Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. II. Structure and Functions

. 2021 Sep 09 ; 10 (9) : . [epub] 20210909

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34572012

Grantová podpora
19-13637S Grantová Agentura České Republiky
K 128679 Hungarian Scientific Research Fund
GINOP-2.3.2-15-2016-00058 National Research Development and Innovation Office of Hungary
CZ.02.1.01/0.0/0.0/16_019/0000797 SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions
CZ.02.1.01/0.0/0.0/ 16_019/0000827 European Regional Development Fund
07359/2019/RRC Silesian Region
SGS02/PřF/2021 Ostravská Univerzita v Ostravě
LM2015043 Ministry of Education, Youth and Science
LM2018123 Ministry of Education, Youth and Science

In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.

Zobrazit více v PubMed

Dlouhý O., Javornik U., Zsiros O., Šket P., Karlický V., Špunda V., Plavec J., Garab G. Lipid polymorphism of the subchloroplast—granum and stroma thylakoid membrane—particles. I. 31P-NMR spectroscopy. Cells. 2021;10:2354. PubMed PMC

Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 1966;41:445–502. doi: 10.1111/j.1469-185X.1966.tb01501.x. PubMed DOI

Douce R., Joyard J. Biosynthesis of Thylakoid Membrane Lipids. In: Ort D.R., Yocum C.F., Heichel I.F., editors. Oxygenic Photosynthesis: The Light Reactions. Springer; Dordrecht, The Netherlands: 1996. pp. 69–101.

Krumova S.B., Dijkema C., de Waard P., Van As H., Garab G., van Amerongen H. Phase behaviour of phosphatidylglycerol in spinach thylakoid membranes as revealed by P-31-NMR. Biochim. Biophys. Acta. 2008;1778:997–1003. doi: 10.1016/j.bbamem.2008.01.004. PubMed DOI

Garab G., Ughy B., de Waard P., Akhtar P., Javornik U., Kotakis C., Šket P., Karlický V., Materová Z., Špunda V., et al. Lipid polymorphism in chloroplast thylakoid membranes—as revealed by P-31-NMR and timeresolved merocyanine fluorescence spectroscopy. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-13574-y. PubMed DOI PMC

Ughy B., Karlický V., Dlouhý O., Javornik U., Materová Z., Zsiros O., Šket P., Plavec J., Špunda V., Garab G. Lipid-polymorphism of plant thylakoid membranes. Enhanced non-bilayer lipid phases associated with increased membrane permeability. Physiol. Plant. 2019;166:278–287. doi: 10.1111/ppl.12929. PubMed DOI

Dlouhý O., Kurasová I., Karlický V., Javornik U., Šket P., Petrova N.Z., Krumova S.B., Plavec J., Ughy B., Špunda V., et al. Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: Effects on the water-soluble enzyme violaxanthin de-epoxidase. Sci. Rep. 2020;10:11959. doi: 10.1038/s41598-020-68854-x. PubMed DOI PMC

Garab G., van Amerongen H. Linear dichroism and circular dichroism in photosynthesis research. Photosynth. Res. 2009;101:135–146. doi: 10.1007/s11120-009-9424-4. PubMed DOI PMC

Lamb J.J., Rokke G., Hohmann-Marriott M.F. Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica. 2018;56:105–124. doi: 10.1007/s11099-018-0791-y. DOI

Kalaji H.M., Jajoo A., Oukarroum A., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Lukasik I., Goltsev V., Ladle R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016;38:102. doi: 10.1007/s11738-016-2113-y. DOI

Lazár D. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta. 1999;1412:1–28. doi: 10.1016/S0005-2728(99)00047-X. PubMed DOI

Sipka G., Magyar M., Mezzetti A., Akhtar P., Zhu Q., Xiao Y., Han G., Santabarbara S., Shen J.-R., Lambrev P.H., et al. Light-adapted charge-separated state of photosystem II: Structural and functional dynamics of the closed reaction center. Plant Cell. 2021;33:1286–1302. doi: 10.1093/plcell/koab008. PubMed DOI PMC

Bailleul B., Cardol P., Breyton C., Finazzi G. Electrochromism: A useful probe to study algal photosynthesis. Photosynth. Res. 2010;106:179–189. doi: 10.1007/s11120-010-9579-z. PubMed DOI

Pabst G., Koschuch R., Pozo-Navas B., Rappolt M., Lohner K., Laggner P. Structural analysis of weakly ordered membrane stacks. J. Appl. Crystallogr. 2003;36:1378–1388. doi: 10.1107/S0021889803017527. DOI

Jakubauskas D., Mortensen K., Jensen P.E., Kirkensgaard J.J.K. Small-Angle X-Ray and Neutron Scattering on Photosynthetic Membranes. Front. Chem. 2021;9:82. doi: 10.3389/fchem.2021.631370. PubMed DOI PMC

Semenova G.A. The relationship between the transformation of thylakoid acyl lipids and the formation of tubular lipid aggregates visible on fracture faces. J. Plant Physiol. 1999;155:669–677. doi: 10.1016/S0176-1617(99)80081-9. DOI

Williams W.P. The Physical Properties of Thylakoid Membrane Lipids and Their Relation to Photosynthesis. In: Paul-André S., Norio M., editors. Lipids in Photosynthesis: Structure, Function and Genetics. Springer; Dordrecht, The Netherlands: 1998. pp. 103–118.

Sprague S.G., Staehelin L.A. Effects of reconstitution method on the structural organization of isolated chloroplast membrane-lipids. Biochim. Biophys. Acta. 1984;777:306–322. doi: 10.1016/0005-2736(84)90433-4. DOI

Daum B., Kuhlbrandt W. Electron tomography of plant thylakoid membranes. J. Exp. Bot. 2011;62:2393–2402. doi: 10.1093/jxb/err034. PubMed DOI

Bussi Y., Shimoni E., Weiner A., Kapon R., Charuvi D., Nevo R., Efrati E., Reich Z. Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc. Natl. Acad. Sci. USA. 2019;116:22366–22375. doi: 10.1073/pnas.1905994116. PubMed DOI PMC

Mustárdy L.A., Janossy A.G.S. Evidence of helical thylakoid arrangement by scanning electron-microscopy. Plant Sci. Lett. 1979;16:281–284. doi: 10.1016/0304-4211(79)90039-7. DOI

Anderson J.M., Boardman N.K. Fractionation of photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Biochim. Biophys. Acta. 1966;112:403–421. doi: 10.1016/0926-6585(66)90244-5. PubMed DOI

Peters F., Vanwielink J.E., Sang H., Devries S., Kraayenhof R. Studies on well coupled photosystem I-enriched subchloroplast vesicles—content and redox properties of electron-transfer components. Biochim. Biophys. Acta. 1983;722:460–470. doi: 10.1016/0005-2728(83)90062-2. DOI

Cuello J., Quiles M.J. Fractionation of thylakoid membranes into grana and stroma thylakoids. Methods Mol. Biol. 2004;274:1–9. doi: 10.1385/1-59259-799-8:001. PubMed DOI

Pavlovič A., Stolárik T., Nosek L., Kouřil R., Ilík P. Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings. Biochim. Biophys. Acta-Bioenerg. 2016;1857:799–809. doi: 10.1016/j.bbabio.2016.02.009. PubMed DOI

Saga G., Giorgetti A., Fufezan C., Giacometti G.M., Bassi R., Morosinotto T. Mutation Analysis of Violaxanthin De-epoxidase Identifies Substrate-binding Sites and Residues Involved in Catalysis. J. Biol. Chem. 2010;285:23763–23778. doi: 10.1074/jbc.M110.115097. PubMed DOI PMC

Wacha A., Varga Z., Bota A. CREDO: A new general-purpose laboratory instrument for small-angle X-ray scattering. J. Appl. Crystallogr. 2014;47:1749–1754. doi: 10.1107/S1600576714019918. DOI

Wacha A. Optimized pinhole geometry for small-angle scattering. J. Appl. Crystallogr. 2015;48:1843–1848. doi: 10.1107/S1600576715018932. DOI

Severs N.J. Freeze-fracture electron microscopy. Nat. Protoc. 2007;2:547–576. doi: 10.1038/nprot.2007.55. PubMed DOI

Arshad R., Calvaruso C., Boekema E.J., Büchel C., Kouřil R. Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana. Plant Physiol. 2021 doi: 10.1093/plphys/kiab208. PubMed DOI PMC

Mastronarde D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. doi: 10.1016/j.jsb.2005.07.007. PubMed DOI

Tang G., Peng L., Baldwin P.R., Mann D.S., Jiang W., Rees I., Ludtke S.J. EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 2007;157:38–46. doi: 10.1016/j.jsb.2006.05.009. PubMed DOI

Frangakis A.S., Hegerl R. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 2001;135:239–250. doi: 10.1006/jsbi.2001.4406. PubMed DOI

Kremer J.R., Mastronarde D.N., McIntosh J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996;116:71–76. doi: 10.1006/jsbi.1996.0013. PubMed DOI

Dobrikova A.G., Várkonyi Z., Krumova S.B., Kovács L., Kostov G.K., Todinova S.J., Busheva M.C., Taneva S.G., Garab G. Structural Rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Biochemistry. 2003;42:11272–11280. doi: 10.1021/bi034899j. PubMed DOI

Lambrev P.H., Varkonyi Z., Krumova S., Kovacs L., Miloslavina Y., Holzwarth A.R., Garab G. Importance of trimer-trimer interactions for the native state of the plant light-harvesting complex II. Biochim. Biophys. Acta-Bioenerg. 2007;1767:847–853. doi: 10.1016/j.bbabio.2007.01.010. PubMed DOI

Berthold D.A., Babcock G.T., Yocum C.F. A highly resolved, oxygen-evolving photosystem-II preparation from spinach thylakoid membranes—electron-paramagnetic-res and electron-transport properties. FEBS Lett. 1981;134:231–234. doi: 10.1016/0014-5793(81)80608-4. DOI

Morosinotto T., Segalla A., Giacometti G.M., Bassi R. Purification of structurally intact grana from plants thylakoids membranes. J. Bioenerg. Biomembr. 2010;42:37–45. doi: 10.1007/s10863-009-9261-3. PubMed DOI

Miloslavina Y., Lambrev P.H., Jávorfi T., Várkonyi Z., Karlický V., Wall J.S., Hind G., Garab G. Anisotropic circular dichroism signatures of oriented thylakoid membranes and lamellar aggregates of LHCII. Photosynth. Res. 2012;111:29–39. doi: 10.1007/s11120-011-9664-y. PubMed DOI

Nellaepalli S., Zsiros O., Toth T., Yadavalli V., Garab G., Subramanyam R., Kovacs L. Heat- and light-induced detachment of the light harvesting complex from isolated photosystem I supercomplexes. J. Photochem. Photobiol. B-Biol. 2014;137:13–20. doi: 10.1016/j.jphotobiol.2014.04.026. PubMed DOI

Tian L.J., Xu P.Q., Chukhutsina V.U., Holzwarth A.R., Croce R. Zeaxanthin-dependent nonphotochemical quenching does not occur in photosystem I in the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2017;114:4828–4832. doi: 10.1073/pnas.1621051114. PubMed DOI PMC

Krumova S.B., Várkonyi Z., Lambrev P.H., Kovács L., Todinova S.J., Busheva M.C., Taneva S.G., Garab G. Heat- and light-induced detachment of the light-harvesting antenna complexes of photosystem I in isolated stroma thylakoid membranes. J. Photochem. Photobiol. B-Biol. 2014;137:4–12. doi: 10.1016/j.jphotobiol.2014.04.029. PubMed DOI

Akhtar P., Lingvay M., Kiss T., Deák R., Bóta A., Ughy B., Garab G., Lambrev P.H. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes. Biochim. Biophys. Acta-Bioenerg. 2016;1857:462–472. doi: 10.1016/j.bbabio.2016.01.016. PubMed DOI

Xu P.Q., Tian L.J., Kloz M., Croce R. Molecular insights into Zeaxanthin-dependent quenching in higher plants. Sci. Rep. 2015;5:13679. doi: 10.1038/srep13679. PubMed DOI PMC

Akhtar P., Dorogi M., Pawlak K., Kovács L., Bóta A., Kiss T., Garab G., Lambrev P.H. Pigment Interactions in Light-harvesting Complex II in Different Molecular Environments. J. Biol. Chem. 2015;290:4877–4886. doi: 10.1074/jbc.M114.607770. PubMed DOI PMC

Garab G.I., Horváth G., Faludi-Dániel A. Resolution of fluorescence bands in greening chloroplasts of maize. Biochem. Biophys. Res. Commun. 1974;56:1004–1009. doi: 10.1016/S0006-291X(74)80288-3. PubMed DOI

Williams W.P., Brain A.P.R., Dominy P.J. Induction of nonbilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to the thermal-stability of photosystem-II. Biochim. Biophys. Acta. 1992;1099:137–144. doi: 10.1016/0005-2728(92)90210-S. DOI

Kotakis C., Akhtar P., Zsiros O., Garab G., Lambrev P.H. Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes. Photosynthetica. 2018;56:254–264. doi: 10.1007/s11099-018-0782-z. DOI

Mustardy L., Garab G. Granum revisited. A three-dimensional model—where things fall into place. Trends Plant Sci. 2003;8:117–122. doi: 10.1016/S1360-1385(03)00015-3. PubMed DOI

Peters F., van Spanning R., Kraayenhof R. Studies on well coupled photosystem I-enriched subchloroplast vesicles—optimization of ferredoxin-mediated cyclic phosphorylation and electric-potential generation. Biochim. Biophys. Acta. 1983;724:159–165. doi: 10.1016/0005-2728(83)90037-3. DOI

Latowski D., Akerlund H.E., Strzalka K. Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry. 2004;43:4417–4420. doi: 10.1021/bi049652g. PubMed DOI

Goss R., Lohr M., Latowski D., Grzyb J., Vieler A., Wilhelm C., Strzalka K. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry. 2005;44:4028–4036. doi: 10.1021/bi047464k. PubMed DOI

Rockholm D.C., Yamamoto H.Y. Violaxanthin de-epoxidase—Purification of a 43-kilodalton lumenal protein from lettuce by lipid-affinity precipitation with monogalactosyldiacylglyceride. Plant Physiol. 1996;110:697–703. doi: 10.1104/pp.110.2.697. PubMed DOI PMC

Simionato D., Basso S., Zaffagnini M., Lana T., Marzotto F., Trost P., Morosinotto T. Protein redox regulation in the thylakoid lumen: The importance of disulfide bonds for violaxanthin de-epoxidase. FEBS Lett. 2015;589:919–923. doi: 10.1016/j.febslet.2015.02.033. PubMed DOI

Turner D.C., Gruner S.M. X-ray-diffraction reconstruction of the inverted hexagonal (HII) phase in lipid water-systems. Biochemistry. 1992;31:1340–1355. doi: 10.1021/bi00120a009. PubMed DOI

Kirkensgaard J.J.K., Holm J.K., Larsen J.K., Posselt D. Simulation of small-angle X-ray scattering from thylakoid membranes. J. Appl. Crystallogr. 2009;42:649–659. doi: 10.1107/S0021889809017701. DOI

Unnep R., Zsiros O., Hörcsik Z., Markó M., Jajoo A., Kohlbrecher J., Garab G., Nagy G. Low-pH induced reversible reorganizations of chloroplast thylakoid membranes—As revealed by small-angle neutron scattering. Biochim. Biophys. Acta-Bioenerg. 2017;1858:360–365. doi: 10.1016/j.bbabio.2017.02.010. PubMed DOI

Stock D., Leslie A.G.W., Walker J.E. Molecular architecture of the rotary motor in ATP synthase. Science. 1999;286:1700–1705. doi: 10.1126/science.286.5445.1700. PubMed DOI

Kirchhoff H., Haase W., Wegner S., Danielsson R., Ackermann R., Albertsson P.A. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplast. Biochemistry. 2007;46:11169–11176. doi: 10.1021/bi700748y. PubMed DOI

Simidjiev I., Stoylova S., Amenitsch H., Javorfi T., Mustárdy L., Laggner P., Holzenburg A., Garab G. Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc. Natl. Acad. Sci. USA. 2000;97:1473–1476. doi: 10.1073/pnas.97.4.1473. PubMed DOI PMC

Holm J.K. Structure and Structural Flexibility of Thylakoid Membranes. University of Roskilde; Roskilde, Denmark: 2004.

Staehelin L.A. Chloroplast Structure and Supramolecular Organization of Photosynthetic Membranes. In: Staehelin L.A., Arntzen C.J., editors. Photosynthesis III: Photosynthetic Membranes and Light Harvesting Systems. Springer; Berlin/Heidelberg, Germany: 1986. pp. 1–84.

Gounaris K., Sen A., Brain A.P.R., Quinn P.J., Williams W.P. The formation of non-bilayer structures in total polar lipid extracts of chloroplast membranes. Biochim. Biophys. Acta. 1983;728:129–139. doi: 10.1016/0005-2736(83)90445-5. DOI

Oszlánczi A., Bóta A., Klumpp E. Influence of aminoglycoside antibiotics on the thermal behaviour and structural features of DPPE-DPPG model membranes. Colloids Surf. B Biointerfaces. 2010;75:141–148. doi: 10.1016/j.colsurfb.2009.08.027. PubMed DOI

Dekker J.P., Boekema E.J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta Bioenerg. 2005;1706:12–39. doi: 10.1016/j.bbabio.2004.09.009. PubMed DOI

Daum B., Nicastro D., Il J.A., McIntosh J.R., Kuhlbrandt W. Arrangement of Photosystem II and ATP Synthase in Chloroplast Membranes of Spinach and Pea. Plant Cell. 2010;22:1299–1312. doi: 10.1105/tpc.109.071431. PubMed DOI PMC

Watts A. NMR of Lipids. In: Roberts G.C.K., editor. Encyclopedia of Biophysics. Springer; Berlin/Heidelberg, Germany: 2013. pp. 1727–1738.

Kouřil R., Oostergetel G.T., Boekema E.J. Fine structure of granal thylakoid membrane organization using cryo electron tomography. Biochim. Biophys. Acta-Bioenerg. 2011;1807:368–374. doi: 10.1016/j.bbabio.2010.11.007. PubMed DOI

van Eerden F.J., de Jong D.H., de Vries A.H., Wassenaar T.A., Marrink S.J. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim Biophys Acta. 2015;1848:1319–1330. doi: 10.1016/j.bbamem.2015.02.025. PubMed DOI

Kirchhoff H. Chloroplast ultrastructure in plants. New Phytol. 2019;223:565–574. doi: 10.1111/nph.15730. PubMed DOI

Seddon J.M., Templer R.H. Chapter 3—Polymorphism of Lipid-Water Systems. In: Lipowsky R., Sackmann E., editors. Handbook of Biological Physics. Volume 1. North-Holland; Amsterdam, The Netherlands: 1995. pp. 97–160.

Chernomordik L. Non-bilayer lipids and biological fusion intermediates. Chem. Phys. Lipids. 1996;81:203–213. doi: 10.1016/0009-3084(96)02583-2. PubMed DOI

Jouhet J. Importance of the hexagonal lipid phase in biological membrane organization. Front Plant Sci. 2013;4:494. doi: 10.3389/fpls.2013.00494. PubMed DOI PMC

Yang Y., Yao H.W., Hong M. Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using P-31 Solid-State NMR Spectroscopy. J. Phys. Chem. B. 2015;119:4993–5001. doi: 10.1021/acs.jpcb.5b01001. PubMed DOI PMC

Mustárdy L., Buttle K., Steinbach G., Garab G. The Three-Dimensional Network of the Thylakoid Membranes in Plants: Quasihelical Model of the Granum-Stroma Assembly. Plant Cell. 2008;20:2552–2557. doi: 10.1105/tpc.108.059147. PubMed DOI PMC

Austin J.R., II, Staehelin L.A. Three-Dimensional Architecture of Grana and Stroma Thylakoids of Higher Plants as Determined by Electron Tomography. Plant Physiol. 2011;155:1601–1611. doi: 10.1104/pp.110.170647. PubMed DOI PMC

de Kruijff B. Biomembranes—Lipids beyond the bilayer. Nature. 1997;386:129–130. doi: 10.1038/386129a0. PubMed DOI

Brown M.F. Curvature Forces in Membrane Lipid-Protein Interactions. Biochemistry. 2012;51:9782–9795. doi: 10.1021/bi301332v. PubMed DOI PMC

Ball W.B., Neff J.K., Gohil V.M. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett. 2018;592:1273–1290. doi: 10.1002/1873-3468.12887. PubMed DOI PMC

Zhang M., Mileykovskaya E., Dowhan W. Gluing the respiratory chain together - Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J. Biol. Chem. 2002;277:43553–43556. doi: 10.1074/jbc.C200551200. PubMed DOI

Pfeiffer K., Gohil V., Stuart R.A., Hunte C., Brandt U., Greenberg M.L., Schagger H. Cardiolipin stabilizes respiratory chain supercomplexes. J. Biol. Chem. 2003;278:52873–52880. doi: 10.1074/jbc.M308366200. PubMed DOI

Heinemeyer J., Braun H.P., Boekema E.J., Kouřil R. A structural model of the cytochrome c reductase/oxidase supercomplex from yeast mitochondria. J. Biol. Chem. 2007;282:12240–12248. doi: 10.1074/jbc.M610545200. PubMed DOI

Schuurmans J.J., Veerman E.C.I., Francke J.A., Torrespereira J.M.G., Kraayenhof R. Temperature-dependence of energy-transducing functions and inhibitor sensitivity in chloroplasts. Plant Physiol. 1984;74:170–175. doi: 10.1104/pp.74.1.170. PubMed DOI PMC

Tikhonov A.N., Vershubskii A.V. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Photosynth. Res. 2020;146:299–329. doi: 10.1007/s11120-020-00777-0. PubMed DOI

Garab G., Lohner K., Laggner P., Farkas T. Self-regulation of the lipid content of membranes by non-bilayer lipids: A hypothesis. Trends Plant Sci. 2000;5:489–494. doi: 10.1016/S1360-1385(00)01767-2. PubMed DOI

Gasanov S.E., Kim A.A., Yaguzhinsky L.S., Dagda R.K. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochim. Biophys. Acta. 2018;1860:586–599. doi: 10.1016/j.bbamem.2017.11.014. PubMed DOI PMC

Morelli A.M., Ravera S., Calzia D., Panfoli I. An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol. 2019;9:180221. doi: 10.1098/rsob.180221. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...