Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin de-epoxidase
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32686730
PubMed Central
PMC7371714
DOI
10.1038/s41598-020-68854-x
PII: 10.1038/s41598-020-68854-x
Knihovny.cz E-zdroje
- MeSH
- diferenciální skenovací kalorimetrie MeSH
- epoxidové sloučeniny metabolismus MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- lipidové dvojvrstvy chemie MeSH
- lipidy chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- oxidoreduktasy metabolismus MeSH
- rozpustnost MeSH
- Spinacia oleracea metabolismus MeSH
- světlo MeSH
- teplota MeSH
- tylakoidy chemie MeSH
- voda chemie MeSH
- xanthofyly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- epoxidové sloučeniny MeSH
- lipidové dvojvrstvy MeSH
- lipidy MeSH
- oxidoreduktasy MeSH
- violaxanthin de-epoxidase MeSH Prohlížeč
- violaxanthin MeSH Prohlížeč
- voda MeSH
- xanthofyly MeSH
The role of non-bilayer lipids and non-lamellar lipid phases in biological membranes is an enigmatic problem of membrane biology. Non-bilayer lipids are present in large amounts in all membranes; in energy-converting membranes they constitute about half of their total lipid content-yet their functional state is a bilayer. In vitro experiments revealed that the functioning of the water-soluble violaxanthin de-epoxidase (VDE) enzyme of plant thylakoids requires the presence of a non-bilayer lipid phase. 31P-NMR spectroscopy has provided evidence on lipid polymorphism in functional thylakoid membranes. Here we reveal reversible pH- and temperature-dependent changes of the lipid-phase behaviour, particularly the flexibility of isotropic non-lamellar phases, of isolated spinach thylakoids. These reorganizations are accompanied by changes in the permeability and thermodynamic parameters of the membranes and appear to control the activity of VDE and the photoprotective mechanism of non-photochemical quenching of chlorophyll-a fluorescence. The data demonstrate, for the first time in native membranes, the modulation of the activity of a water-soluble enzyme by a non-bilayer lipid phase.
EN FIST Center of Excellence Ljubljana Slovenia
Faculty of Chemistry and Chemical Technology University of Ljubljana Ljubljana Slovenia
Faculty of Science University of Ostrava Ostrava Czech Republic
Global Change Research Institute Czech Academy of Sciences Brno Czech Republic
Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences Sofia Bulgaria
Institute of Plant Biology Biological Research Centre Szeged Hungary
Slovenian NMR Center National Institute of Chemistry Ljubljana Slovenia
Zobrazit více v PubMed
Lipowsky, R. & Sackmann, E. Structure and dynamics of membranes I. From cells to vesicles (Elsevier Science, 1995)
Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720. doi: 10.1126/science.175.4023.720. PubMed DOI
Nicolson GL. The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta Biomembr. 1838;1838:1451–1466. doi: 10.1016/j.bbamem.2013.10.019. PubMed DOI
Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 1966;41:445–450. doi: 10.1111/j.1469-185X.1966.tb01501.x. PubMed DOI
Epand RM. Lipid polymorphism and protein–lipid interactions. Biochim. Biophys. Acta Rev. Biomembr. 1998;1376:353–368. doi: 10.1016/s0304-4157(98)00015-x. PubMed DOI
Williams WP. The physical properties of thylakoid membrane lipids and their relation to photosynthesis. In: Paul-André S, Norio M, editors. Lipids in Photosynthesis: Structure, Function and Genetics. Amsterdam: Springer; 1998. pp. 103–118.
Garab G, Lohner K, Laggner P, Farkas T. Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci. 2000;5:489–494. doi: 10.1016/s1360-1385(00)01767-2. PubMed DOI
van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Biophys. Acta Biomembr. 2015;1848:1319–1330. doi: 10.1016/j.bbamem.2015.02.025. PubMed DOI
Israelachvili JN, Marcelja S, Horn RG. Physical principles of membrane organization. Q. Rev. Biophys. 1980;13:121–200. doi: 10.1017/s0033583500001645. PubMed DOI
Sprague SG, Staehelin LA. Effects of reconstitution method on the structural organization of isolated chloroplast membrane-lipids. Biochem. Biophys. Acta. 1984;777:306–322. doi: 10.1016/0005-2736(84)90433-4. DOI
van den Brink-van der Laan E, Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta (BBA) Biomembr. 1997;1666:275–288. doi: 10.1016/j.bbamem.2004.06.010. PubMed DOI
de Kruijff B. Biomembranes—lipids beyond the bilayer. Nature. 1997;386:129–130. doi: 10.1038/386129a0. PubMed DOI
Tietz S, et al. A proteoliposome-based system reveals how lipids control photosynthetic light harvesting. J. Biol. Chem. 2020;295:1857–1866. doi: 10.1074/jbc.RA119.011707. PubMed DOI PMC
Horton P, Ruban A. Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J. Exp. Bot. 2005;56:365–373. doi: 10.1093/jxb/eri023. PubMed DOI
Brown MF. Curvature forces in membrane lipid–protein interactions. Biochemistry. 2012;51:9782–9795. doi: 10.1021/bi301332v. PubMed DOI PMC
Garab G, Ughy G, Goss R. Role of MGDG and non-bilayer lipid phases in the structure and dynamics of chloroplast thylakoid membranes. In: Nakamura Y, Li-Beisson Y, editors. Lipids in Plant and Algae Development. Berlin: Springer; 2016. pp. 127–157. PubMed
Simidjiev I, et al. Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc. Natl. Acad. Sci. U.S.A. 2000;97:1473–1476. doi: 10.1073/pnas.97.4.1473. PubMed DOI PMC
Seiwert D, Witt H, Janshoff A, Paulsen H. The non-bilayer lipid MGDG stabilizes the major light-harvesting complex (LHCII) against unfolding. Sci. Rep. 2017;7:5158. doi: 10.1038/s41598-017-05328-7. PubMed DOI PMC
Rietveld A, Vankemenade T, Hak T, Verkleij AJ, de Kruijff B. The effect of cytochrome-c-oxidase on lipid polymorphism of model membranes containing cardiolipin. Eur. J. Biochem. 1987;164:137–140. doi: 10.1111/j.1432-1033.1987.tb11004.x. PubMed DOI
Williams WP, Brain APR, Dominy PJ. Induction of nonbilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to the thermal-stability of photosystem-II. Biochem. Biophys. Acta. 1992;1099:137–144. doi: 10.1016/0304-4173(92)90019-b. DOI
Semenova GA. The relationship between the transformation of thylakoid acyl lipids and the formation of tubular lipid aggregates visible on fracture faces. J. Plant Physiol. 1999;155:669–677. doi: 10.1016/s0176-1617(99)80081-9. DOI
Kirchhoff H, et al. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplast. Biochemistry. 2007;46:11169–11176. doi: 10.1021/bi700748y. PubMed DOI
Seddon JM, Templer RH. Polymorphism of lipid-water systems. In: Lipowsky R, Sackmann E, editors. Structure and dynamics of membranes I. From cells to vesicles. Amsterdam: North-Holland; 1995. pp. 97–160.
de kruijff B, Cullis PR, Verkleij AJ. Non-bilayer lipid structures in model and biological-membranes. Trends Biochem. Sci. 1980;5:79–81. doi: 10.1016/0968-0004(80)90074-2. DOI
Haranczyk H, Strzalka K, Bayerl T, Klose G, Blicharski JS. P-31 NMR measurements in photosynthetic membranes of wheat. Photosynthetica. 1985;19:414–416.
Haranczyk H, Strzaika K, Dietrich W, Blicharski JS. P-31-NMR observation of the temperature and glycerol induced non-lamellar phase-formation on wheat thylakoid membranes. J. Biol. Phys. 1995;21:125–139. doi: 10.1007/bf00705595. DOI
Krumova SB, et al. Phase behaviour of phosphatidylglycerol in spinach thylakoid membranes as revealed by P-31-NMR. Biochim. Biophys. Acta Biomembr. 2008;1778:997–1003. doi: 10.1016/j.bbamem.2008.01.004. PubMed DOI
Krumova SB, et al. Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. Biochim. Biophys. Biomembr. 2008;1778:2823–2833. doi: 10.1016/j.bbamem.2008.09.007. PubMed DOI
Garab G, et al. Lipid polymorphism in chloroplast thylakoid membranes—as revealed by P-31-NMR and timeresolved merocyanine fluorescence spectroscopy. Sci. Rep. 2017 doi: 10.1038/s41598-017-13574-y. PubMed DOI PMC
Kotakis C, Akhtar P, Zsiros O, Garab G, Lambrev PH. Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes. Photosynthetica. 2018;56:254–264. doi: 10.1007/s11099-018-0782-z. DOI
Ughy B, et al. Lipid-polymorphism of plant thylakoid membranes. Enhanced non-bilayer lipid phases associated with increased membrane permeability. Physiol. Plant. 2019;166:278–287. doi: 10.1111/ppl.12929. PubMed DOI
Mustardy L, Buttle K, Steinbach G, Garab G. The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. Plant Cell. 2008;20:2552–2557. doi: 10.1105/tpc.108.059147. PubMed DOI PMC
Bussi Y, et al. Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc. Natl. Acad. Sci. U.S.A. 2019;116:22366–22375. doi: 10.1073/pnas.1905994116. PubMed DOI PMC
Vieler A, et al. The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase. Biochim. Biophys. Biomembr. 2008;1778:1027–1034. doi: 10.1016/j.bbamem.2007.12.002. PubMed DOI
Malnoë A, et al. The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in arabidopsis. Plant Cell. 2018;30:196–208. doi: 10.1105/tpc.17.00536. PubMed DOI PMC
Levesque-Tremblay G, Havaux M, Ouellet F. The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J. 2009;60:691–702. doi: 10.1111/j.1365-313X.2009.03991.x. PubMed DOI
Bugos RC, Hieber AD, Yamamoto HY. Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J. Biol. Chem. 1998;273:15321–15324. doi: 10.1074/jbc.273.25.15321. PubMed DOI
Rockholm DC, Yamamoto HY. Violaxanthin de-epoxidase—purification of a 43-kilodalton lumenal protein from lettuce by lipid-affinity precipitation with monogalactosyldiacylglyceride. Plant Physiol. 1996;110:697–703. doi: 10.1104/pp.110.2.697. PubMed DOI PMC
Latowski D, Akerlund HE, Strzalka K. Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry. 2004;43:4417–4420. doi: 10.1021/bi049652g. PubMed DOI
Goss R, et al. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry. 2005;44:4028–4036. doi: 10.1021/bi047464k. PubMed DOI
Cullis PR, de kruijff B. Lipid polymorphism and the functional roles of lipids in biological-membranes. Biochem. Biophys. Acta. 1979;559:399–420. doi: 10.1016/0304-4157(79)90012-1. PubMed DOI
Afonso D, et al. Triggering bilayer to inverted-hexagonal nanostructure formation by thiol-ene click chemistry on cationic lipids: consequences on gene transfection. Soft Matter. 2016;12:4516–4520. doi: 10.1039/c6sm00609d. PubMed DOI
Puppato A, Dupre DB, Stolowich N, Yappert C. Effect of temperature and pH on P-31 nuclear magnetic resonances of phospholipids in cholate micelles. Chem. Phys. Lipids. 2007;150:176–185. doi: 10.1016/j.chemphyslip.2007.07.002. PubMed DOI
Dennis EA, Plückthun A. Phosphorus-31 NMR of phospholipids in micelles. In: Gorenstein DG, editor. Phosphorous-31 NMR. London: Academic Press; 1984. pp. 423–446.
Tilcock CPS, Cullis PR. The polymorphic phase-behavior of mixed phosphatidylserine-phosphatidylethanolamine model systems as detected by P-31-NMR—effects of divalent-cations and pH. Biochem. Biophys. Acta. 1981;641:189–201. doi: 10.1016/0005-2736(81)90583-6. PubMed DOI
Dobrikova AG, et al. Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Biochemistry. 2003;42:11272–11280. doi: 10.1021/bi034899j. PubMed DOI
Krumova SB, et al. Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes. Photosynth. Res. 2010;105:229–242. doi: 10.1007/s11120-010-9581-5. PubMed DOI PMC
Petrova N, et al. Thylakoid membrane unstacking increases LHCII thermal stability and lipid phase fluidity. J. Bioenerg. Biomembr. 2018;50:425–435. doi: 10.1007/s10863-018-9783-7. PubMed DOI
Seddon JM, Cevc G, Marsh D. Calorimetric studies of the gel-fluid (L.beta.-L.alpha.) and lamellar-inverted hexagonal (L.alpha.-HII) phase transitions in dialkyl- and diacylphosphatidylethanolamines. Biochemistry. 1983;22:1280–1289. doi: 10.1021/bi00274a045. PubMed DOI
Nussberger S, Dorr K, Wang DN, Kuhlbrandt W. Lipid–protein interactions in crystals of plant light-harvesting complex. J. Mol. Biol. 1993;234:347–356. doi: 10.1006/jmbi.1993.1591. PubMed DOI
Simidjiev I, Barzda V, Mustardy L, Garab G. Role of thylakoid lipids in the structural flexibility of lamellar aggregates of the isolated light-harvesting chlorophyll a/b complex of photosystem II. Biochemistry. 1998;37:4169–4173. doi: 10.1021/bi972726m. PubMed DOI
Simidjiev I, Várkonyi Z, Lambrev PH, Garab G. Isolation and characterization of lamellar aggregates of LHCII and LHCII-lipid macro-assemblies with light-inducible structural transitions. Methods Mol. Biol. (Clifton N.J.) 2011;684:127–138. doi: 10.1007/978-1-60761-925-3_12. PubMed DOI
Lambrev PH, Akhtar P. Macroorganisation and flexibility of thylakoid membranes. Biochem. J. 2019;476:2981–3018. doi: 10.1042/bcj20190080. PubMed DOI
Junge W. Membrane-potentials in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1977;28:503–536. doi: 10.1146/annurev.pp.28.060177.002443. DOI
Yamamoto HY, Kamite L. Effects of dithiothreitol on violaxanthin deepoxidation and absorbance changes in 500-nm region. Biochem. Biophys. Acta. 1972;267:538–540. doi: 10.1016/0005-2728(72)90182-x. PubMed DOI
Goss R, Opitz C, Lepetit B, Wilhelm C. The synthesis of NPQ-effective zeaxanthin depends on the presence of a transmembrane proton gradient and a slightly basic stromal side of the thylakoid membrane. Planta. 2008;228:999–1009. doi: 10.1007/s00425-008-0800-7. PubMed DOI
Lee AG. Lipid–protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta (BBA) Biomembr. 2003;1612:1–40. doi: 10.1016/S0005-2736(03)00056-7. PubMed DOI
Templer RH, Turner DC, Harper P, Seddon JM. Corrections to some models of the curvature elastic energy of inverse bicontinuous cubic phases. J. Phys. II. 1995;5:1053–1065.
Watts A. NMR of lipids. In: Roberts GCK, editor. Encyclopedia of Biophysics. Berlin: Springer; 2013. pp. 1727–1738.
Wada H, Murata N. Lipids in Photosynthesis Essential and Regulatory Functions. Dordrecht: Springer; 2009.
Harwood, J. L. & Vigh, L. Membranes in stress and adaptation. In Stress of Life: From Molecules to Man, Annals of the New York Academy of Sciences Vol. 851 (ed Csermely, P.) 162–168 (Wiley-Blackwell, New York, 1998).
Gombos, Z., Tasaka, Y. & Murata, N. The role of polyunsaturated glycerolipids in low-temperature stress; studied by genetically engineered cyanobacterial strains. In Cyanobacterial biotechnology (eds Subramanian, G., Kaushik, B. D., Venkataraman, G. S.) (Taylor & Francis Inc, Enfield, 1998).
Farineau J, Garab G, Horvath G, Faludidaniel A. Proton translocation in the slow rise of the flash-induced 515 nm absorbance change of intact chloroplasts. FEBS Lett. 1980;118:119–122. doi: 10.1016/0014-5793(80)81231-2. DOI
Noctor G, Rees D, Young A, Horton P. The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence, and trans-thylakoid pH gradient in isolated-chloroplasts. Biochem. Biophys. Acta. 1991;1057:320–330. doi: 10.1016/s0005-2728(05)80143-4. DOI
Bilger W, Björkman O. Temperature-dependence of violaxanthin deepoxidation and nonphotochemical fluorescence quenching in intact leaves of Gossypium-hirsutum L and Malva-parviflora L. Planta. 1991;184:226–234. doi: 10.1007/Bf01102422. PubMed DOI
Lambrev PH, et al. Trapping of the quenched conformation associated with non-photochemical quenching of chlorophyll fluorescence at low temperature. Photosynth. Res. 2007;94:321–332. doi: 10.1007/s11120-007-9216-7. PubMed DOI
Horton P, Ruban AV, Wentworth M. Allosteric regulation of the light-harvesting system of photosystem II. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2000;355:1361–1370. doi: 10.1098/rstb.2000.0698. PubMed DOI PMC
Gasanov SE, Kim AA, Yaguzhinsky LS, Dagda RK. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochim. Biophys. Acta Biomembr. 1860;1860:586–599. doi: 10.1016/j.bbamem.2017.11.014. PubMed DOI PMC
Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—verificatin of the concentration of chlorophyll standards by atomic absorption-spectroscopy. Biochem. Biophys. Acta. 1989;975:384–394. doi: 10.1016/s0005-2728(89)80347-0. DOI
Massiot D, et al. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002;40:70–76. doi: 10.1002/mrc.984. DOI
Bilger W, Björkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbency changes, fluorescence and photosynthesis in leaves of Hedera-canariensis. Photosynth. Res. 1990;25:173–185. doi: 10.1007/bf00033159. PubMed DOI
Materová Z, et al. Monochromatic green light induces an aberrant accumulation of geranylgeranyled chlorophylls in plants. Plant Physiol. Biochem. 2017;116:48–56. doi: 10.1016/j.plaphy.2017.05.002. PubMed DOI
Gilmore AM, Björkman O. Adenine-nucleotides and the xanthophyll cycle in leaves. 1. Effects of CO2- and temperature- limited photosynthesis on adenylate energy charge and violaxanthin de-epoxidation. Planta. 1994;192:526–536. doi: 10.1007/bf00203591. DOI
Role of isotropic lipid phase in the fusion of photosystem II membranes
Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant-Pathogen Interaction