sheckler, D. Ditsworth, SL. Pfaff, M. Marsala,
520    9_
$a BACKGROUND: A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. METHODS: Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. RESULTS: In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2-6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. CONCLUSIONS: These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.
650    _2
$a buněčné linie $7 D002460
650    12
$a průtoková cytometrie $7 D005434
650    _2
$a lidé $7 D006801
650    _2
$a multipotentní kmenové buňky $x cytologie $7 D039902
650    _2
$a nervové kmenové buňky $x cytologie $7 D058953
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hruska-Plochan, Marian $u Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
700    1_
$a Tsunemoto, Rachel $u Gene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA. Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
700    1_
$a Gifford, Wesley D $u Gene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
700    1_
$a Driscoll, Shawn P $u Gene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
700    1_
$a Glenn, Thomas D $u Gene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
700    1_
$a Wu, Stephanie $u Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
700    1_
$a Marsala, Silvia $u Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
700    1_
$a Navarro, Michael $u Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
700    1_
$a Tadokoro, Takahiro $u Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
700    1_
$a Juhas, Stefan $u Institute of Animal Physiology and Genetics, v.v.i., AS CR, Liběchov, Czech Republic.
700    1_
$a Juhasova, Jana $u Institute of Animal Physiology and Genetics, v.v.i., AS CR, Liběchov, Czech Republic.
700    1_
$a Platoshyn, Oleksandr $u Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
700    1_
$a Piper, David $u Primary and Stem Cell Systems, Life Technologies (Thermo Fisher Scientific), 501 Charmany Drive, Madison, WI, 53719, USA.
700    1_
$a Sheckler, Vickie $u Sanford Stem Cell Clinical Center, University of California San Diego, La Jolla, CA, 92093, USA.
700    1_
$a Ditsworth, Dara $u Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
700    1_
$a Pfaff, Samuel L $u Gene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA. pfaff@salk.edu.
700    1_
$a Marsala, Martin $u Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA. mmarsala@ucsd.edu. Sanford Consortium for Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA. mmarsala@ucsd.edu.
773    0_
$w MED00188821 $t Stem cell research & therapy $x 1757-6512 $g Roč. 10, č. 1 (2019), s. 83
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30867054 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214124850 $b ABA008
999    __
$a ok $b bmc $g 1595160 $s 1113517
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 10 $c 1 $d 83 $e 20190312 $i 1757-6512 $m Stem cell research & therapy $n Stem Cell Res Ther $x MED00188821
GRA    __
$a F32 NS093938 $p NINDS NIH HHS $2 United States
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace