Role of isotropic lipid phase in the fusion of photosystem II membranes

. 2024 Aug ; 161 (1-2) : 127-140. [epub] 20240425

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38662326
Odkazy

PubMed 38662326
PubMed Central PMC11269484
DOI 10.1007/s11120-024-01097-3
PII: 10.1007/s11120-024-01097-3
Knihovny.cz E-zdroje

It has been thoroughly documented, by using 31P-NMR spectroscopy, that plant thylakoid membranes (TMs), in addition to the bilayer (or lamellar, L) phase, contain at least two isotropic (I) lipid phases and an inverted hexagonal (HII) phase. However, our knowledge concerning the structural and functional roles of the non-bilayer phases is still rudimentary. The objective of the present study is to elucidate the origin of I phases which have been hypothesized to arise, in part, from the fusion of TMs (Garab et al. 2022 Progr Lipid Res 101,163). We take advantage of the selectivity of wheat germ lipase (WGL) in eliminating the I phases of TMs (Dlouhý et al. 2022 Cells 11: 2681), and the tendency of the so-called BBY particles, stacked photosystem II (PSII) enriched membrane pairs of 300-500 nm in diameter, to form large laterally fused sheets (Dunahay et al. 1984 BBA 764: 179). Our 31P-NMR spectroscopy data show that BBY membranes contain L and I phases. Similar to TMs, WGL selectively eliminated the I phases, which at the same time exerted no effect on the molecular organization and functional activity of PSII membranes. As revealed by sucrose-density centrifugation, magnetic linear dichroism spectroscopy and scanning electron microscopy, WGL disassembled the large laterally fused sheets. These data provide direct experimental evidence on the involvement of I phase(s) in the fusion of stacked PSII membrane pairs, and strongly suggest the role of non-bilayer lipids in the self-assembly of the TM system.

Zobrazit více v PubMed

Akimov SA, Molotkovsky RJ, Kuzmin PI, Galimzyanov TR, Batishchev OV (2020) Continuum models of membrane fusion: evolution of the theory. Int J Mol Sci 21(11):3875 10.3390/ijms21113875 PubMed DOI PMC

Barzda V, Mustardy L, Garab G (1994) Size dependency of circular dichroism in macroaggregates of photosynthetic pigment-protein complexes. Biochemistry 33(35):10837–10841 10.1021/bi00201a034 PubMed DOI

Blankenship RE (2021) Molecular Mechanisms of Photosynthesis. 3rd Edition edn. Wiley

Boekema EJ, van Breemen JF, van Roon H, Dekker JP (2000) Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 301(5):1123–1133 10.1006/jmbi.2000.4037 PubMed DOI

Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, Block MA, Maréchal E (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochimica et Biophysica Acta (BBA) -. Bioenergetics 1837(4):470–480. 10.1016/j.bbabio.2013.09.00710.1016/j.bbabio.2013.09.007 PubMed DOI

Brown MF (2012) Curvature forces in membrane lipid-protein interactions. Biochemistry 51(49):9782–9795. 10.1021/bi301332v 10.1021/bi301332v PubMed DOI PMC

Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV (2019) How cells fuse. J Cell Biol 218(5):1436–1451 10.1083/jcb.201901017 PubMed DOI PMC

Bussi Y, Shimoni E, Weiner A, Kapon R, Charuvi D, Nevo R, Efrati E, Reich Z (2019) Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc Natl Acad Sci USA 116(44):22366–22375. 10.1073/pnas.1905994116 10.1073/pnas.1905994116 PubMed DOI PMC

Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72(1):175–207 10.1146/annurev.biochem.72.121801.161504 PubMed DOI

Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15(7):675–683 10.1038/nsmb.1455 PubMed DOI PMC

Conn CE, Seddon JM (2014) Nonlamellar lipid aggregates. In: Pabst G, Kučerka N, Nieh M, Katsaras J (eds) Liposomes, lipid bilayers and model membranes: from basic research to application. CRC, pp 31–47

Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochimica et Biophysica Acta (BBA) -. Biomembranes 559(4):399–420. 10.1016/0304-4157(79)90012-110.1016/0304-4157(79)90012-1 PubMed DOI

D’Amici GM, Huber CG, Zolla L (2009) Separation of thylakoid membrane proteins by sucrose gradient ultracentrifugation or blue native-SDS-PAGE two-dimensional electrophoresis. Membrane Proteomics: Methods Protocols :60–70 PubMed

de Kruijff B (1997) Biomembranes - lipids beyond the bilayer. Nature 386(6621):129–130. 10.1038/386129a0 10.1038/386129a0 PubMed DOI

de Kruijff B, Cullis PR, Verkleij AJ (1980) Non-bilayer lipid structures in model and biological membranes. Trends Biochem Sci 5(3):79–81. 10.1016/0968-0004(80)90074-210.1016/0968-0004(80)90074-2 DOI

Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta (BBA). - Bioenergetics 1706(1):12–39. 10.1016/j.bbabio.2004.09.00910.1016/j.bbabio.2004.09.009 PubMed DOI

Dlouhý O, Kurasová I, Karlický V, Javornik U, Šket P, Petrova NZ, Krumova SB, Plavec J, Ughy B, Špunda V, `G (2020) Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin de-epoxidase. Sci Rep 10(1). 10.1038/s41598-020-68854-x PubMed PMC

Dlouhý O, Javornik U, Zsiros O, Šket P, Karlický V, Špunda V, Plavec J, Garab G (2021a) Lipid polymorphism of the Subchloroplast—Granum and Stroma Thylakoid Membrane—Particles. I. 31P-NMR spectroscopy. Cells 10(9):2354 10.3390/cells10092354 PubMed DOI PMC

Dlouhý O, Karlický V, Arshad R, Zsiros O, Domonkos I, Kurasová I, Wacha AF, Morosinotto T, Bóta A, Kouřil R, Špunda V, Garab G (2021b) Lipid polymorphism of the Subchloroplast—Granum and Stroma Thylakoid membrane–particles. Struct Funct Cells II(9):2363 PubMed PMC

Dlouhý O, Karlický V, Javornik U, Kurasová I, Zsiros O, Šket P, Kanna SD, Böde K, Večeřová K, Urban O, Gasanoff ES, Plavec J, Špunda V, Ughy B, Garab G (2022) Structural Entities Associated with different lipid phases of plant thylakoid membranes - selective susceptibilities to different lipases and proteases. Cells 11(17):2681 10.3390/cells11172681 PubMed DOI PMC

Douce R, Joyard J (1996) Biosynthesis of Thylakoid membrane lipids. In: Ort DR, Yocum CF, Heichel IF (eds) Oxygenic photosynthesis: the light reactions. Springer Netherlands, Dordrecht, pp 69–101. doi:10.1007/0-306-48127-8_6

Duchene S, Siegenthaler PA (2000) Do glycerolipids display lateral heterogeneity in the thylakoid membrane? Lipids 35(7):739–744. 10.1007/s11745-000-0580-4 10.1007/s11745-000-0580-4 PubMed DOI

Dunahay TG, Staehelin LA, Seibert M, Ogilvie PD, Berg SP (1984) Structural, biochemical and biophysical characterization of four oxygen-evolving Photosystem II preparations from spinach. Biochim et Biophys Acta (BBA) - Bioenergetics 764(2):179–193. 10.1016/0005-2728(84)90027-610.1016/0005-2728(84)90027-6 DOI

Epand RM (1998) Lipid polymorphism and protein-lipid interactions. Biochimica et Biophysica Acta (BBA) - biomembranes 1376. 3353–368. 10.1016/s0304-4157(98)00015-x PubMed

Findinier J, Delevoye C, Cohen MM (2019) The dynamin-like protein fzl promotes thylakoid fusion and resistance to light stress in Chlamydomonas reinhardtii. PLoS Genet 15(3):e1008047 10.1371/journal.pgen.1008047 PubMed DOI PMC

Gao H, Xu X (2009) Depletion of Vipp1 in Synechocystis sp. PCC 6803 affects photosynthetic activity before the loss of thylakoid membranes. FEMS Microbiol Lett 292(1):63–70 10.1111/j.1574-6968.2008.01470.x PubMed DOI

Garab G, van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101(2–3):135–146. 10.1007/s11120-009-9424-4 10.1007/s11120-009-9424-4 PubMed DOI PMC

Garab G, Lohner K, Laggner P, Farkas T (2000) Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci 5(11):489–494. 10.1016/s1360-1385(00)01767-2 10.1016/s1360-1385(00)01767-2 PubMed DOI

Garab G, Ughy B, Goss R (2016) Role of MGDG and non-bilayer lipid phases in the structure and Dynamics of Chloroplast Thylakoid membranes. Subcell Biochem 86:127–157. 10.1007/978-3-319-25979-6_6 10.1007/978-3-319-25979-6_6 PubMed DOI

Garab G, Ughy B, de Waard P, Akhtar P, Javornik U, Kotakis C, Šket P, Karlický V, Materová Z, Špunda V, Plavec J, van Amerongen H, Vigh L, Van As H, Lambrev PH (2017) Lipid polymorphism in chloroplast thylakoid membranes - as revealed by P-31-NMR and timeresolved merocyanine fluorescence spectroscopy. Sci Rep 7. 10.1038/s41598-017-13574-y PubMed PMC

Garab G, Yaguzhinsky LS, Dlouhý O, Nesterov SV, Špunda V, Gasanoff ES (2022) Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Prog Lipid Res 86:101163. 10.1016/j.plipres.2022.101163 10.1016/j.plipres.2022.101163 PubMed DOI

Garab G, Magyar M, Sipka G, Lambrev P (2023) Chlorophyll-a fluorescence induction on new grounds: quantum efficiency versus the light-adapted state of photosystem II. J Exp Bot 74. 10.1093/jxb/erad252 PubMed

Goold HD, Cuiné S, Légeret B, Liang Y, Brugière S, Auroy P, Javot H, Tardif M, Jones B, Beisson F, Peltier G, Li-Beisson Y (2016) Saturating light induces sustained Accumulation of Oil in Plastidal lipid droplets in Chlamydomonas reinhardtii. Plant Physiol 171(4):2406–2417. 10.1104/pp.16.00718 10.1104/pp.16.00718 PubMed DOI PMC

Goss R, Latowski D (2020) Lipid dependence of Xanthophyll Cycling in higher plants and Algae. Front Plant Sci 11:455. 10.3389/fpls.2020.00455 10.3389/fpls.2020.00455 PubMed DOI PMC

Gounaris K, Barber J, Harwood JL (1986) The thylakoid membranes of higher plant chloroplasts. Biochem J 237(2):313–326. 10.1042/bj2370313 10.1042/bj2370313 PubMed DOI PMC

Govindjee G, Papageorgiou G (2004) Chlorophyll a fluorescence: a signature of photosynthesis. 10.1007/978-1-4020-3218-9

Graham Shipley G, Green JP, Nichols BW (1973) The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochimica et Biophysica Acta (BBA) - biomembranes 311. 4531–544. 10.1016/0005-2736(73)90128-4 PubMed

Haferkamp S, Kirchhoff H (2008) Significance of molecular crowding in grana membranes of higher plants for light harvesting by photosystem II. Photosynth Res 95(2):129–134. 10.1007/s11120-007-9253-2 10.1007/s11120-007-9253-2 PubMed DOI

Harańczyk H, Strzalka K, Bayerl T, Klose G, Blicharski JS (1985) P-31 NMR measurements in photosynthetic membranes of wheat. Photosynthetica 19(3):414–416

Harańczyk H, Strzałka K, Dietrich W, Blicharski JS (1995) 31P-NMR observation of the temperature and glycerol induced non-lamellar phase formation in wheat thylakoid membranes. J Biol Phys 21(2):125–139. 10.1007/BF0070559510.1007/BF00705595 DOI

Harwood JL (1998) Involvement of chloroplast lipids in the reaction of plants submitted to stress. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and Genetics. Springer Netherlands, Dordrecht, pp 287–302. doi:10.1007/0-306-48087-5_15

Hölzl G, Dörmann P (2019) Chloroplast lipids and their biosynthesis. Annu Rev Plant Biol 70:51–81 10.1146/annurev-arplant-050718-100202 PubMed DOI

Israelachvili JN, Marčelja S, Horn R (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200. 10.1017/S0033583500001645 10.1017/S0033583500001645 PubMed DOI

Joardar A, Pattnaik GP, Chakraborty H (2022) Mechanism of membrane fusion: interplay of lipid and peptide. J Membr Biol 255(2–3):211–224 10.1007/s00232-022-00233-1 PubMed DOI PMC

Kirchhoff H, Mukherjee U, Galla HJ (2002) Molecular Architecture of the Thylakoid membrane: lipid Diffusion Space for Plastoquinone. Biochemistry 41(15):4872–4882. 10.1021/bi011650y 10.1021/bi011650y PubMed DOI

Kiss J, Garab GI, Tóth ZM, Faludi-Dániel Á (1986) The light-harvesting chlorophyll a/b protein acts as a torque aligning chloroplasts in a magnetic field. Photosynth Res 10:217–222 10.1007/BF00118286 PubMed DOI

Kostetsky E, Chopenko N, Barkina M, Velansky P, Sanina N (2018) Fatty acid composition and thermotropic behavior of Glycolipids and other membrane lipids of Ulva lactuca (Chlorophyta) Inhabiting different climatic zones. Mar Drugs 16(12). 10.3390/md16120494 PubMed PMC

Kotakis C, Akhtar P, Zsiros O, Garab G, Lambrev PH (2018) Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes. Photosynthetica 56(1):254–264. 10.1007/s11099-018-0782-z10.1007/s11099-018-0782-z DOI

Kozlov M, Leikin S, Chernomordik L, Markin V, Chizmadzhev YA (1989) Stalk mechanism of vesicle fusion: intermixing of aqueous contents. Eur Biophys J 17:121–129 10.1007/BF00254765 PubMed DOI

Krumova SB, Dijkema C, de Waard P, Van As H, Garab G, van Amerongen H (2008a) Phase behaviour of phosphatidylglycerol in spinach thylakoid membranes as revealed by P-31-NMR. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1778. 4997–1003. 10.1016/j.bbamem.2008.01.004 PubMed

Krumova SB, Koehorst RBM, Bóta A, Páli T, van Hoek A, Garab G, van Amerongen H (2008b) Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1778. 122823–2833. 10.1016/j.bbamem.2008.09.007 PubMed

Kublicki M, Koszelewski D, Brodzka A, Ostaszewski R (2021) Wheat germ lipase: isolation, purification and applications. Crit Rev Biotechnol 1–17. 10.1080/07388551.2021.1939259 PubMed

Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M, Kostecka-Gugała A, Strzałka K (2002) Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Eur J Biochem 269(18):4656–4665. 10.1046/j.1432-1033.2002.03166.x 10.1046/j.1432-1033.2002.03166.x PubMed DOI

Latowski D, Akerlund HE, Strzalka K (2004) Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry 43(15):4417–4420. 10.1021/bi049652g 10.1021/bi049652g PubMed DOI

Marrink SJ, De Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim et Biophys Acta (BBA)-Biomembranes 1788(1):149–16810.1016/j.bbamem.2008.10.006 PubMed DOI

Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40(1):70–76. 10.1002/mrc.98410.1002/mrc.984 DOI

Mazur R, Gieczewska K, Kowalewska Ł, Kuta A, Proboszcz M, Gruszecki WI, Mostowska A, Garstka M (2020) Specific composition of lipid phases allows retaining an optimal Thylakoid membrane fluidity in plant response to low-temperature treatment. Front Plant Sci 11. 10.3389/fpls.2020.00723 PubMed PMC

Meher G, Chakraborty H (2019) Membrane composition modulates fusion by altering membrane properties and fusion peptide structure. J Membr Biol 252(4–5):261–272 10.1007/s00232-019-00064-7 PubMed DOI PMC

Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 41(3):445–502. 10.1111/j.1469-185X.1966.tb01501.x 10.1111/j.1469-185X.1966.tb01501.x PubMed DOI

Mustárdy L, Garab G (2003) Granum revisited. A three-dimensional model - where things fall into place. Trends Plant Sci 8(3):117–122. 10.1016/s1360-1385(03)00015-3 10.1016/s1360-1385(03)00015-3 PubMed DOI

Pabst G, Kučerka N, Nieh M-P, Katsaras J (2014) Liposomes, lipid bilayers and model membranes: from basic research to application. CRC

Páli T, Garab G, Horváth LI, Kóta Z (2003) Functional significance of the lipid-protein interface in photosynthetic membranes. Cell Mol Life Sci 60(8):1591–1606. 10.1007/s00018-003-3173-x 10.1007/s00018-003-3173-x PubMed DOI PMC

Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim et Biophys Acta (BBA) - Bioenergetics 975(3):384–394. 10.1016/S0005-2728(89)80347-010.1016/S0005-2728(89)80347-0 DOI

Rast A, Heinz S, Nickelsen J (2015) Biogenesis of thylakoid membranes. Biochim et Biophys Acta (BBA)-Bioenergetics 1847(9):821–83010.1016/j.bbabio.2015.01.007 PubMed DOI

Risselada HJ, Grubmüller H (2012) How SNARE molecules mediate membrane fusion: recent insights from molecular simulations. Curr Opin Struct Biol 22(2):187–196 10.1016/j.sbi.2012.01.007 PubMed DOI

Schiller H, Dau H (2000) Preparation protocols for high-activity photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of the S2-state multiline signal by X-band EPR spectroscopy. J Photochem Photobiology B Biology 55(2–3):138–144. 10.1016/s1011-1344(00)00036-110.1016/s1011-1344(00)00036-1 PubMed DOI

Schiller J, Muller M, Fuchs B, Arnold K, Huster D (2007) 31P NMR spectroscopy of phospholipids: from micelles to membranes. Curr Anal Chem 3:283–301. 10.2174/15734110778210963510.2174/157341107782109635 DOI

Seddon JM, Templer RH (1995) Polymorphism of Lipid-Water Systems. In: Lipowsky R, Sackmann E (eds) Handbook of Biological Physics, vol 1. North-Holland, pp 97–160. 10.1016/S1383-8121(06)80020-5

Shivaiah KK, Susanto FA, Devadasu E, Lundquist PK (2022) Plastoglobule Lipid Droplet Isolation from Plant Leaf Tissue and Cyanobacteria. Journal of visualized experiments: JoVE (188). 10.3791/64515 PubMed

Siebenaller C, Junglas B, Schneider D (2019) Functional implications of multiple IM30 Oligomeric States. Front Plant Sci 10(1500). 10.3389/fpls.2019.01500 PubMed PMC

Siegel D, Epand R (1997) The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J 73(6):3089–3111 10.1016/S0006-3495(97)78336-X PubMed DOI PMC

Simidjiev I, Barzda V, Mustárdy L, Garab G (1997) Isolation of Lamellar Aggregates of the light-harvesting chlorophyll a/b protein complex of Photosystem II with Long-Range Chiral Order and Structural Flexibility. Anal Biochem 250(2):169–175. 10.1006/abio.1997.2204 10.1006/abio.1997.2204 PubMed DOI

Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustárdy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci USA 97(4):1473–1476. 10.1073/pnas.97.4.1473 10.1073/pnas.97.4.1473 PubMed DOI PMC

Singer SJ, Nicolson GL (1972) The Fluid Mosaic Model of the structure of cell membranes. Science 175(4023):720–731. 10.1126/science.175.4023.720 10.1126/science.175.4023.720 PubMed DOI

Sipka G, Magyar M, Mezzetti A, Akhtar P, Zhu Q, Xiao Y, Han G, Santabarbara S, Shen J-R, Lambrev PH, Garab G (2021) Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. Plant Cell 33(4):1286–1302. 10.1093/plcell/koab008 10.1093/plcell/koab008 PubMed DOI PMC

Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP (2017) Membrane dynamics and organelle biogenesis—lipid pipelines and vesicular carriers. BMC Biol 15:1–24 10.1186/s12915-017-0432-0 PubMed DOI PMC

Tapie P, Haworth P, Hervo G, Breton J (1982) Orientation of the pigments in the thylakoid membrane and in the isolated chlorophyll-protein complexes of higher plants. III. A quantitative comparison of the low-temperature linear dichroism spectra of thylakoids and isolated pigment-protein complexes. Biochim et Biophys Acta (BBA)-Bioenergetics 682(3):339–34410.1016/0005-2728(82)90047-0 DOI

Ughy B, Karlický V, Dlouhý O, Javornik U, Materová Z, Zsiros O, Šket P, Plavec J, Špunda V, Garab G (2019) Lipid-polymorphism of plant thylakoid membranes. Enhanced non-bilayer lipid phases associated with increased membrane permeability. Physiol Plant 166(1):278–287. 10.1111/ppl.12929 10.1111/ppl.12929 PubMed DOI

van der Laan E, Killian JA, de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochimica et Biophysica Acta (BBA) - Biomembranes 1666 (1):275–288. 10.1016/j.bbamem.2004.06.010 PubMed

van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ (2015) Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim et Biophys Acta (BBA) - Bioenergetics 1848(6):1319–1330. 10.1016/j.bbamem.2015.02.02510.1016/j.bbamem.2015.02.025 PubMed DOI

Watts A (2013) NMR of lipids. In: Roberts GCK (ed) Encyclopedia of Biophysics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1727–1738. doi:10.1007/978-3-642-16712-6_556

Williams WP (1998) The Physical properties of Thylakoid membrane lipids and their relation to photosynthesis. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and Genetics. Springer Netherlands, Dordrecht, pp 103–118. doi:10.1007/0-306-48087-5_6

Yaghmur A, Østergaard J, Larsen SW, Jensen H, Larsen C, Rappolt M (2014) Drug formulations based on self-assembled liquid crystalline nanostructures. Liposomes, lipid bilayers and model membranes: from Basic Research to Application. CRC, pp 341–360

Yamamoto Y, Leng J, Shen J-R (2011) Isolation of photosystem II-enriched membranes and the oxygen-evolving complex subunit proteins from higher plants. Photosynthesis Res Protocols :1–10 PubMed

Yoshihara A, Kobayashi K (2022) Lipids in photosynthetic protein complexes in the thylakoid membrane of plants, algae, and cyanobacteria. J Exp Bot 73(9):2735–2750 10.1093/jxb/erac017 PubMed DOI

Zucchelli G, Jennings RC, Garlaschi FM (1990) The presence of long-wavelength chlorophyll a spectral forms in the light-harvesting chlorophyll a/b protein complex II. J Photochem Photobiol B 6(4):381–39410.1016/1011-1344(90)85112-A DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace