• Je něco špatně v tomto záznamu ?

Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia

P. Alánová, A. Chytilová, J. Neckář, J. Hrdlička, P. Míčová, K. Holzerová, M. Hlaváčková, K. Macháčková, F. Papoušek, J. Vašinová, D. Benák, O. Nováková, F. Kolář,

. 2017 ; 122 (6) : 1452-1461. [pub] 20170216

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18010796

Chronic hypoxia and exercise are natural stimuli that confer sustainable cardioprotection against ischemia-reperfusion (I/R) injury, but it is unknown whether they can act in synergy to enhance ischemic resistance. Inflammatory response mediated by tumor necrosis factor-α (TNF-α) plays a role in the infarct size limitation by continuous normobaric hypoxia (CNH), whereas exercise is associated with anti-inflammatory effects. This study was conducted to determine if exercise training performed under conditions of CNH (12% O2) affects myocardial ischemic resistance with respect to inflammatory and redox status. Adult male Wistar rats were assigned to one of the following groups: normoxic sedentary, normoxic trained, hypoxic sedentary, and hypoxic trained. ELISA and Western blot analysis, respectively, were used to quantify myocardial cytokines and the expression of TNF-α receptors, nuclear factor-κB (NF-κB), and selected components of related signaling pathways. Infarct size and arrhythmias were assessed in open-chest rats subjected to I/R. CNH increased TNF-α and interleukin-6 levels and the expression of TNF-α type 2 receptor, NF-κB, inducible nitric oxide synthase (iNOS), cytosolic phospholipase A2α, cyclooxygenase-2, manganese superoxide dismutase (MnSOD), and catalase. None of these effects occurred in the normoxic trained group, whereas exercise in hypoxia abolished or significantly attenuated CNH-induced responses, except for NF-κB, iNOS, and MnSOD. Both CNH and exercise reduced infarct size, but their combination provided the same degree of protection as CNH alone. In conclusion, exercise training does not amplify the cardioprotection conferred by CNH. High ischemic tolerance of the CNH hearts persists after exercise, possibly by maintaining the increased antioxidant capacity despite attenuating TNF-α-dependent protective signaling.NEW & NOTEWORTHYChronic hypoxia and regular exercise are natural stimuli that confer sustainable myocardial protection against acute ischemia-reperfusion injury. Signaling mediated by TNF-α via its type 2 receptor plays a role in the cardioprotective mechanism of chronic hypoxia. In the present study, we found that exercise training of rats during adaptation to hypoxia does not amplify the infarct size-limiting effect. Ischemia-resistant phenotype is maintained in the combined hypoxia-exercise setting despite exercise-induced attenuation of TNF-α-dependent protective signaling.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18010796
003      
CZ-PrNML
005      
20250312105613.0
007      
ta
008      
180404s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1152/japplphysiol.00671.2016 $2 doi
035    __
$a (PubMed)28209739
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Alánová, Petra $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and.
245    10
$a Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia / $c P. Alánová, A. Chytilová, J. Neckář, J. Hrdlička, P. Míčová, K. Holzerová, M. Hlaváčková, K. Macháčková, F. Papoušek, J. Vašinová, D. Benák, O. Nováková, F. Kolář,
520    9_
$a Chronic hypoxia and exercise are natural stimuli that confer sustainable cardioprotection against ischemia-reperfusion (I/R) injury, but it is unknown whether they can act in synergy to enhance ischemic resistance. Inflammatory response mediated by tumor necrosis factor-α (TNF-α) plays a role in the infarct size limitation by continuous normobaric hypoxia (CNH), whereas exercise is associated with anti-inflammatory effects. This study was conducted to determine if exercise training performed under conditions of CNH (12% O2) affects myocardial ischemic resistance with respect to inflammatory and redox status. Adult male Wistar rats were assigned to one of the following groups: normoxic sedentary, normoxic trained, hypoxic sedentary, and hypoxic trained. ELISA and Western blot analysis, respectively, were used to quantify myocardial cytokines and the expression of TNF-α receptors, nuclear factor-κB (NF-κB), and selected components of related signaling pathways. Infarct size and arrhythmias were assessed in open-chest rats subjected to I/R. CNH increased TNF-α and interleukin-6 levels and the expression of TNF-α type 2 receptor, NF-κB, inducible nitric oxide synthase (iNOS), cytosolic phospholipase A2α, cyclooxygenase-2, manganese superoxide dismutase (MnSOD), and catalase. None of these effects occurred in the normoxic trained group, whereas exercise in hypoxia abolished or significantly attenuated CNH-induced responses, except for NF-κB, iNOS, and MnSOD. Both CNH and exercise reduced infarct size, but their combination provided the same degree of protection as CNH alone. In conclusion, exercise training does not amplify the cardioprotection conferred by CNH. High ischemic tolerance of the CNH hearts persists after exercise, possibly by maintaining the increased antioxidant capacity despite attenuating TNF-α-dependent protective signaling.NEW & NOTEWORTHYChronic hypoxia and regular exercise are natural stimuli that confer sustainable myocardial protection against acute ischemia-reperfusion injury. Signaling mediated by TNF-α via its type 2 receptor plays a role in the cardioprotective mechanism of chronic hypoxia. In the present study, we found that exercise training of rats during adaptation to hypoxia does not amplify the infarct size-limiting effect. Ischemia-resistant phenotype is maintained in the combined hypoxia-exercise setting despite exercise-induced attenuation of TNF-α-dependent protective signaling.
650    _2
$a fyziologická adaptace $x fyziologie $7 D000222
650    _2
$a zvířata $7 D000818
650    _2
$a cyklooxygenasa 2 $x metabolismus $7 D051546
650    _2
$a hypoxie $x metabolismus $x patologie $7 D000860
650    _2
$a interleukin-6 $x metabolismus $7 D015850
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a reperfuzní poškození myokardu $x metabolismus $x patofyziologie $7 D015428
650    _2
$a myokard $x metabolismus $x patologie $7 D009206
650    _2
$a NF-kappa B $x metabolismus $7 D016328
650    _2
$a synthasa oxidu dusnatého, typ II $x metabolismus $7 D052247
650    _2
$a kondiční příprava zvířat $x fyziologie $7 D010805
650    _2
$a fyzická vytrvalost $x fyziologie $7 D010807
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani Wistar $7 D017208
650    _2
$a receptory TNF - typ II $x metabolismus $7 D047889
650    _2
$a superoxiddismutasa $x metabolismus $7 D013482
650    _2
$a TNF-alfa $x metabolismus $7 D014409
655    _2
$a časopisecké články $7 D016428
700    1_
$a Chytilová, Anna $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and.
700    1_
$a Neckář, Jan $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and.
700    1_
$a Hrdlička, Jaroslav $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and.
700    1_
$a Míčová, Petra $u Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Holzerová, Kristýna $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and.
700    1_
$a Hlaváčková, Markéta $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and. Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Macháčková, Kristýna $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and.
700    1_
$a Papoušek, František $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and.
700    1_
$a Vašinová, Jana $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and.
700    1_
$a Benák, Daniel, $d 1993- $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and. $7 xx0329790
700    1_
$a Nováková, Olga $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and. Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Kolář, František $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and kolar@biomed.cas.cz.
773    0_
$w MED00002527 $t Journal of applied physiology (1985) $x 1522-1601 $g Roč. 122, č. 6 (2017), s. 1452-1461
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28209739 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20250312105620 $b ABA008
999    __
$a ok $b bmc $g 1288281 $s 1007608
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 122 $c 6 $d 1452-1461 $e 20170216 $i 1522-1601 $m Journal of applied physiology (1985) $n J Appl Physiol $x MED00002527
LZP    __
$a Pubmed-20180404

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace