Enhanced thermal stability of the thylakoid membranes from spruce. A comparison with selected angiosperms

. 2016 Dec ; 130 (1-3) : 357-371. [epub] 20160506

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27154572
Odkazy

PubMed 27154572
DOI 10.1007/s11120-016-0269-3
PII: 10.1007/s11120-016-0269-3
Knihovny.cz E-zdroje

Recently, we have found that thermal stability of photosystem II (PSII) photochemistry in spruce needles is higher than in other plants (barley, beech) cultivated under the same temperatures. In this work, temperature dependences of various characteristics of PSII organization were studied in order to obtain complex information on the thermal stability of PSII function and organization in spruce. Temperature dependency of circular dichroism spectra revealed by about 6 °C higher thermal stability of macrodomain organization in spruce thylakoid membranes in comparison with Arabidopsis and barley ones; however, thermal disintegration of light-harvesting complex of PSII did not significantly differ among the species studied. These results thus indicate that thermal stability of PSII macro-organization in spruce thylakoid membranes is enhanced to a similar extent as thermal stability of PSII photochemistry. Clear-native polyacrylamide gel electrophoresis of preheated thylakoids demonstrated that among the separated pigment-protein complexes, only PSII supercomplexes (SCs) revealed considerably higher thermal stability in spruce thylakoids as compared to Arabidopsis and barley ones. Hence we suggest that higher thermal stability of PSII macro-organization of spruce is influenced by the maintenance of PSII SCs in the thylakoid membrane. In addition, we discuss possible effects of different PSII organizations and lipid compositions on the thermal stability of spruce thylakoid membranes.

Zobrazit více v PubMed

Plant Cell. 2006 Nov;18(11):3106-20 PubMed

Biochim Biophys Acta. 2006 Dec;1757(12):1642-8 PubMed

Photosynth Res. 2008 Oct-Dec;98(1-3):541-50 PubMed

Photosynth Res. 2009 Apr;100(1):29-43 PubMed

PLoS One. 2011;6(12):e28389 PubMed

Biochim Biophys Acta. 2010 Jan;1797(1):63-70 PubMed

Science. 2004 Aug 13;305(5686):994-7 PubMed

Biochemistry. 2009 Oct 27;48(42):10120-8 PubMed

Photosynth Res. 2010 Sep;105(3):229-42 PubMed

Biochemistry. 2007 Apr 24;46(16):4745-54 PubMed

Biochemistry. 2002 Dec 24;41(51):15121-9 PubMed

Biochem J. 2011 Oct 15;439(2):207-14 PubMed

Biochemistry. 1981 Jan 6;20(1):157-62 PubMed

Plant Cell Environ. 2009 Nov;32(11):1538-47 PubMed

Biochemistry. 2000 Dec 12;39(49):15250-7 PubMed

Biochemistry. 1997 Jul 22;36(29):8897-903 PubMed

Planta. 2005 Jan;220(3):486-97 PubMed

Plant Physiol. 1994 Feb;104(2):563-567 PubMed

Biochim Biophys Acta. 2008 Jun;1777(6):479-87 PubMed

Nature. 2004 Mar 18;428(6980):287-92 PubMed

Oecologia. 2002 Feb;130(4):505-514 PubMed

J Plant Physiol. 2004 Mar;161(3):257-64 PubMed

Biochemistry. 2003 Sep 30;42(38):11272-80 PubMed

Biochim Biophys Acta. 2010 Aug;1797(8):1483-90 PubMed

New Phytol. 2016 May;210(3):808-14 PubMed

Photosynth Res. 2009 Mar;99(3):161-71 PubMed

Photosynth Res. 2009 Aug-Sep;101(2-3):135-46 PubMed

Plant Physiol Biochem. 2012 Aug;57:93-105 PubMed

J Biochem Biophys Methods. 2002 May 31;51(3):273-81 PubMed

Phytochemistry. 2001 Sep;58(1):101-15 PubMed

Biochemistry. 1994 Sep 6;33(35):10837-41 PubMed

Tree Physiol. 2003 Oct;23(15):1031-9 PubMed

Biochem Biophys Res Commun. 2007 Apr 6;355(2):457-63 PubMed

J Photochem Photobiol B. 2005 Feb 1;78(2):165-70 PubMed

Prog Lipid Res. 1994;33(1-2):119-27 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...