Structural Entities Associated with Different Lipid Phases of Plant Thylakoid Membranes-Selective Susceptibilities to Different Lipases and Proteases
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36078087
PubMed Central
PMC9454902
DOI
10.3390/cells11172681
PII: cells11172681
Knihovny.cz E-zdroje
- Klíčová slova
- 31P-NMR spectroscopy, lipid polymorphism, lipocalins, membrane fusion, membrane models, non-bilayer lipids, plastoglobuli, structural and functional plasticity, thylakoid membrane,
- MeSH
- lipasa metabolismus MeSH
- lipidové dvojvrstvy * metabolismus MeSH
- magnetická rezonanční spektroskopie MeSH
- proteasy metabolismus MeSH
- tylakoidy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipasa MeSH
- lipidové dvojvrstvy * MeSH
- proteasy MeSH
It is well established that plant thylakoid membranes (TMs), in addition to a bilayer, contain two isotropic lipid phases and an inverted hexagonal (HII) phase. To elucidate the origin of non-bilayer lipid phases, we recorded the 31P-NMR spectra of isolated spinach plastoglobuli and TMs and tested their susceptibilities to lipases and proteases; the structural and functional characteristics of TMs were monitored using biophysical techniques and CN-PAGE. Phospholipase-A1 gradually destroyed all 31P-NMR-detectable lipid phases of isolated TMs, but the weak signal of isolated plastoglobuli was not affected. Parallel with the destabilization of their lamellar phase, TMs lost their impermeability; other effects, mainly on Photosystem-II, lagged behind the destruction of the original phases. Wheat-germ lipase selectively eliminated the isotropic phases but exerted little or no effect on the structural and functional parameters of TMs-indicating that the isotropic phases are located outside the protein-rich regions and might be involved in membrane fusion. Trypsin and Proteinase K selectively suppressed the HII phase-suggesting that a large fraction of TM lipids encapsulate stroma-side proteins or polypeptides. We conclude that-in line with the Dynamic Exchange Model-the non-bilayer lipid phases of TMs are found in subdomains separated from but interconnected with the bilayer accommodating the main components of the photosynthetic machinery.
Doctoral School of Biology University of Szeged 6726 Szeged Hungary
EN FIST Center of Excellence SI 1000 Ljubljana Slovenia
Faculty of Chemistry and Chemical Technology University of Ljubljana SI 1000 Ljubljana Slovenia
Slovenian NMR Center National Institute of Chemistry SI 1000 Ljubljana Slovenia
STEM Program Science Department Chaoyang KaiWen Academy Beijing 100018 China
Zobrazit více v PubMed
Mustárdy L., Garab G. Granum revisited. A three-dimensional model—Where things fall into place. Trends Plant Sci. 2003;8:117–122. doi: 10.1016/S1360-1385(03)00015-3. PubMed DOI
Bussi Y., Shimoni E., Weiner A., Kapon R., Charuvi D., Nevo R., Efrati E., Reich Z. Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc. Natl. Acad. Sci. USA. 2019;116:22366–22375. doi: 10.1073/pnas.1905994116. PubMed DOI PMC
Goss R., Latowski D. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. Front. Plant Sci. 2020;11:455. doi: 10.3389/fpls.2020.00455. PubMed DOI PMC
Malnoë A., Schultink A., Shahrasbi S., Rumeau D., Havaux M., Niyogi K.K. The Plastid Lipocalin LCNP Is Required for Sustained Photoprotective Energy Dissipation in Arabidopsis. Plant Cell. 2018;30:196–208. doi: 10.1105/tpc.17.00536. PubMed DOI PMC
Kirchhoff H., Hall C., Wood M., Herbstová M., Tsabari O., Nevo R., Charuvi D., Shimoni E., Reich Z. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. USA. 2011;108:20248–20253. doi: 10.1073/pnas.1104141109. PubMed DOI PMC
Gollan P.J., Trotta A., Bajwa A.A., Mancini I., Aro E.-M. Characterization of the Free and Membrane-Associated Fractions of the Thylakoid Lumen Proteome in Arabidopsis thaliana. Int. J. Mol. Sci. 2021;22:8126. doi: 10.3390/ijms22158126. PubMed DOI PMC
Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 1966;41:445–502. doi: 10.1111/j.1469-185X.1966.tb01501.x. PubMed DOI
Páli T., Garab G., Horváth L.I., Kóta Z. Functional significance of the lipid-protein interface in photosynthetic membranes. Cell Mol. Life Sci. 2003;60:1591–1606. doi: 10.1007/s00018-003-3173-x. PubMed DOI PMC
Singer S.J., Nicolson G.L. The Fluid Mosaic Model of the Structure of Cell Membranes. Science. 1972;175:720–731. doi: 10.1126/science.175.4023.720. PubMed DOI
Williams W.P. The Physical Properties of Thylakoid Membrane Lipids and Their Relation to Photosynthesis. In: Siegenthaler P.A., Murata N., editors. Lipids in Photosynthesis: Structure, Function and Genetics. Springer; Dordrecht, The Netherlands: 1998. pp. 103–118. DOI
Israelachvili J.N. Interactions of Biological Membranes and Structures. In: Israelachvili J.N., editor. Intermolecular and Surface Forces. 3rd ed. Academic Press; San Diego, CA, USA: 2011. pp. 577–616. DOI
Douce R., Joyard J. Biosynthesis of Thylakoid Membrane Lipids. In: Ort D.R., Yocum C.F., Heichel I.F., editors. Oxygenic Photosynthesis: The Light Reactions. Springer; Dordrecht, The Netherlands: 1996. pp. 69–101. DOI
Harwood J.L. Involvement of Chloroplast Lipids in the Reaction of Plants Submitted to Stress. In: Siegenthaler P.A., Murata N., editors. Lipids in Photosynthesis: Structure, Function and Genetics. Springer; Dordrecht, The Netherlands: 1998. pp. 287–302. DOI
Boudière L., Michaud M., Petroutsos D., Rébeillé F., Falconet D., Bastien O., Roy S., Finazzi G., Rolland N., Jouhet J., et al. Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochim. Biophys. Acta. 2014;1837:470–480. doi: 10.1016/j.bbabio.2013.09.007. PubMed DOI
van Eerden F.J., de Jong D.H., de Vries A.H., Wassenaar T.A., Marrink S.J. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim Biophys Acta. 2015;1848:1319–1330. doi: 10.1016/j.bbamem.2015.02.025. PubMed DOI
Demé B., Cataye C., Block M.A., Maréchal E., Jouhet J. Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J. 2014;28:3373–3383. doi: 10.1096/fj.13-247395. PubMed DOI
Krumova S.B., Dijkema C., de Waard P., Van As H., Garab G., van Amerongen H. Phase behaviour of phosphatidylglycerol in spinach thylakoid membranes as revealed by P-31-NMR. Biochim. Biophys. Acta. 2008;1778:997–1003. doi: 10.1016/j.bbamem.2008.01.004. PubMed DOI
Krumova S.B., Koehorst R.B.M., Bóta A., Páli T., van Hoek A., Garab G., van Amerongen H. Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. Biochim. Biophys. Acta. 2008;1778:2823–2833. doi: 10.1016/j.bbamem.2008.09.007. PubMed DOI
Garab G., Ughy B., de Waard P., Akhtar P., Javornik U., Kotakis C., Šket P., Karlický V., Materová Z., Špunda V., et al. Lipid polymorphism in chloroplast thylakoid membranes—As revealed by P-31-NMR and timeresolved merocyanine fluorescence spectroscopy. Sci. Rep. 2017;7:13343. doi: 10.1038/s41598-017-13574-y. PubMed DOI PMC
Gasanov S.E., Kim A.A., Yaguzhinsky L.S., Dagda R.K. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochim. Biophys. Acta. 2018;1860:586–599. doi: 10.1016/j.bbamem.2017.11.014. PubMed DOI PMC
Garab G., Yaguzhinsky L.S., Dlouhý O., Nesterov S.V., Špunda V., Gasanoff E.S. Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Prog. Lipid Res. 2022;86:101163. doi: 10.1016/j.plipres.2022.101163. PubMed DOI
Nicolson G.L. The Fluid-Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta. 2014;1838:1451–1466. doi: 10.1016/j.bbamem.2013.10.019. PubMed DOI
van den Brink-van der Laan E., Killian J.A., de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta. 2004;1666:275–288. doi: 10.1016/j.bbamem.2004.06.010. PubMed DOI
Epand R.M. Lipid polymorphism and protein-lipid interactions. Biochim. Biophys. Acta. 1998;1376:353–368. doi: 10.1016/S0304-4157(98)00015-X. PubMed DOI
de Kruijff B. Biomembranes-Lipids beyond the bilayer. Nature. 1997;386:129–130. doi: 10.1038/386129a0. PubMed DOI
Brown M.F. Curvature Forces in Membrane Lipid-Protein Interactions. Biochemistry. 2012;51:9782–9795. doi: 10.1021/bi301332v. PubMed DOI PMC
Bagatolli L.A., Ipsen J.H., Simonsen A.C., Mouritsen O.G. An outlook on organization of lipids in membranes: Searching for a realistic connection with the organization of biological membranes. Prog. Lipid Res. 2010;49:378–389. doi: 10.1016/j.plipres.2010.05.001. PubMed DOI
Seiwert D., Witt H., Janshoff A., Paulsen H. The non-bilayer lipid MGDG stabilizes the major light-harvesting complex (LHCII) against unfolding. Sci. Rep. 2017;7:5158. doi: 10.1038/s41598-017-05328-7. PubMed DOI PMC
Tietz S., Leuenberger M., Höhner R., Olson A.H., Fleming G.R., Kirchhoff H. A proteoliposome-based system reveals how lipids control photosynthetic light harvesting. J. Biol. Chem. 2020;295:1857–1866. doi: 10.1074/jbc.RA119.011707. PubMed DOI PMC
Bozelli J.C., Aulakh S.S., Epand R.M. Membrane shape as determinant of protein properties. Biophys. Chem. 2021;273:106587. doi: 10.1016/j.bpc.2021.106587. PubMed DOI
Dlouhý O., Kurasová I., Karlický V., Javornik U., Šket P., Petrova N.Z., Krumova S.B., Plavec J., Ughy B., Špunda V., et al. Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: Effects on the water-soluble enzyme violaxanthin de-epoxidase. Sci. Rep. 2020;10:11959. doi: 10.1038/s41598-020-68854-x. PubMed DOI PMC
Garab G., Lohner K., Laggner P., Farkas T. Self-regulation of the lipid content of membranes by non-bilayer lipids: A hypothesis. Trends Plant Sci. 2000;5:489–494. doi: 10.1016/S1360-1385(00)01767-2. PubMed DOI
Garab G., Ughy B., Goss R. Role of MGDG and Non-bilayer Lipid Phases in the Structure and Dynamics of Chloroplast Thylakoid Membranes. Subcell. Biochem. 2016;86:127–157. doi: 10.1007/978-3-319-25979-6_6. PubMed DOI
Rottet S., Besagni C., Kessler F. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim. Biophys. Acta. 2015;1847:889–899. doi: 10.1016/j.bbabio.2015.02.002. PubMed DOI
Kirchhoff H. Chloroplast ultrastructure in plants. New Phytol. 2019;223:565–574. doi: 10.1111/nph.15730. PubMed DOI
Kotakis C., Akhtar P., Zsiros O., Garab G., Lambrev P.H. Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes. Photosynthetica. 2018;56:254–264. doi: 10.1007/s11099-018-0782-z. DOI
Ughy B., Karlický V., Dlouhý O., Javornik U., Materová Z., Zsiros O., Šket P., Plavec J., Špunda V., Garab G. Lipid-polymorphism of plant thylakoid membranes. Enhanced non-bilayer lipid phases associated with increased membrane permeability. Physiol. Plant. 2019;166:278–287. doi: 10.1111/ppl.12929. PubMed DOI
Dlouhý O., Javornik U., Zsiros O., Šket P., Karlický V., Špunda V., Plavec J., Garab G. Lipid Polymorphism of the Subchloroplast—Granum and Stroma Thylakoid Membrane—Particles. I. 31P-NMR Spectroscopy. Cells. 2021;10:2354. doi: 10.3390/cells10092354. PubMed DOI PMC
Dlouhý O., Karlický V., Arshad R., Zsiros O., Domonkos I., Kurasová I., Wacha A.F., Morosinotto T., Bóta A., Kouřil R., et al. Lipid Polymorphism of the Subchloroplast—Granum and Stroma Thylakoid Membrane–Particles. II. Structure and Functions. Cells. 2021;10:2363. doi: 10.3390/cells10092363. PubMed DOI PMC
Latowski D., Akerlund H.E., Strzalka K. Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry. 2004;43:4417–4420. doi: 10.1021/bi049652g. PubMed DOI
Semenova G.A. The Relationship between the Transformation of Thylakoid Acyl Lipids and the Formation of Tubular Lipid Aggregates Visible on Fracture Faces. J. Plant Physiol. 1999;155:669–677. doi: 10.1016/S0176-1617(99)80081-9. DOI
Kirchhoff H., Haase W., Wegner S., Danielsson R., Ackermann R., Albertsson P.A. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplast. Biochemistry. 2007;46:11169–11176. doi: 10.1021/bi700748y. PubMed DOI
Porra R.J., Thompson W.A., Kriedemann P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0. DOI
Besagni C., Piller L.E., Bréhélin C. Preparation of plastoglobules from Arabidopsis plastids for proteomic analysis and other studies. Methods Mol. Biol. 2011;775:223–239. doi: 10.1007/978-1-61779-237-3_12. PubMed DOI
Massiot D., Fayon F., Capron M., King I., Le Calvé S., Alonso B., Durand J.-O., Bujoli B., Gan Z., Hoatson G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002;40:70–76. doi: 10.1002/mrc.984. DOI
Cullis P.R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta. 1979;559:399–420. doi: 10.1016/0304-4157(79)90012-1. PubMed DOI
Watts A. NMR of Lipids. In: Roberts G.C.K., editor. Encyclopedia of Biophysics. Springer; Berlin/Heidelberg, Germany: 2013. pp. 1727–1738. DOI
Karlický V., Kurasová I., Ptáčková B., Večeřová K., Urban O., Špunda V. Enhanced thermal stability of the thylakoid membranes from spruce. A comparison with selected angiosperms. Photosynth. Res. 2016;130:357–371. doi: 10.1007/s11120-016-0269-3. PubMed DOI
Karlický V., Kmecová Materová Z., Kurasová I., Nezval J., Štroch M., Garab G., Špunda V. Accumulation of geranylgeranylated chlorophylls in the pigment-protein complexes of Arabidopsis thaliana acclimated to green light: Effects on the organization of light-harvesting complex II and photosystem II functions. Photosynth. Res. 2021;149:233–252. doi: 10.1007/s11120-021-00827-1. PubMed DOI PMC
Järvi S., Gollan P.J., Aro E.M. Understanding the roles of the thylakoid lumen in photosynthesis regulation. Front. Plant Sci. 2013;4:434. doi: 10.3389/fpls.2013.00434. PubMed DOI PMC
Djordjevic J. Role of Phospholipases in Fungal Fitness, Pathogenicity, and Drug Development—Lessons from Cryptococcus Neoformans. Front. Microbiol. 2010;1:125. doi: 10.3389/fmicb.2010.00125. PubMed DOI PMC
Kublicki M., Koszelewski D., Brodzka A., Ostaszewski R. Wheat germ lipase: Isolation, purification and applications. Crit. Rev. Biotechnol. 2022;42:184–200. doi: 10.1080/07388551.2021.1939259. PubMed DOI
Kobayashi K., Endo K., Wada H. Specific Distribution of Phosphatidylglycerol to Photosystem Complexes in the Thylakoid Membrane. Front. Plant Sci. 2017;8:1991. doi: 10.3389/fpls.2017.01991. PubMed DOI PMC
Scholes G.D., Fleming G.R., Olaya-Castro A., van Grondelle R. Lessons from nature about solar light harvesting. Nat. Chem. 2011;3:763–774. doi: 10.1038/nchem.1145. PubMed DOI
Suga M., Qin X., Kuang T., Shen J.R. Structure and energy transfer pathways of the plant photosystem I-LHCI supercomplex. Curr. Opin. Struct. Biol. 2016;39:46–53. doi: 10.1016/j.sbi.2016.04.004. PubMed DOI
Umena Y., Kawakami K., Shen J.-R., Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473:55–60. doi: 10.1038/nature09913. PubMed DOI
Caspy I., Nelson N. Structure of the plant photosystem I. Biochem. Soc. Trans. 2018;46:285–294. doi: 10.1042/BST20170299. PubMed DOI
Yamamoto Y., Kai S., Ohnishi A., Tsumura N., Ishikawa T., Hori H., Morita N., Ishikawa Y. Quality Control of PSII: Behavior of PSII in the Highly Crowded Grana Thylakoids Under Excessive Light. Plant Cell Physiol. 2014;55:1206–1215. doi: 10.1093/pcp/pcu043. PubMed DOI PMC
Nussberger S., Dekker J.P., Kühlbrandt W., van Bolhuis B.M., van Grondelle R., van Amerongen H. Spectroscopic characterization of three different monomeric forms of the main chlorophyll a/b binding protein from chloroplast membranes. Biochemistry. 1994;33:14775–14783. doi: 10.1021/bi00253a016. PubMed DOI
Sozer O., Kis M., Gombos Z., Ughy B. Proteins, glycerolipids and carotenoids in the functional photosystem II architecture. Front. Biosci. 2011;16:619–643. doi: 10.2741/3710. PubMed DOI
Sipka G., Magyar M., Mezzetti A., Akhtar P., Zhu Q., Xiao Y., Han G., Santabarbara S., Shen J.-R., Lambrev P.H., et al. Light-adapted charge-separated state of photosystem II: Structural and functional dynamics of the closed reaction center. Plant Cell. 2021;33:1286–1302. doi: 10.1093/plcell/koab008. PubMed DOI PMC
Droppa M., Horváth G., Hideg E., Farkas T. The role of phospholipids in regulating photosynthetic electron transport activities: Treatment of thylakoids with phospholipase C. Photosynth. Res. 1995;46:287–293. doi: 10.1007/BF00020442. PubMed DOI
Leng J., Sakurai I., Wada H., Shen J.R. Effects of phospholipase and lipase treatments on photosystem II core dimer from a thermophilic cyanobacterium. Photosynth. Res. 2008;98:469–478. doi: 10.1007/s11120-008-9335-9. PubMed DOI
Kruse O., Hankamer B., Konczak C., Gerle C., Morris E., Radunz A., Schmid G.H., Barber J. Phosphatidylglycerol Is Involved in the Dimerization of Photosystem II *. J. Biol. Chem. 2000;275:6509–6514. doi: 10.1074/jbc.275.9.6509. PubMed DOI
Garab G. Hierarchical organization and structural flexibility of thylakoid membranes. Biochim. Biophys. Acta. 2014;1837:481–494. doi: 10.1016/j.bbabio.2013.12.003. PubMed DOI
Lambrev P.H., Akhtar P. Macroorganisation and flexibility of thylakoid membranes. Biochem. J. 2019;476:2981–3018. doi: 10.1042/BCJ20190080. PubMed DOI
Simidjiev I., Barzda V., Mustárdy L., Garab G. Isolation of Lamellar Aggregates of the Light-Harvesting Chlorophyll a/b Protein Complex of Photosystem II with Long-Range Chiral Order and Structural Flexibility. Anal. Biochem. 1997;250:169–175. doi: 10.1006/abio.1997.2204. PubMed DOI
Armbruster U., Labs M., Pribil M., Viola S., Xu W., Scharfenberg M., Hertle A.P., Rojahn U., Jensen P.E., Rappaport F., et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell. 2013;25:2661–2678. doi: 10.1105/tpc.113.113118. PubMed DOI PMC
Seddon J.M., Templer R.H. Polymorphism of Lipid-Water Systems. In: Lipowsky R., Sackmann E., editors. Handbook of Biological Physics. Volume 1. Elsevier; Amsterdam, The Netherlands: 1995. pp. 97–160.
Chernomordik L. Non-bilayer lipids and biological fusion intermediates. Chem. Phys. Lipids. 1996;81:203–213. doi: 10.1016/0009-3084(96)02583-2. PubMed DOI
Blumenthal R., Clague M.J., Durell S.R., Epand R.M. Membrane fusion. Chem. Rev. 2003;103:53–69. doi: 10.1021/cr000036+. PubMed DOI
Grzyb J., Latowski D., Strzałka K. Lipocalins—A family portrait. J. Plant Physiol. 2006;163:895–915. doi: 10.1016/j.jplph.2005.12.007. PubMed DOI
van Wijk K.J., Kessler F. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation. Annu. Rev. Plant Biol. 2017;68:253–289. doi: 10.1146/annurev-arplant-043015-111737. PubMed DOI
Garab G., Kieleczawa J., Sutherland J.C., Bustamante C., Hind G. Organization of pigment-protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll fo-less mutant of barley as revealed by circular dichroism. Photochem. Photobiol. 1991;54:273–281. doi: 10.1111/j.1751-1097.1991.tb02016.x. DOI
Albanese P., Tamara S., Saracco G., Scheltema R.A., Pagliano C. How paired PSII–LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry. Nature Commun. 2020;11:1361. doi: 10.1038/s41467-020-15184-1. PubMed DOI PMC
Jia H., Liggins J.R., Chow W.S. Entropy and biological systems: Experimentally-investigated entropy-driven stacking of plant photosynthetic membranes. Sci. Rep. 2014;4:4142. doi: 10.1038/srep04142. PubMed DOI PMC
Paliwal R., Singhal G.S. Fluorescence polarization of trypsin digested photosystem II membranes. Photosynth. Res. 1987;12:83–90. doi: 10.1007/BF00019153. PubMed DOI
Karnauchov I., Herrmann R.G., Klösgen R.B. Transmembrane topology of the Rieske Fe/S protein of the cytochrome b6/f complex from spinach chloroplasts. FEBS Lett. 1997;408:206–210. doi: 10.1016/S0014-5793(97)00427-4. PubMed DOI
Lensch M., Herrmann R.G., Sokolenko A. Identification and Characterization of SppA, a Novel Light-inducible Chloroplast Protease Complex Associated with Thylakoid Membranes. J. Biol. Chem. 2001;276:33645–33651. doi: 10.1074/jbc.M100506200. PubMed DOI
Lennon A.M., Prommeenate P., Nixon P.J. Location, expression and orientation of the putative chlororespiratory enzymes, Ndh and IMMUTANS, in higher-plant plastids. Planta. 2003;218:254–260. doi: 10.1007/s00425-003-1111-7. PubMed DOI
Jennings R.C., Paolo D.G., Flavio M.G., Forti G. Effects of Trypsin and Cations on Chloroplast Membranes. Plant Physiol. 1981;67:212–215. doi: 10.1104/pp.67.2.212. PubMed DOI PMC
Selman B.R., Bannister T.T. Trypsin inhibition of photosystem II. Biochim. Biophys. Acta (BBA) 1971;253:428–436. doi: 10.1016/0005-2728(71)90046-6. PubMed DOI
Mazor Y., Borovikova A., Caspy I., Nelson N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nature Plants. 2017;3:17014. doi: 10.1038/nplants.2017.14. PubMed DOI
Matthijs H.C., Coughlan S.J., Hind G. Removal of ferredoxin:NADP+ oxidoreductase from thylakoid membranes, rebinding to depleted membranes, and identification of the binding site. J. Biol. Chem. 1986;261:12154–12158. doi: 10.1016/S0021-9258(18)67216-3. PubMed DOI
Mulo P. Chloroplast-targeted ferredoxin-NADP+ oxidoreductase (FNR): Structure, function and location. Biochim. Biophys. Acta. 2011;1807:927–934. doi: 10.1016/j.bbabio.2010.10.001. PubMed DOI
Killian J.A., Salemink I., de Planque M.R., Lindblom G., Koeppe R.E., II, Greathouse D.V. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: Importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry. 1996;35:1037–1045. doi: 10.1021/bi9519258. PubMed DOI
May S., Harries D., Ben-Shaul A. The phase behavior of cationic lipid-DNA complexes. Biophys. J. 2000;78:1681–1697. doi: 10.1016/S0006-3495(00)76720-8. PubMed DOI PMC
Conn C.E., Drummond C.J. Nanostructured bicontinuous cubic lipid self-assembly materials as matrices for protein encapsulation. Soft Matter. 2013;9:3449–3464. doi: 10.1039/c3sm27743g. DOI
Astolfi P., Giorgini E., Perinelli D.R., Vita F., Adamo F.C., Logrippo S., Parlapiano M., Bonacucina G., Pucciarelli S., Francescangeli O., et al. Cubic and Hexagonal Mesophases for Protein Encapsulation: Structural Effects of Insulin Confinement. Langmuir. 2021;37:10166–10176. doi: 10.1021/acs.langmuir.1c01587. PubMed DOI PMC
Brown L.R., Wüthrich K. NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles. Biochim. Biophys. Acta. 1977;468:389–410. doi: 10.1016/0005-2736(77)90290-5. PubMed DOI
de Kruijff B., Cullis P.R. Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes. Biochim. Biophys. Acta. 1980;602:477–490. doi: 10.1016/0005-2736(80)90327-2. PubMed DOI
Vladimirov G.K., Vikulina A.S., Volodkin D., Vladimirov Y.A. Structure of the complex of cytochrome c with cardiolipin in non-polar environment. Chem. Phys. Lipids. 2018;214:35–45. doi: 10.1016/j.chemphyslip.2018.05.007. PubMed DOI
Schuurmans J.J., Veerman E.C.I., Francke J.A., Torrespereira J.M.G., Kraayenhof R. Temperature-dependence of energy-transducing functions and inhibitor sensitivity in chloroplasts. Plant Physiol. 1984;74:170–175. doi: 10.1104/pp.74.1.170. PubMed DOI PMC
Tikhonov A.N., Vershubskii A.V. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Photosynth. Res. 2020;146:299–329. doi: 10.1007/s11120-020-00777-0. PubMed DOI
Role of isotropic lipid phase in the fusion of photosystem II membranes