Emphasizing the Role of Long Non-Coding RNAs (lncRNA), Circular RNA (circRNA), and Micropeptides (miPs) in Plant Biotic Stress Tolerance
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
38068588
PubMed Central
PMC10708525
DOI
10.3390/plants12233951
PII: plants12233951
Knihovny.cz E-resources
- Keywords
- biotic stress, miPEPs, miRNA, micropeptides, plant–microbe interaction,
- Publication type
- Journal Article MeSH
- Review MeSH
Biotic stress tolerance in plants is complex as it relies solely on specific innate immune responses from different plant species combating diverse pathogens. Each component of the plant immune system is crucial to comprehend the molecular basis underlying sustainable resistance response. Among many other regulatory components, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have recently emerged as novel regulatory control switches in plant development and stress biology. Besides, miPs, the small peptides (100-150 amino acids long) encoded by some of the non-coding portions of the genome also turned out to be paramount regulators of plant stress. Although some studies have been performed in deciphering the role of miPs in abiotic stress tolerance, their function in regulating biotic stress tolerance is still largely elusive. Hence, the present review focuses on the roles of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in combating biotic stress in plants. The probable role of miPs in plant-microbe interaction is also comprehensively highlighted. This review enhances our current understanding of plant lncRNAs, circRNAs, and miPs in biotic stress tolerance and raises intriguing questions worth following up.
See more in PubMed
Gupta S., Bhar A., Chatterjee M., Das S. Fusarium oxysporum f. sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.) PLoS ONE. 2013;8:e73163. doi: 10.1371/journal.pone.0073163. PubMed DOI PMC
Gupta S., Bhar A., Chatterjee M., Ghosh A., Das S. Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack. PLoS ONE. 2017;12:e0178164. doi: 10.1371/journal.pone.0178164. PubMed DOI PMC
Pieterse C.M., Leon-Reyes A., Van der Ent S., Van Wees S.C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009;5:308–316. doi: 10.1038/nchembio.164. PubMed DOI
Bhar A., Chakraborty A., Roy A. Plant responses to biotic stress: Old memories matter. Plants. 2022;11:84. doi: 10.3390/plants11010084. PubMed DOI PMC
Šečić E., Kogel K.-H., Ladera-Carmona M.J. Biotic stress-associated microRNA families in plants. J. Plant Physiol. 2021;263:153451. doi: 10.1016/j.jplph.2021.153451. PubMed DOI
Sousa M.E., Farkas M.H. Micropeptide. PLoS Genet. 2018;14:e1007764. doi: 10.1371/journal.pgen.1007764. PubMed DOI PMC
Vitorino R., Guedes S., Amado F., Santos M., Akimitsu N. The role of micropeptides in biology. Cell. Mol. Life Sci. 2021;78:3285–3298. doi: 10.1007/s00018-020-03740-3. PubMed DOI PMC
Crappé J., Van Criekinge W., Menschaert G. Little things make big things happen: A summary of micropeptide encoding genes. EuPA Open Proteom. 2014;3:128–137. doi: 10.1016/j.euprot.2014.02.006. DOI
Anderson D.M., Anderson K.M., Chang C.-L., Makarewich C.A., Nelson B.R., McAnally J.R., Kasaragod P., Shelton J.M., Liou J., Bassel-Duby R. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160:595–606. doi: 10.1016/j.cell.2015.01.009. PubMed DOI PMC
Bi P., Ramirez-Martinez A., Li H., Cannavino J., McAnally J.R., Shelton J.M., Sánchez-Ortiz E., Bassel-Duby R., Olson E.N. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356:323–327. doi: 10.1126/science.aam9361. PubMed DOI PMC
Palazzo A.F., Lee E.S. Non-coding RNA: What is functional and what is junk? Front. Genet. 2015;6:2. doi: 10.3389/fgene.2015.00002. PubMed DOI PMC
Kowalski M.P., Krude T. Functional roles of non-coding Y RNAs. Int. J. Biochem. Cell Biol. 2015;66:20–29. doi: 10.1016/j.biocel.2015.07.003. PubMed DOI PMC
Yang J.X., Rastetter R.H., Wilhelm D. Non-Coding RNA and the Reproductive System. Springer; Berlin, Germany: 2016. Non-coding RNAs: An introduction; pp. 13–32. PubMed
Kovalchuk I. Genome Stability. Elsevier; Amsterdam, The Netherlands: 2021. Non-coding RNAs in genome integrity; pp. 453–475.
Makarewich C.A., Olson E.N. Mining for micropeptides. Trends Cell Biol. 2017;27:685–696. doi: 10.1016/j.tcb.2017.04.006. PubMed DOI PMC
Feng Y.-Z., Zhu Q.-F., Xue J., Chen P., Yu Y. Shining in the dark: The big world of small peptides in plants. aBIOTECH. 2023;4:238–256. doi: 10.1007/s42994-023-00100-0. PubMed DOI PMC
Leong A.Z.-X., Lee P.Y., Mohtar M.A., Syafruddin S.E., Pung Y.-F., Low T.Y. Short open reading frames (sORFs) and microproteins: An update on their identification and validation measures. J. Biomed. Sci. 2022;29:19. doi: 10.1186/s12929-022-00802-5. PubMed DOI PMC
Brunet M.A., Leblanc S., Roucou X. Reconsidering proteomic diversity with functional investigation of small ORFs and alternative ORFs. Exp. Cell Res. 2020;393:112057. doi: 10.1016/j.yexcr.2020.112057. PubMed DOI
Yin X., Hu J., Xu H. Distribution of micropeptide-coding sORFs in transcripts. Chin. Chem. Lett. 2018;29:1029–1032. doi: 10.1016/j.cclet.2018.04.027. DOI
Biswas A., Sen B., Bandyopadhyay S., Mal C. Co-regulatory functions of miRNA and lncRNA in adapting biotic and abiotic stress in economically important dicot plants. Plant Gene. 2021;26:100275. doi: 10.1016/j.plgene.2021.100275. DOI
Gai Y.-P., Yuan S.-S., Zhao Y.-N., Zhao H.-N., Zhang H.-L., Ji X.-L. A novel LncRNA, MuLnc1, associated with environmental stress in mulberry (Morus multicaulis) Front. Plant Sci. 2018;9:669. doi: 10.3389/fpls.2018.00669. PubMed DOI PMC
Zhang Y., Hu Z., Zhang H., Zeng M., Chen Q., Wang H., An H., Luo X., Xu D., Wan P. The long non-coding RNA GhlncRNA149. 1 improves cotton defense response to aphid damage as a positive regulator. Plant Cell Tissue Organ Cult. (PCTOC) 2023;152:517–527. doi: 10.1007/s11240-022-02424-z. DOI
Ai G., Li T., Zhu H., Dong X., Fu X., Xia C., Pan W., Jing M., Shen D., Xia A. BPL3 binds the long non-coding RNA nalncFL7 to suppress FORKED-LIKE7 and modulate HAI1-mediated MPK3/6 dephosphorylation in plant immunity. Plant Cell. 2023;35:598–616. doi: 10.1093/plcell/koac311. PubMed DOI PMC
Cui J., Jiang N., Meng J., Yang G., Liu W., Zhou X., Ma N., Hou X., Luan Y. LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato-Phytophthora infestans interactions. Plant J. 2019;97:933–946. doi: 10.1111/tpj.14173. PubMed DOI
Xin M., Wang Y., Yao Y., Song N., Hu Z., Qin D., Xie C., Peng H., Ni Z., Sun Q. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol. 2011;11:61. doi: 10.1186/1471-2229-11-61. PubMed DOI PMC
Zhang L., Wang M., Li N., Wang H., Qiu P., Pei L., Xu Z., Wang T., Gao E., Liu J. Long noncoding RNA s involve in resistance to Verticillium dahliae, a fungal disease in cotton. Plant Biotechnol. J. 2018;16:1172–1185. doi: 10.1111/pbi.12861. PubMed DOI PMC
Yi K., Yan W., Li X., Yang S., Li J., Yin Y., Yuan F., Wang H., Kang Z., Han D. Identification of Long Intergenic Noncoding RNAs in Rhizoctonia cerealis following Inoculation of Wheat. Microbiol. Spectr. 2023;11:e03449-22. doi: 10.1128/spectrum.03449-22. PubMed DOI PMC
Jain P., Sharma V., Dubey H., Singh P.K., Kapoor R., Kumari M., Singh J., Pawar D.V., Bisht D., Solanke A.U. Identification of long non-coding RNA in rice lines resistant to Rice blast pathogen Maganaporthe oryzae. Bioinformation. 2017;13:249. doi: 10.6026/97320630013249. PubMed DOI PMC
Li R., Xue H.-S., Zhang D.-D., Wang D., Song J., Subbarao K.V., Klosterman S.J., Chen J.-Y., Dai X.-F. Identification of long non-coding RNAs in Verticillium dahliae following inoculation of cotton. Microbiol. Res. 2022;257:126962. doi: 10.1016/j.micres.2022.126962. PubMed DOI
Tang J., Chen X., Yan Y., Huang J., Luo C., Tom H., Zheng L. Comprehensive transcriptome profiling reveals abundant long non-coding RNAs associated with development of the rice false smut fungus, Ustilaginoidea virens. Environ. Microbiol. 2021;23:4998–5013. doi: 10.1111/1462-2920.15432. PubMed DOI
Tian J., Zhang G., Zhang F., Ma J., Wen C., Li H. Genome-wide Identification of Powdery Mildew Responsive Long Noncoding RNAs in Cucurbita pepo. Front. Genet. 2022;13:933022. doi: 10.3389/fgene.2022.933022. PubMed DOI PMC
Cao W., Gan L., Wang C., Zhao X., Zhang M., Du J., Zhou S., Zhu C. Genome-wide identification and characterization of potato long non-coding RNAs associated with Phytophthora infestans resistance. Front. Plant Sci. 2021;12:619062. doi: 10.3389/fpls.2021.619062. PubMed DOI PMC
Li Q., Shen H., Yuan S., Dai X., Yang C. miRNAs and lncRNAs in tomato: Roles in biotic and abiotic stress responses. Front. Plant Sci. 2023;13:1094459. doi: 10.3389/fpls.2022.1094459. PubMed DOI PMC
Ren Y., Song Y., Zhang L., Guo D., He J., Wang L., Song S., Xu W., Zhang C., Lers A. Coding of non-coding RNA: Insights into the regulatory functions of Pri-MicroRNA-encoded peptides in plants. Front. Plant Sci. 2021;12:641351. doi: 10.3389/fpls.2021.641351. PubMed DOI PMC
Ormancey M., Thuleau P., Combier J.-P., Plaza S. The Essentials on microRNA-Encoded Peptides from Plants to Animals. Biomolecules. 2023;13:206. doi: 10.3390/biom13020206. PubMed DOI PMC
Gautam H., Sharma A., Trivedi P.K. Plant microProteins and miPEPs: Small molecules with much bigger roles. Plant Sci. 2023;326:111519. doi: 10.1016/j.plantsci.2022.111519. PubMed DOI
Ram M.K., Mukherjee K., Pandey D.M. Identification of miRNA, their targets and miPEPs in peanut (Arachis hypogaea L.) Comput. Biol. Chem. 2019;83:107100. doi: 10.1016/j.compbiolchem.2019.107100. PubMed DOI
de Bruijn F.J. Model Legume Medicago Truncatula. Wiley Online Library; Hoboken, NJ, USA: 2020. Small RNAs in Medicago truncatula: Introduction; p. 946.
Chand Jha U., Nayyar H., Mantri N., Siddique K.H. Non-coding RNAs in legumes: Their emerging roles in regulating biotic/abiotic stress responses and plant growth and development. Cells. 2021;10:1674. doi: 10.3390/cells10071674. PubMed DOI PMC
Wang L., Li J., Guo B., Xu L., Li L., Song X., Wang X., Zeng X., Wu L., Niu D. Exonic Circular RNAs Are Involved in Arabidopsis Immune Response Against Bacterial and Fungal Pathogens and Function Synergistically with Corresponding Linear RNAs. Phytopathology®. 2022;112:608–619. doi: 10.1094/PHYTO-09-20-0398-R. PubMed DOI
Kalwan G., Gill S.S., Priyadarshini P., Gill R., Yadava Y.K., Yadav S., Baruah P.M., Agarwala N., Gaikwad K., Jain P.K. Approaches for identification and analysis of plant circular RNAs and their role in stress responses. Environ. Exp. Bot. 2023;205:105099. doi: 10.1016/j.envexpbot.2022.105099. DOI
Luo J., Wang X.L., Sun Z.C., Wu D., Zhang W., Wang Z.J. Progress in circular RNAs of plants. Yi Chuan = Hered. 2018;40:467–477. PubMed
Raja I., Tennyson J. Plant Small RNA in Food Crops. Elsevier; Amsterdam, The Netherlands: 2023. Small RNA–regulator of biotic stress and pathogenesis in food crops; pp. 233–269.
Bordoloi K.S., Baruah P.M., Agarwala N. Identification of circular RNAs in tea plant during Helopeltis theivora infestation. Plant Stress. 2023;8:100150. doi: 10.1016/j.stress.2023.100150. DOI
Rakoczy-Lelek R., Czernicka M., Ptaszek M., Jarecka-Boncela A., Furmanczyk E.M., Kęska-Izworska K., Grzanka M., Skoczylas Ł., Kuźnik N., Smoleń S. Transcriptome Dynamics Underlying Planticine®-Induced Defense Responses of Tomato (Solanum lycopersicum L.) to Biotic Stresses. Int. J. Mol. Sci. 2023;24:6494. doi: 10.3390/ijms24076494. PubMed DOI PMC
Hong Y.-H., Meng J., Zhang M., Luan Y.-S. Identification of tomato circular RNAs responsive to Phytophthora infestans. Gene. 2020;746:144652. doi: 10.1016/j.gene.2020.144652. PubMed DOI
Belousova E., Filipenko M., Kushlinskii N. Circular RNA: New regulatory molecules. Bull. Exp. Biol. Med. 2018;164:803–815. doi: 10.1007/s10517-018-4084-z. PubMed DOI
Ebbesen K.K., Hansen T.B., Kjems J. Insights into circular RNA biology. RNA Biol. 2017;14:1035–1045. doi: 10.1080/15476286.2016.1271524. PubMed DOI PMC
Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak A., Maier L., Mackowiak S.D., Gregersen L.H., Munschauer M. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–338. doi: 10.1038/nature11928. PubMed DOI
Chen L.-L., Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12:381–388. doi: 10.1080/15476286.2015.1020271. PubMed DOI PMC
Zhao W., Chu S., Jiao Y. Present scenario of circular RNAs (circRNAs) in plants. Front. Plant Sci. 2019;10:379. doi: 10.3389/fpls.2019.00379. PubMed DOI PMC
Chu Q., Bai P., Zhu X., Zhang X., Mao L., Zhu Q.-H., Fan L., Ye C.-Y. Characteristics of plant circular RNAs. Brief. Bioinform. 2020;21:135–143. doi: 10.1093/bib/bby111. PubMed DOI
Liao X., Li X.-J., Zheng G.-T., Chang F.-R., Fang L., Yu H., Huang J., Zhang Y.-F. Mitochondrion-encoded circular RNAs are widespread and translatable in plants. Plant Physiol. 2022;189:1482–1500. doi: 10.1093/plphys/kiac143. PubMed DOI PMC
Chu Q., Ding Y., Xu X., Ye C.Y., Zhu Q.H., Guo L., Fan L. Recent origination of circular RNAs in plants. New Phytol. 2022;233:515–525. doi: 10.1111/nph.17798. PubMed DOI
Julkowska M. Small but powerful: MicroRNA-derived peptides promote grape adventitious root formation. Am. Soc. Plant Biol. 2020;183:429–430. doi: 10.1104/pp.20.00515. PubMed DOI PMC
Lauressergues D., Couzigou J.-M., Clemente H.S., Martinez Y., Dunand C., Bécard G., Combier J.-P. Primary transcripts of microRNAs encode regulatory peptides. Nature. 2015;520:90–93. doi: 10.1038/nature14346. PubMed DOI
Couzigou J.-M., André O., Guillotin B., Alexandre M., Combier J.-P. Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean. New Phytol. 2016;211:379–381. doi: 10.1111/nph.13991. PubMed DOI
Chen Q.-j., Deng B.-h., Gao J., Zhao Z.-y., Chen Z.-l., Song S.-r., Wang L., Zhao L.-p., Xu W.-p., Zhang C.-x. A miRNA-encoded small peptide, vvi-miPEP171d1, regulates adventitious root formation. Plant Physiol. 2020;183:656–670. doi: 10.1104/pp.20.00197. PubMed DOI PMC
Sharma A., Badola P.K., Bhatia C., Sharma D., Trivedi P.K. miRNA-encoded peptide, miPEP858, regulates plant growth and development in Arabidopsis. bioRxiv. 2019 doi: 10.1101/642561. DOI
Ormancey M., Le Ru A., Duboé C., Jin H., Thuleau P., Plaza S., Combier J.-P. Internalization of miPEP165a into Arabidopsis roots depends on both passive diffusion and endocytosis-associated processes. Int. J. Mol. Sci. 2020;21:2266. doi: 10.3390/ijms21072266. PubMed DOI PMC
Bai Y., Dai X., Ye T., Zhang P., Yan X., Gong X., Liang S., Chen M. PlncRNADB: A repository of plant lncRNAs and lncRNA-RBP protein interactions. Curr. Bioinform. 2019;14:621–627. doi: 10.2174/1574893614666190131161002. DOI
Xuan H., Zhang L., Liu X., Han G., Li J., Li X., Liu A., Liao M., Zhang S. PLNlncRbase: A resource for experimentally identified lncRNAs in plants. Gene. 2015;573:328–332. doi: 10.1016/j.gene.2015.07.069. PubMed DOI
Zhao L., Wang J., Li Y., Song T., Wu Y., Fang S., Bu D., Li H., Sun L., Pei D. NONCODEV6: An updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res. 2021;49:D165–D171. doi: 10.1093/nar/gkaa1046. PubMed DOI PMC
Jin J., Liu J., Wang H., Wong L., Chua N.-H. PLncDB: Plant long non-coding RNA database. Bioinformatics. 2013;29:1068–1071. doi: 10.1093/bioinformatics/btt107. PubMed DOI PMC
Gallart A.P., Pulido A.H., de Lagrán I.A.M., Sanseverino W., Cigliano R.A. GREENC: A Wiki-based database of plant lncRNAs. Nucleic Acids Res. 2016;44:D1161. PubMed PMC
Zhu M., Gribskov M. MiPepid: MicroPeptide identification tool using machine learning. BMC Bioinform. 2019;20:559. doi: 10.1186/s12859-019-3033-9. PubMed DOI PMC
Dragomir M.P., Manyam G.C., Ott L.F., Berland L., Knutsen E., Ivan C., Lipovich L., Broom B.M., Calin G.A. FuncPEP: A database of functional peptides encoded by non-coding RNAs. Non-Coding RNA. 2020;6:41. doi: 10.3390/ncrna6040041. PubMed DOI PMC
Xue Y., Chen R., Qu L., Cao X. Noncoding RNA: From dark matter to bright star. Sci. China Life Sci. 2020;63:463–468. doi: 10.1007/s11427-020-1676-5. PubMed DOI
Zhu Q.H., Stephen S., Taylor J., Helliwell C.A., Wang M.B. Long noncoding RNA s responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol. 2014;201:574–584. doi: 10.1111/nph.12537. PubMed DOI
Seo J.S., Sun H.-X., Park B.S., Huang C.-H., Yeh S.-D., Jung C., Chua N.-H. ELF18-INDUCED LONG-NONCODING RNA associates with mediator to enhance expression of innate immune response genes in Arabidopsis. Plant Cell. 2017;29:1024–1038. doi: 10.1105/tpc.16.00886. PubMed DOI PMC
Zafar J., Huang J., Xu X., Jin F. Analysis of Long Non-Coding RNA-Mediated Regulatory Networks of Plutella xylostella in Response to Metarhizium anisopliae Infection. Insects. 2022;13:916. doi: 10.3390/insects13100916. PubMed DOI PMC
Fass M.I., Rivarola M., Ehrenbolger G.F., Maringolo C.A., Montecchia J.F., Quiroz F., García-García F., Blázquez J.D., Hopp H.E., Heinz R.A. Exploring sunflower responses to Sclerotinia head rot at early stages of infection using RNA-seq analysis. Sci. Rep. 2020;10:13347. doi: 10.1038/s41598-020-70315-4. PubMed DOI PMC
Bhatia G., Upadhyay S.K., Singh K. Vitis vinifera (grapevine) lncRNAs are potential regulators of response to necrotrophic fungus, Botrytis cinerea infection. Physiol. Mol. Plant Pathol. 2020;112:101553. doi: 10.1016/j.pmpp.2020.101553. DOI
Choi G., Jeon J., Lee H., Zhou S., Lee Y.-H. Genome-wide profiling of long non-coding RNA of the rice blast fungus Magnaporthe oryzae during infection. BMC Genom. 2022;23:132. doi: 10.1186/s12864-022-08380-4. PubMed DOI PMC
Zhou X., Cui J., Cui H., Jiang N., Hou X., Liu S., Gao P., Luan Y., Meng J., Luan F. Identification of lncRNAs and their regulatory relationships with target genes and corresponding miRNAs in melon response to powdery mildew fungi. Gene. 2020;735:144403. doi: 10.1016/j.gene.2020.144403. PubMed DOI
Zhuo X., Yu Q., Russo R., Zhang Y., Wei X., Wang Y.Z., Holden P.M., Gmitter F.G., Jr. Role of long non-coding RNA in regulatory network response to Candidatus Liberibacter asiaticus in citrus. Front. Plant Sci. 2023;14:1090711. doi: 10.3389/fpls.2023.1090711. PubMed DOI PMC
Zhou C., Zhu J., Qian N., Guo J., Yan C. Bacillus subtilis SL18r induces tomato resistance against Botrytis cinerea, involving activation of long non-coding RNA, MSTRG18363, to decoy miR1918. Front. Plant Sci. 2021;11:634819. doi: 10.3389/fpls.2020.634819. PubMed DOI PMC
Yang F., Zhao D., Fan H., Zhu X., Wang Y., Liu X., Duan Y., Xuan Y., Chen L. Functional analysis of long non-coding RNAs reveal their novel roles in biocontrol of bacteria-induced tomato resistance to Meloidogyne incognita. Int. J. Mol. Sci. 2020;21:911. doi: 10.3390/ijms21030911. PubMed DOI PMC
Yu Y., Zhou Y.F., Feng Y.Z., He H., Lian J.P., Yang Y.W., Lei M.Q., Zhang Y.C., Chen Y.Q. Transcriptional landscape of pathogen-responsive lnc RNA s in rice unveils the role of ALEX 1 in jasmonate pathway and disease resistance. Plant Biotechnol. J. 2020;18:679–690. doi: 10.1111/pbi.13234. PubMed DOI PMC
Rawal H.C., Ali S., Mondal T.K. Role of non-coding RNAs against salinity stress in Oryza species: Strategies and challenges in analyzing miRNAs, tRFs and circRNAs. Int. J. Biol. Macromol. 2023;242:125172. doi: 10.1016/j.ijbiomac.2023.125172. PubMed DOI
Ding Y., Zou L.-H., Wu J., Ramakrishnan M., Gao Y., Zhao L., Zhou M. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in Moso bamboo under abiotic stress. Plant Sci. 2022;325:111451. doi: 10.1016/j.plantsci.2022.111451. PubMed DOI
Li Y., Yang Y., Kong B., Song X., Gao Z., Li X. Identification and Characterization of circRNAs under Drought Stress in Moso Bamboo (Phyllostachys edulis) Forests. 2022;13:426. doi: 10.3390/f13030426. DOI
Liu P., Zhu Y., Liu H., Liang Z., Zhang M., Zou C., Yuan G., Gao S., Pan G., Shen Y. A Combination of a Genome-Wide Association Study and a Transcriptome Analysis Reveals circRNAs as New Regulators Involved in the Response to Salt Stress in Maize. Int. J. Mol. Sci. 2022;23:9755. doi: 10.3390/ijms23179755. PubMed DOI PMC
Sun J., Dong Y., Wang C., Xiao S., Jiao Z., Gao C. Identification and characterization of melon circular RNAs involved in powdery mildew responses through comparative transcriptome analysis. PeerJ. 2021;9:e11216. doi: 10.7717/peerj.11216. PubMed DOI PMC
Ghorbani A., Izadpanah K., Tahmasebi A., Afsharifar A., Moghadam A., Dietzgen R.G. Characterization of maize miRNAs responsive to maize Iranian mosaic virus infection. 3 Biotech. 2022;12:69. doi: 10.1007/s13205-022-03134-1. PubMed DOI PMC
Chen L., Zhang P., Fan Y., Lu Q., Li Q., Yan J., Muehlbauer G.J., Schnable P.S., Dai M., Li L. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol. 2018;217:1292–1306. doi: 10.1111/nph.14901. PubMed DOI
Basso M.F., Ferreira P.C.G., Kobayashi A.K., Harmon F.G., Nepomuceno A.L., Molinari H.B.C., Grossi-de-Sa M.F. Micro RNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol. J. 2019;17:1482–1500. doi: 10.1111/pbi.13116. PubMed DOI PMC
Takahashi F., Hanada K., Kondo T., Shinozaki K. Hormone-like peptides and small coding genes in plant stress signaling and development. Curr. Opin. Plant Biol. 2019;51:88–95. doi: 10.1016/j.pbi.2019.05.011. PubMed DOI
Hernandez-Castellano S., Andrade-Marcial M., Aguilar-Méndez E.D., Loyola-Vargas V.M., de Folter S., De-la-Pena C. MiRNA expression analysis during somatic embryogenesis in Coffea canephora. Plant Cell Tissue Organ Cult. (PCTOC) 2022;150:177–190. doi: 10.1007/s11240-022-02258-9. DOI
Jones J.D., Dangl J.L. The plant immune system. Nature. 2006;444:323–329. doi: 10.1038/nature05286. PubMed DOI
Bhar A., Gupta S., Chatterjee M., Das S. Redox Regulatory Networks in Response to Biotic Stress in Plants: A New Insight Through Chickpea-Fusarium Interplay. Mech. Plant Horm. Signal. Under Stress. 2017;2:23–43.
Bhar A., Chakraborty A., Roy A. The captivating role of calcium in plant-microbe interaction. Front. Plant Sci. 2023;14:1138252. doi: 10.3389/fpls.2023.1138252. PubMed DOI PMC
Liu J., Jung C., Xu J., Wang H., Deng S., Bernad L., Arenas-Huertero C., Chua N.-H. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell. 2012;24:4333–4345. doi: 10.1105/tpc.112.102855. PubMed DOI PMC
Rosli H.G., Sirvent E., Bekier F.N., Ramos R.N., Pombo M.A. Genome-wide analysis uncovers tomato leaf lncRNAs transcriptionally active upon Pseudomonas syringae pv. tomato challenge. Sci. Rep. 2021;11:24523. doi: 10.1038/s41598-021-04005-0. PubMed DOI PMC
Shivaprasad P.V., Chen H.-M., Patel K., Bond D.M., Santos B.A., Baulcombe D.C. A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell. 2012;24:859–874. doi: 10.1105/tpc.111.095380. PubMed DOI PMC
Jiang N., Cui J., Shi Y., Yang G., Zhou X., Hou X., Meng J., Luan Y. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction. Hortic. Res. 2019;6:28. doi: 10.1038/s41438-018-0096-0. PubMed DOI PMC
Jiang N., Cui J., Hou X., Yang G., Xiao Y., Han L., Meng J., Luan Y. Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans. Plant J. 2020;103:1561–1574. doi: 10.1111/tpj.14847. PubMed DOI
Liu W., Cui J., Luan Y. Overexpression of lncRNA08489 enhances tomato immunity against Phytophthora infestans by decoying miR482e-3p. Biochem. Biophys. Res. Commun. 2022;587:36–41. doi: 10.1016/j.bbrc.2021.11.079. PubMed DOI
Dash P.K., Gupta P., Sreevathsa R., Pradhan S.K., Sanjay T.D., Mohanty M.R., Roul P.K., Singh N.K., Rai R. Phylogenomic Analysis of micro-RNA Involved in Juvenile to Flowering-Stage Transition in Photophilic Rice and Its Sister Species. Cells. 2023;12:1370. doi: 10.3390/cells12101370. PubMed DOI PMC
Dash P.K., Gupta P., Pradhan S.K., Shasany A.K., Rai R. Analysis of homologous regions of small RNAs MIR397 and MIR408 reveals the conservation of microsynteny among rice crop-wild relatives. Cells. 2022;11:3461. doi: 10.3390/cells11213461. PubMed DOI PMC
Mohapatra S., Barik S.R., Dash P.K., Lenka D., Pradhan K.C., Raj K.R., Mohanty S.P., Monhaty M.R., Sahoo A., Jena B.K., et al. Molecular Breeding for Incorporation of Submergence Tolerance and Durable Bacterial Blight Resistance into the Popular Rice Variety ‘Ranidhan’. Biomolecules. 2023;13:198. doi: 10.3390/biom13020198. PubMed DOI PMC
Liu N., Xu Y., Li Q., Cao Y., Yang D., Liu S., Wang X., Mi Y., Liu Y., Ding C. A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. Cell Host Microbe. 2022;30:1124–1138.e1128. doi: 10.1016/j.chom.2022.07.001. PubMed DOI
Heo J.B., Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science. 2011;331:76–79. doi: 10.1126/science.1197349. PubMed DOI
Liu X., Li D., Zhang D., Yin D., Zhao Y., Ji C., Zhao X., Li X., He Q., Chen R. A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytol. 2018;218:774–788. doi: 10.1111/nph.15023. PubMed DOI
Seo J.S., Diloknawarit P., Park B.S., Chua N.H. ELF18-INDUCED LONG NONCODING RNA 1 evicts fibrillarin from mediator subunit to enhance PATHOGENESIS-RELATED GENE 1 (PR1) expression. New Phytol. 2019;221:2067–2079. doi: 10.1111/nph.15530. PubMed DOI
Cui J., Jiang N., Hou X., Wu S., Zhang Q., Meng J., Luan Y. Genome-wide identification of lncRNAs and analysis of ceRNA networks during tomato resistance to Phytophthora infestans. Phytopathology. 2020;110:456–464. doi: 10.1094/PHYTO-04-19-0137-R. PubMed DOI
Singh A., Mehta S., Yadav S., Nagar G., Ghosh R., Roy A., Chakraborty A., Singh I.K. How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants. Int. J. Mol. Sci. 2022;23:1995. doi: 10.3390/ijms23041995. PubMed DOI PMC
Bhar A., Gupta S., Chatterjee M., Sen S., Das S. Differential expressions of photosynthetic genes provide clues to the resistance mechanism during Fusarium oxysporum f. sp. ciceri race 1 (Foc1) infection in chickpea (Cicer arietinum L.) Eur. J. Plant Pathol. 2017;148:533–549. doi: 10.1007/s10658-016-1109-1. DOI
Thomma B.P., Nürnberger T., Joosten M.H. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. Plant Cell. 2011;23:4–15. doi: 10.1105/tpc.110.082602. PubMed DOI PMC
Cui J., Luan Y., Jiang N., Bao H., Meng J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lnc RNA 16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J. 2017;89:577–589. doi: 10.1111/tpj.13408. PubMed DOI
Mao W., Zeng Q., She L., Yuan H., Luo Y., Wang R., She Y., Wang W., Wang C., Pan X. Wolbachia utilizes lncRNAs to activate the anti-dengue toll pathway and balance reactive oxygen species stress in Aedes aegypti through a competitive endogenous RNA network. Front. Cell. Infect. Microbiol. 2022;11:1464. doi: 10.3389/fcimb.2021.823403. PubMed DOI PMC
Zhang X., Dong J., Deng F., Wang W., Cheng Y., Song L., Hu M., Shen J., Xu Q., Shen F. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC Plant Biol. 2019;19:459. doi: 10.1186/s12870-019-2088-0. PubMed DOI PMC
Bhatia G., Upadhyay S.K., Upadhyay A., Singh K. Investigation of long non-coding RNAs as regulatory players of grapevine response to powdery and downy mildew infection. BMC Plant Biol. 2021;21:265. doi: 10.1186/s12870-021-03059-6. PubMed DOI PMC
Zhang T., Liang Q., Li C., Fu S., Kundu J.K., Zhou X., Wu J. Transcriptome analysis of rice reveals the lncRNA–mRNA regulatory network in response to rice black-streaked dwarf virus infection. Viruses. 2020;12:951. doi: 10.3390/v12090951. PubMed DOI PMC
Kang S.-H., Sun Y.-D., Atallah O.O., Huguet-Tapia J.C., Noble J.D., Folimonova S.Y. A long non-coding RNA of Citrus tristeza virus: Role in the virus interplay with the host immunity. Viruses. 2019;11:436. doi: 10.3390/v11050436. PubMed DOI PMC
Ding L.-N., Li Y.-T., Wu Y.-Z., Li T., Geng R., Cao J., Zhang W., Tan X.-L. Plant disease resistance-related signaling pathways: Recent progress and future prospects. Int. J. Mol. Sci. 2022;23:16200. doi: 10.3390/ijms232416200. PubMed DOI PMC
Li S., Liu S., Zhang Q., Cui M., Zhao M., Li N., Wang S., Wu R., Zhang L., Cao Y. The interaction of ABA and ROS in plant growth and stress resistances. Front. Plant Sci. 2022;13:1050132. doi: 10.3389/fpls.2022.1050132. PubMed DOI PMC
Myers R.J., Jr., Fichman Y., Zandalinas S.I., Mittler R. Jasmonic acid and salicylic acid modulate systemic reactive oxygen species signaling during stress responses. Plant Physiol. 2023;191:862–873. doi: 10.1093/plphys/kiac449. PubMed DOI PMC
Bhar A., Chatterjee M., Gupta S., Das S. Salicylic acid regulates systemic defense signaling in chickpea during Fusarium oxysporum f. sp. ciceri race 1 infection. Plant Mol. Biol. Report. 2018;36:162–175. doi: 10.1007/s11105-018-1067-1. DOI
Yadav M., Pandey J., Chakraborty A., Hassan M.I., Kundu J.K., Roy A., Singh I.K., Singh A. A comprehensive analysis of calmodulin-like proteins of glycine max indicates their role in calcium signaling and plant defense against insect attack. Front. Plant Sci. 2022;13:817950. doi: 10.3389/fpls.2022.817950. PubMed DOI PMC
Gu Q., Wei Q., Hu Y., Chen M., Chen Z., Zheng S., Ma Q., Luo Z. Physiological and Full-Length Transcriptome Analyses Reveal the Dwarfing Regulation in Trifoliate Orange (Poncirus trifoliata L.) Plants. 2023;12:271. doi: 10.3390/plants12020271. PubMed DOI PMC
Tan X., Li S., Hu L., Zhang C. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC Plant Biol. 2020;20:81. doi: 10.1186/s12870-020-2286-9. PubMed DOI PMC
Brant E.J., Budak H. Plant small non-coding RNAs and their roles in biotic stresses. Front. Plant Sci. 2018;9:1038. doi: 10.3389/fpls.2018.01038. PubMed DOI PMC
Cui J. lncRNA in plants: Function, mechanisms and applications. Front. Plant Sci. 2023;14:1238185. doi: 10.3389/fpls.2023.1238185. PubMed DOI PMC
Chen L., Zhu Q.-H., Kaufmann K. Long non-coding RNAs in plants: Emerging modulators of gene activity in development and stress responses. Planta. 2020;252:92. doi: 10.1007/s00425-020-03480-5. PubMed DOI PMC