Lipid polymorphism of plant thylakoid membranes. The dynamic exchange model - facts and hypotheses
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.10.03.01/00/22_003/0000003
LERCO
23-07744S
Grantová Agentura České Republiky
PubMed
40251902
PubMed Central
PMC12008737
DOI
10.1111/ppl.70230
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- fotosyntéza MeSH
- galaktolipidy metabolismus MeSH
- lipidové dvojvrstvy metabolismus MeSH
- rostliny * metabolismus MeSH
- tylakoidy * metabolismus chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- galaktolipidy MeSH
- lipidové dvojvrstvy MeSH
The light reactions of oxygenic photosynthesis are performed by protein complexes embedded in the lipid bilayer of thylakoid membranes (TMs). Bilayers provide optimal conditions for the build-up of the proton motive force (pmf) and ATP synthesis. However, functional plant TMs, besides the bilayer, contain an inverted hexagonal (HII) phase and isotropic phases, a lipid polymorphism due to their major, non-bilayer lipid species, monogalactosyldiacylglycerol (MGDG). The lipid phase behavior of TMs is explained within the framework of the Dynamic Exchange Model (DEM), an extension of the fluid-mosaic model. DEM portrays the bilayer phase as inclusions between photosynthetic supercomplexes - characterized by compromised membrane impermeability and restricted sizes inflicted by the segregation propensity of lipid molecules, safe-guarding the high protein density of TMs. Isotropic phases mediate membrane fusions and are associated with the lumenal lipocalin-like enzyme, violaxanthin de-epoxidase. Stromal-side proteins surrounded by lipids give rise to the HII phase. These features instigate experimentally testable hypotheses: (i) non-bilayer phases mediate functional sub-compartmentalization of plant chloroplasts - a quasi-autonomous energization and ATP synthesis of each granum-stroma TM assembly; and (ii) the generation and utilization of pmf depend on hydrated protein networks and proton-conducting pathways along membrane surfaces - rather than on strict impermeability of the bilayer.
Department of Physics Faculty of Science University of Ostrava Ostrava Czech Republic
Institute of Biophysics HUN REN Biological Research Centre Szeged Hungary
Institute of Plant Biology HUN REN Biological Research Centre Szeged Hungary
Zobrazit více v PubMed
Agmon N (1995) The Grotthuss mechanism. Chemical Physics Letters 244(5): 456–462
Altamura E, Albanese P, Marotta R, Milano F, Fiore M, Trotta M, Stano P, Mavelli F (2021) Chromatophores efficiently promote light‐driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells. Proceedings of the National Academy of Sciences 118(7): e2012170118 PubMed PMC
Aoyama M, Katayama K, Kandori H (2024) Unique hydrogen‐bonding network in a viral channelrhodopsin. Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics 1865(4): 149148 PubMed
Bagatolli LA, Ipsen JH, Simonsen AC, Mouritsen OG (2010) An outlook on organization of lipids in membranes: Searching for a realistic connection with the organization of biological membranes. Progress in Lipid Research 49(4): 378–389 PubMed
Bellissent‐Funel M‐C (2023) Structure and dynamics of confined water: Selected examples. Journal of Molecular Liquids 391: 123370
Blumenthal R, Clague MJ, Durell SR, Epand RM (2003) Membrane fusion. Chemical Reviews (Washington, D C) 103(1): 53–69 PubMed
Böde K, Javornik U, Dlouhý O, Zsíros O, Biswas A, Domonkos I, Šket P, Karlický V, Ughy B, Lambrev PH, Špunda V, Plavec J, Garab G (2024a) Role of isotropic lipid phase in the fusion of photosystem II membranes. Photosynthesis Research 161(1–2): 127–140 PubMed PMC
Böde K, Dlouhý O, Javornik U, Domonkos I, Zsiros O, Plavec J, Špunda V, Garab G (2024b) Lipid polymorphism of the marginal region of plant thylakoid membranes. bioRxiv: 2024.2011.2012.623231
Boekema EJ, van Breemen JF, van Roon H, Dekker JP (2000) Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. Journal of molecular biology 301(5): 1123–1133 PubMed
Bondar A‐N (2022) Interplay between local protein interactions and water bridging of a proton antenna carboxylate cluster. Biochimica et Biophysica Acta (BBA) ‐ Biomembranes 1864(12): 184052 PubMed
Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, Block MA, Maréchal E (2014) Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics 1837(4): 470–480 PubMed
Bruce BD (1998) The role of lipids in plastid protein transport. Plant Mol Biol 38(1–2): 223–246 PubMed
Bussi Y, Shimoni E, Weiner A, Kapon R, Charuvi D, Nevo R, Efrati E, Reich Z (2019) Fundamental helical geometry consolidates the plant photosynthetic membrane. Proceedings of the National Academy of Sciences of the United States of America 116(44): 22366–22375 PubMed PMC
Censor S, Martin JV, Silberbush O, Reddy SMM, Zalk R, Friedlander L, Trabada DG, Mendieta J, Le Saux G, Moreno JIM, Zotti LA, Mateo JO, Ashkenasy N (2024) Long‐Range Proton Channels Constructed via Hierarchical Peptide Self‐Assembly. Advanced Materials 36(50): 2409248 PubMed PMC
Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological‐membranes. Biochimica et biophysica acta 559(4): 399–420 PubMed
Deamer DW, Bramhall J (1986) Permeability of lipid bilayers to water and ionic solutes. Chemistry and Physics of Lipids 40(2): 167–188 PubMed
Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics 1706(1): 12–39 PubMed
Dér A, Kelemen L, Fábián L, Taneva S, Fodor E, Páli T, Cupane A, Cacace M, Ramsden J (2007) Interfacial water structure controls protein conformation. The Journal of Physical Chemistry B 111(19): 5344–5350 PubMed
Dilley RA (2004) On Why Thylakoids Energize ATP Formation Using Either Delocalized or Localized Proton Gradients – A Ca2+ Mediated Role in Thylakoid Stress Responses. Photosynthesis Research 80(1): 245–263 PubMed
Dlouhý O, Javornik U, Zsiros O, Šket P, Karlický V, Špunda V, Plavec J, Garab G (2021a) Lipid Polymorphism of the Subchloroplast—Granum and Stroma Thylakoid Membrane—Particles. I. 31P‐NMR Spectroscopy. Cells 10(9): 2354 PubMed PMC
Dlouhý O, Kurasová I, Karlický V, Javornik U, Šket P, Petrova NZ, Krumova SB, Plavec J, Ughy B, Špunda V, Garab G (2020) Modulation of non‐bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water‐soluble enzyme violaxanthin de‐epoxidase. Scientific Reports 10(1) PubMed PMC
Dlouhý O, Karlický V, Arshad R, Zsiros O, Domonkos I, Kurasová I, Wacha AF, Morosinotto T, Bóta A, Kouřil R, Špunda V, Garab G (2021b) Lipid Polymorphism of the Subchloroplast—Granum and Stroma Thylakoid Membrane–Particles. II. Structure and Functions. Cells 10(9): 2363 PubMed PMC
Dlouhý O, Karlický V, Javornik U, Kurasová I, Zsiros O, Šket P, Kanna SD, Böde K, Večeřová K, Urban O, Gasanoff ES, Plavec J, Špunda V, Ughy B, Garab G (2022) Structural Entities Associated with Different Lipid Phases of Plant Thylakoid Membranes ‐ Selective Susceptibilities to Different Lipases and Proteases. Cells 11(17): 2681 PubMed PMC
Farci D, Schröder WP (2023) Thylakoid Lumen; from “proton bag” to photosynthetic functionally important compartment. Frontiers in Plant Physiology 1, Mini Review
Fehér B, Voets IK, Nagy G (2023) The impact of physiologically relevant temperatures on physical properties of thylakoid membranes: a molecular dynamics study. Photosynthetica 61(4): 441–450 PubMed PMC
Fehér B, Nagy G, Garab G (2025) Molecular level insight into non‐bilayer structure formation in thylakoid membranes: a molecular dynamics study. Photosynthesis Research (submitted)
Findinier J, Delevoye C, Cohen MM (2019) The dynamin‐like protein Fzl promotes thylakoid fusion and resistance to light stress in Chlamydomonas reinhardtii. PLoS Genetics 15(3): e1008047 PubMed PMC
Frias MA, Disalvo EA (2021) Breakdown of classical paradigms in relation to membrane structure and functions. Biochim Biophys Acta Biomembr 1863(2): 183512 PubMed
Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, Wijk KJ (2004) In‐depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16(2): 478–499 PubMed PMC
Garab G (2014) Hierarchical organization and structural flexibility of thylakoid membranes. Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics 1837(4): 481–494 PubMed
Garab G, Ughy B, Goss R (2016) Role of MGDG and Non‐bilayer Lipid Phases in the Structure and Dynamics of Chloroplast Thylakoid Membranes. In: Nakamura Y, Li‐Beisson Y (eds) Lipids in Plant and Algae Development. Springer International Publishing, Cham, pp. 127–157 PubMed
Garab G, Lohner K, Laggner P, Farkas T (2000) Self‐regulation of the lipid content of membranes by non‐bilayer lipids: a hypothesis. Trends in Plant Science 5(11): 489–494 PubMed
Garab G, Yaguzhinsky LS, Dlouhý O, Nesterov SV, Špunda V, Gasanoff ES (2022) Structural and functional roles of non‐bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Progress in Lipid Research 86: 101163 PubMed
Garab G, Ughy B, de Waard P, Akhtar P, Javornik U, Kotakis C, Šket P, Karlický V, Materová Z, Špunda V, Plavec J, van Amerongen H, Vigh L, Van As H, Lambrev PH (2017) Lipid polymorphism in chloroplast thylakoid membranes ‐ as revealed by P‐31‐NMR and timeresolved merocyanine fluorescence spectroscopy. Scientific Reports 7 PubMed PMC
Gasanov SE, Kim AA, Yaguzhinsky LS, Dagda RK (2018) Non‐bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics 1860(2): 586–599 PubMed PMC
Ghosh A, Smits M, Bredenbeck J, Bonn M (2007) Membrane‐Bound Water is Energetically Decoupled from Nearby Bulk Water: An Ultrafast Surface‐Specific Investigation. Journal of the American Chemical Society 129(31): 9608–9609 PubMed
Gollan PJ, Trotta A, Bajwa AA, Mancini I, Aro E‐M (2021) Characterization of the Free and Membrane‐Associated Fractions of the Thylakoid Lumen Proteome in Arabidopsis thaliana . International journal of molecular sciences 22(15): 8126 PubMed PMC
Goñi FM (2014) The basic structure and dynamics of cell membranes: An update of the Singer–Nicolson model. Biochimica et Biophysica Acta (BBA) ‐ Biomembranes 1838(6): 1467–1476 PubMed
Goss R, Latowski D (2020) Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. Frontiers in plant science 11: 455 PubMed PMC
Gounaris K, Barber J, Harwood JL (1986) The thylakoid membranes of higher plant chloroplasts. The Biochemical journal 237(2): 313–326 PubMed PMC
Gupta TK, Klumpe S, Gries K, Heinz S, Wietrzynski W, Ohnishi N, Niemeyer J, Spaniol B, Schaffer M, Rast A, Ostermeier M, Strauss M, Plitzko JM, Baumeister W, Rudack T, Sakamoto W, Nickelsen J, Schuller JM, Schroda M, Engel BD (2021) Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell 184(14): 3643–3659 e3623 PubMed
Harańczyk H, Strzałka K, Dietrich W, Blicharski JS (1995) 31P‐NMR observation of the temperature and glycerol induced non‐lamellar phase formation in wheat thylakoid membranes. Journal of Biological Physics 21(2): 125–139
Harwood JL (1985) Plant Mitochondrial Lipids: Structure, Function and Biosynthesis. In: Douce R, Day DA (eds) Higher Plant Cell Respiration. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp. 37–71
Hryc J, Szczelina R, Markiewicz M, Pasenkiewicz‐Gierula M (2022) Lipid/water interface of galactolipid bilayers in different lyotropic liquid‐crystalline phases. Frontiers in Molecular Biosciences 9, Original Research PubMed PMC
Cherepanov DA, Feniouk BA, Junge W, Mulkidjanian AY (2003) Low dielectric permittivity of water at the membrane interface: Effect on the energy coupling mechanism in biological membranes. Biophysical Journal 85(2): 1307–1316 PubMed PMC
Israelachvili JN (2011) Interactions of Biological Membranes and Structures. In: Israelachvili JN (ed) Intermolecular and Surface Forces (Third Edition). Academic Press, San Diego, pp. 577–616
Iwai M, Patel‐Tupper D, Niyogi KK (2024) Structural Diversity in Eukaryotic Photosynthetic Light Harvesting. Annu Rev Plant Biol 75(1): 119–152 PubMed
Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proceedings of the National Academy of Sciences 97(14): 8175–8179 PubMed PMC
Junglas B, Axt A, Siebenaller C, Sonel H, Hellmann N, Weber SAL, Schneider D (2022) Membrane destabilization and pore formation induced by the Synechocystis IM30 protein. Biophys J 121(18): 3411–3421 PubMed PMC
Kana R, Prásil O, Mullineaux CW (2009) Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted. FEBS letters 583(4): 670–674 PubMed
Karnauchov I, Herrmann RG, Klösgen RB (1997) Transmembrane topology of the Rieske Fe/S protein of the cytochrome b6/f complex from spinach chloroplasts. FEBS Letters 408(2): 206–210 PubMed
Kell DB (1979) On the functional proton current pathway of electron transport phosphorylation: An electrodic view. Biochimica et Biophysica Acta (BBA) ‐ Reviews on Bioenergetics 549(1): 55–99 PubMed
Kell DB (2021) A protet‐based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 78: 1–177 PubMed
Kell DB (2024) A protet‐based model that can account for energy coupling in oxidative and photosynthetic phosphorylation. Biochimica Et Biophysica Acta‐Bioenergetics 1865(4) PubMed
Kirchhoff H (2019) Chloroplast ultrastructure in plants. New Phytologist 223(2): 565–574 PubMed
Kirchhoff H, Haase W, Wegner S, Danielsson R, Ackermann R, Albertsson PA (2007) Low‐light‐induced formation of semicrystalline photosystem II arrays in higher plant chloroplast. Biochemistry 46(39): 11169–11176 PubMed
Kirchhoff H, Hall C, Wood M, Herbstová M, Tsabari O, Nevo R, Charuvi D, Shimoni E, Reich Z (2011) Dynamic control of protein diffusion within the granal thylakoid lumen. Proceedings of the National Academy of Sciences of the United States of America 108(50): 20248–20253 PubMed PMC
Koochak H, Puthiyaveetil S, Mullendore DL, Li M, Kirchhoff H (2019) The structural and functional domains of plant thylakoid membranes. The Plant Journal 97(3): 412–429 PubMed
Kotakis C, Akhtar P, Zsiros O, Garab G, Lambrev PH (2018) Increased thermal stability of photosystem II and the macro‐organization of thylakoid membranes, induced by co‐solutes, associated with changes in the lipid‐phase behaviour of thylakoid membranes. Photosynthetica 56(1): 254–264
Kowalewska Ł, Bykowski M, Mostowska A (2019) Spatial organization of thylakoid network in higher plants. Botany Letters 166(3): 326–343
Krumova SB, Dijkema C, de Waard P, Van As H, Garab G, van Amerongen H (2008a) Phase behaviour of phosphatidylglycerol in spinach thylakoid membranes as revealed by P‐31‐NMR. Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics 1778(4): 997–1003 PubMed
Krumova SB, Koehorst RBM, Bóta A, Páli T, van Hoek A, Garab G, van Amerongen H (2008b) Temperature dependence of the lipid packing in thylakoid membranes studied by time‐ and spectrally resolved fluorescence of Merocyanine 540. Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics 1778(12): 2823–2833 PubMed
LaBrant E, Barnes AC, Roston RL (2018) Lipid transport required to make lipids of photosynthetic membranes. Photosynthesis research 138(3): 345–360 PubMed
Latowski D, Kruk J, Burda K, Skrzynecka‐Jaskier M, Kostecka‐Gugała A, Strzałka K (2002) Kinetics of violaxanthin de‐epoxidation by violaxanthin de‐epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. European journal of biochemistry 269(18): 4656–4665 PubMed
Liang Z, Yeung W‐T, Ma J, Mai KKK, Liu Z, Chong Y‐LF, Cai X, Kang B‐H (2022) Electron tomography analysis of the prolamellar body and its transformation into grana thylakoids in the cryofixed Arabidopsis cotyledon. bioRxiv: 2022.2004.2004.487035 PubMed PMC
Malnoë A, Schultink A, Shahrasbi S, Rumeau D, Havaux M, Niyogi KK (2018) The Plastid Lipocalin LCNP Is Required for Sustained Photoprotective Energy Dissipation in Arabidopsis . The Plant Cell 30(1): 196–208 PubMed PMC
Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J‐O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one‐ and two‐dimensional solid‐state NMR spectra. Magnetic Resonance in Chemistry 40(1): 70–76
Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biological Reviews of the Cambridge Philosophical Society 41(3): 445–502 PubMed
Miyamoto VK, Thompson TE (1967) Some electrical properties of lipid bilayer membranes. Journal of Colloid and Interface Science 25(1): 16–25
Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biology 9(4) PubMed PMC
Mulkidjanian AY, Heberle J, Cherepanov DA (2006) Protons @ interfaces: implications for biological energy conversion. Biochimica et biophysica acta 1757(8): 913–930 PubMed
Mustárdy L, Garab G (2003) Granum revisited. A three‐dimensional model ‐ where things fall into place. Trends in Plant Science 8(3): 117–122 PubMed
Mustárdy L, Buttle K, Steinbach G, Garab G (2008) The Three‐Dimensional Network of the Thylakoid Membranes in Plants: Quasihelical Model of the Granum‐Stroma Assembly. Plant Cell 20(10): 2552–2557 PubMed PMC
Nagata Y, Mukamel S (2010) Vibrational sum‐frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J Am Chem Soc 132(18): 6434–6442 PubMed PMC
Nesterov SV, Plokhikh KS, Chesnokov YM, Mustafin DA, Goleva TN, Rogov AG, Vasilov RG, Yaguzhinsky LS (2024) Safari with an Electron Gun: Visualization of Protein and Membrane Interactions in Mitochondria in Natural Environment. Biochemistry (Mosc) 89(2): 257–268 PubMed
Nevo R, Charuvi D, Tsabari O, Reich Z (2012) Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. The Plant journal: for cell and molecular biology 70(1): 157–176 PubMed
Nickels JD, Katsaras J (2015) Water and Lipid Bilayers. Subcell Biochem 71: 45–67 PubMed
Niedermaier S, Schneider T, Bahl M‐O, Matsubara S, Huesgen PF (2020) Photoprotective Acclimation of the Arabidopsis thaliana Leaf Proteome to Fluctuating Light. Frontiers in Genetics 11, Original Research PubMed PMC
Perez‐Boerema A, Engel BD, Wietrzynski W (2024) Evolution of Thylakoid Structural Diversity. Annual Review of Cell and Developmental Biology 40(Volume 40, 2024): 169‐193 PubMed
Ruban AV, Saccon F (2022) Chlorophyll a de‐excitation pathways in the LHCII antenna. The Journal of Chemical Physics 156(7) PubMed
Sandoval‐Ibáñez O, Sharma A, Bykowski M, Borràs‐Gas G, Behrendorff JBYH, Mellor S, Qvortrup K, Verdonk JC, Bock R, Kowalewska Ł, Pribil M (2021) Curvature thylakoid 1 proteins modulate prolamellar body morphology and promote organized thylakoid biogenesis in Arabidopsis thaliana . Proceedings of the National Academy of Sciences 118(42): e2113934118 PubMed PMC
Seddon JM, Templer RH (1995) Polymorphism of Lipid‐Water Systems. In: Lipowsky R, Sackmann E (eds) Handbook of Biological Physics. North‐Holland, pp. 97–160
Semenova GA (1999) The relationship between the transformation of thylakoid acyl lipids and the formation of tubular lipid aggregates visible on fracture faces. Journal of Plant Physiology 155(6): 669–677
Shinobu A, Palm GJ, Schierbeek AJ, Agmon N (2010) Visualizing Proton Antenna in a High‐Resolution Green Fluorescent Protein Structure. Journal of the American Chemical Society 132(32): 11093–11102 PubMed
Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustárdy L, Laggner P, Holzenburg A, Garab G (2000) Self‐assembly of large, ordered lamellae from non‐bilayer lipids and integral membrane proteins in vitro . Proceedings of the National Academy of Sciences of the United States of America 97(4): 1473–1476 PubMed PMC
Singer SJ, Nicolson GL (1972) The Fluid Mosaic Model of the Structure of Cell Membranes. Science 175(4023): 720–731 PubMed
Sjöholm J, Bergstrand J, Nilsson T, Šachl R, Cv Ballmoos, Widengren J, Brzezinski P (2017) The lateral distance between a proton pump and ATP synthase determines the ATP‐synthesis rate. Scientific Reports 7(1): 2926 PubMed PMC
Solymosi K, Schoefs B (2010) Etioplast and etio‐chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynthesis Research 105(2): 143–166 PubMed
Trapp M, Gutberlet T, Juranyi F, Unruh T, Demé B, Tehei M, Peters J (2010) Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering. The Journal of Chemical Physics 133(16) PubMed
Ughy B, Karlický V, Dlouhý O, Javornik U, Materová Z, Zsiros O, Šket P, Plavec J, Špunda V, Garab G (2019) Lipid‐polymorphism of plant thylakoid membranes. Enhanced non‐bilayer lipid phases associated with increased membrane permeability. Physiologia Plantarum 166(1): 278–287 PubMed
van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ (2015) Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics 1848(6): 1319–1330 PubMed
Variyam AR, Stolov M, Feng JJ, Amdursky N (2024) Solid‐State Molecular Protonics Devices of Solid‐Supported Biological Membranes Reveal the Mechanism of Long‐Range Lateral Proton Transport. Acs Nano 18(6): 5101–5112 PubMed PMC
Wietrzynski W, Lamm L, Wood WHJ, Loukeri M‐J, Malone L, Peng T, Johnson MP, Engel BD (2024) Molecular architecture of thylakoid membranes within intact spinach chloroplasts. bioRxiv: 2024.2011.2024.625035
Williams RJ (1979) Some unrealistic assumptions in the theory of chemi‐osmosis and their consequences. FEBS letters 102(1): 126–132 PubMed
Williams WP (1998) The Physical Properties of Thylakoid Membrane Lipids and Their Relation to Photosynthesis. In: Siegenthaler PA, Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Springer, Netherlands, Dordrecht, pp. 103–118
Witt HT (1979) Energy‐Conversion in the Functional Membrane of Photosynthesis ‐ Analysis by Light‐Pulse and Electric Pulse Methods ‐ Central Role of the Electric‐Field. Biochimica Et Biophysica Acta 505(3–4): 355–427 PubMed
Wolf DM, Segawa M, Kondadi AK, Anand R, Bailey ST, Reichert AS, van der Bliek AM, Shackelford DB, Liesa M, Shirihai OS (2019) Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO Journal 38(22): e101056 PubMed PMC
Yu L, Zhou C, Fan J, Shanklin J, Xu C (2021) Mechanisms and functions of membrane lipid remodeling in plants. The Plant Journal 107(1): 37–53 PubMed
Zsíros O, Ünnep R, Nagy G, Almásy L, Patai R, Székely NK, Kohlbrecher J, Garab G, Dér A, Kovács L (2020) Role of Protein‐Water Interface in the Stacking Interactions of Granum Thylakoid Membranes—As Revealed by the Effects of Hofmeister Salts. Frontiers in plant science 11, Original Research; PubMed PMC