Spruce versus Arabidopsis: different strategies of photosynthetic acclimation to light intensity change
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18-12178S
Grantová Agentura České Republiky
21-05497S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000797
European Regional Development Fund
LM2018127
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
35980499
DOI
10.1007/s11120-022-00949-0
PII: 10.1007/s11120-022-00949-0
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, LHCII antenna, Light acclimation, Non-photochemical quenching, Photoprotection, Photosynthetic control, Picea abies, Thylakoid membrane,
- MeSH
- aklimatizace MeSH
- Arabidopsis * metabolismus MeSH
- chlorofyl a metabolismus MeSH
- chlorofyl metabolismus MeSH
- cytochromy b metabolismus MeSH
- fotosystém I - proteinový komplex metabolismus MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- komplex cytochromů b6f metabolismus MeSH
- proteiny tepelného šoku metabolismus MeSH
- smrk * metabolismus MeSH
- světlo MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- cytochromy b MeSH
- fotosystém I - proteinový komplex MeSH
- fotosystém II - proteinový komplex MeSH
- komplex cytochromů b6f MeSH
- proteiny tepelného šoku MeSH
- světlosběrné proteinové komplexy MeSH
The acclimation of higher plants to different light intensities is associated with a reorganization of the photosynthetic apparatus. These modifications, namely, changes in the amount of peripheral antenna (LHCII) of photosystem (PS) II and changes in PSII/PSI stoichiometry, typically lead to an altered chlorophyll (Chl) a/b ratio. However, our previous studies show that in spruce, this ratio is not affected by changes in growth light intensity. The evolutionary loss of PSII antenna proteins LHCB3 and LHCB6 in the Pinaceae family is another indication that the light acclimation strategy in spruce could be different. Here we show that, unlike Arabidopsis, spruce does not modify its PSII/PSI ratio and PSII antenna size to maximize its photosynthetic performance during light acclimation. Its large PSII antenna consists of many weakly bound LHCIIs, which form effective quenching centers, even at relatively low light. This, together with sensitive photosynthetic control on the level of cytochrome b6f complex (protecting PSI), is the crucial photoprotective mechanism in spruce. High-light acclimation of spruce involves the disruption of PSII macro-organization, reduction of the amount of both PSII and PSI core complexes, synthesis of stress proteins that bind released Chls, and formation of "locked-in" quenching centers from uncoupled LHCIIs. Such response has been previously observed in the evergreen angiosperm Monstera deliciosa exposed to high light. We suggest that, in contrast to annuals, shade-tolerant evergreen land plants have their own strategy to cope with light intensity changes and the hallmark of this strategy is a stable Chl a/b ratio.
Department of Biophysics Faculty of Science Palacký University 783 71 Olomouc Czech Republic
Department of Physics Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Global Change Research Institute Czech Academy of Sciences 603 00 Brno Czech Republic
Zobrazit více v PubMed
Adamska I, Kruse E, Kloppstech K (2001) Stable insertion of the early light-induced proteins into etioplast membranes requires chlorophyll a. J Biol Chem 276:8582–8587. https://doi.org/10.1074/jbc.M010447200 PubMed DOI
Albanese P, Manfredi M, Meneghesso A, Marengo E, Saracco G, Barber J, Morosinotto T, Pagliano C (2016) Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Biochim Biophys Acta Bioenerg 1857:1651–1660. https://doi.org/10.1016/j.bbabio.2016.06.011 DOI
Albanese P, Manfredi M, Re A, Marengo E, Saracco G, Pagliano C (2018) Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non-model organism aided by transcriptomic data integration. Plant J 96:786–800. https://doi.org/10.1111/tpj.14068 PubMed DOI
Albanese P, Manfredi M, Marengo E, Saracco G, Pagliano C (2019) Structural and functional differentiation of the light-harvesting protein Lhcb4 during land plant diversification. Physiol Plant 166:336–350. https://doi.org/10.1111/ppl.12964 PubMed DOI
Allen JF (2017) Why we need to know the structure of phosphorylated chloroplast light-harvesting complex II. Physiol Plant 161:28–44. https://doi.org/10.1111/ppl.12577 PubMed DOI
Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Physiol Plant Mol Biol 37:93–136. https://doi.org/10.1146/annurev.arplant.37.1.93 DOI
Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organization in sun/shade acclimation. Aust J Plant Physiol 15:11–26. https://doi.org/10.1071/PP9880011 DOI
Bag P, Chukhutsina V, Zhang ZS, Paul S, Ivanov AG, Shutova T, Croce R, Holzwarth AR, Jansson S (2020) Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine. Nat Commun 11:6388. https://doi.org/10.1038/s41467-020-20137-9 PubMed DOI PMC
Bai TY, Guo L, Xu MY, Tian LR (2021) Structural diversity of Photosystem I and its light-harvesting system in eukaryotic algae and plants. Front Plant Sci 12:781035. https://doi.org/10.3389/fpls.2021.781035 PubMed DOI PMC
Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801. https://doi.org/10.1007/s004250100556 PubMed DOI
Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 PubMed DOI
Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958. https://doi.org/10.1074/jbc.M606417200 PubMed DOI
Barzda V, Mustardy L, Garab G (1994) Size dependency of circular-dichroism in macroaggregates of photosynthetic pigment-protein complexes. Biochemistry 33:10837–10841. https://doi.org/10.1021/bi00201a034 PubMed DOI
Bassi R, Dall’Osto L (2021) Dissipation of light energy absorbed in excess: the molecular mechanisms. Annu Rev Plant Biol 72:47–76. https://doi.org/10.1146/annurev-arplant-071720-015522 PubMed DOI
Belgio E, Johnson MP, Juric S, Ruban AV (2012) Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Biophys J 102:2761–2771. https://doi.org/10.1016/j.bpj.2012.05.004 PubMed DOI PMC
Belgio E, Trsková E, Kotabová E, Ewe D, Prášil O, Kaňa R (2018) High light acclimation of Chromera velia points to photoprotective NPQ. Photosynth Res 135:263–274. https://doi.org/10.1007/s11120-017-0385-8 PubMed DOI
Bielczynski LW, Schansker G, Croce R (2016) Effect of light acclimation on the organization of photosystem II super- and sub-complexes in Arabidopsis thaliana. Front Plant Sci 7:105. https://doi.org/10.3389/fpls.2016.00105 PubMed DOI PMC
Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185. https://doi.org/10.1007/BF00033159 PubMed DOI
Björkman O, Demmig B (1987) Photon yield of O PubMed DOI
Bukhov NG, Carpentier R (2003) Measurement of photochemical quenching of absorbed quanta in photosystem I of intact leaves using simultaneous measurements of absorbance changes at 830 nm and thermal dissipation. Planta 216:630–638. https://doi.org/10.1007/s00425-002-0886-2 PubMed DOI
Caffarri S, Kouřil R, Kereiche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063. https://doi.org/10.1038/emboj.2009.232 PubMed DOI PMC
Chmeliov J, Gelzinis A, Songaila E, Augulis R, Duffy CDP, Ruban AV, Valkunas L (2016) The nature of self-regulation in photosynthetic light-harvesting antenna. Nat Plants 2:16045. https://doi.org/10.1038/NPLANTS.2016.45
Chukhutsina VU, Liu X, Xu P, Croce R (2020) Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. Nat Plants 6:860–868. https://doi.org/10.1038/s41477-020-0693-4
Croce R (2020) Beyond ‘seeing is believing’: the antenna size of the photosystems in vivo. New Phytol 228:1214–1218. https://doi.org/10.1111/nph.16758 PubMed DOI PMC
Dainese P, Bassi R (1991) Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. J Biol Chem 266:8136–8142. https://doi.org/10.1016/S0021-9258(18)92952-2 PubMed DOI
Dau H, Andrews JC, Roelofs TA, Latimer MJ, Liang WC, Yachandra VK, Sauer K, Klein MP (1995) Structural consequences of ammonia binding to the manganese center of the photosynthetic oxygen-evolving complex: an X-ray absorption spectroscopy study of isotropic and oriented photosystem II particles. Biochemistry 34:5274–5287. https://doi.org/10.1021/bi00015a043 PubMed DOI
de Bianchi S, Ballottari M, Dall’Osto L, Bassi R (2010) Regulation of plant light harvesting by thermal dissipation of excess energy. Biochem Soc Trans 38:651–660. https://doi.org/10.1042/BST0380651 PubMed DOI
Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta Bioenerg 1706:12–39. https://doi.org/10.1016/j.bbabio.2004.09.009 DOI
Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21. https://doi.org/10.1111/j.1469-8137.2006.01835.x PubMed DOI
Demmig-Adams B, Ebbert V, Mellman DL, Mueh KE, Schaffer L, Funk C, Zarter CR, Adamska I, Jansson S, Adams WW III (2006) Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiol Plant 127:670–680. https://doi.org/10.1111/j.1399-3054.2006.00698.x DOI
Demmig-Adams B, Cohu CM, Muller O, Adams WW III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88. https://doi.org/10.1007/s11120-012-9761-6 PubMed DOI
Demmig-Adams B, Koh SC, Cohu CM, Muller O, Stewart JJ, Adams WW III (2014) Non-photochemical fluorescence quenching in contrasting plant species and environments. In: Demmig-Adams B, Garab G, Adams WW III, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration 40. Springer, Dordrecht, pp 531–552
Dlouhý O, Karlický V, Arshad R, Zsiros O, Domonkos I, Kurasová I, Wacha AF, Morosinotto T, Bóta A, Kouřil R, Špunda V, Garab G (2021) Lipid polymorphism of the subchloroplast-granum and stroma thylakoid membrane-particles. II Structure and functions. Cells 10:2363. https://doi.org/10.3390/cells10092363 PubMed DOI PMC
Dobrikova AG, Varkonyi Z, Krumova SB, Kovacs L, Kostov GK, Todinova SJ, Busheva MC, Taneva SG, Garab G (2003) Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Biochemistry 42:11272–11280. https://doi.org/10.1021/bi034899j PubMed DOI
Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515. https://doi.org/10.1146/annurev.genet.42.110807.091452 PubMed DOI
Ferroni L, Suorsa M, Aro EM, Baldisserotto C, Pancaldi S (2016) Light acclimation in the lycophyte Selaginella martensii depends on changes in the amount of photosystems and on the flexibility of the light-harvesting complex II antenna association with both photosystems. New Phytol 211:554–568. https://doi.org/10.1111/nph.13939 PubMed DOI
Floris M, Bassi R, Robaglia C, Alboresi A, Lanet E (2013) Post-transcriptional control of light-harvesting genes expression under light stress. Plant Mol Biol 82:147–154. https://doi.org/10.1007/s11103-013-0046-z PubMed DOI
Garab G, Kieleczawa J, Sutherland JC, Bustamante C, Hind G (1991) Organization of pigment protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll b-less mutant of barley as revealed by circular dichroism. Photochem Photobiol 54:273–281. https://doi.org/10.1111/j.1751-1097.1991.tb02016.x DOI
Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. https://doi.org/10.1016/S0304-4165(89)80016-9 DOI
Gerotto C, Alboresi A, Giacometti GM, Bassi R, Morosinotto T (2011) Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature. Plant Cell Environ 34:922–932. https://doi.org/10.1111/j.1365-3040.2011.02294.x PubMed DOI
Gilmore AM, Yamamoto HY (1991) Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol 96:635–643. https://doi.org/10.1104/pp.96.2.635 PubMed DOI PMC
Grebe S, Trotta A, Bajwa AA, Suorsa M, Gollan PJ, Jansson S, Tikkanen M, Aro EM (2019) The unique photosynthetic apparatus of Pinaceae: analysis of photosynthetic complexes in Picea abies. J Exp Bot 70:3211–3225. https://doi.org/10.1093/jxb/erz127 PubMed DOI PMC
Grebe S, Trotta A, Bajwa AA, Mancini I, Bag P, Jansson S, Tikkanen M, Aro EM (2020) Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce (Picea abies) photosynthesis. Proc Natl Acad Sci USA 117:17499–17509. https://doi.org/10.1073/pnas.2004165117 PubMed DOI PMC
Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M (2003) Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA 100:4921–4926. https://doi.org/10.1073/pnas.0736939100 PubMed DOI PMC
Ilík P, Pavlovič A, Kouřil R, Alboresi A, Morosinotto T, Allahverdiyeva Y, Aro EM, Yamamoto H, Shikanai T (2017) Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms. New Phytol 214:967–972. https://doi.org/10.1111/nph.14536 PubMed DOI
Ilíková I, Ilík P, Opatíková M, Arshad R, Nosek L, Karlický V, Kučerová Z, Roudnický P, Pospíšil P, Lazár D, Bartoš J, Kouřil R (2021) Towards spruce-type photosystem II: consequences of the loss of light-harvesting proteins LHCB3 and LHCB6 in Arabidopsis. Plant Physiol 187:2691–2715. https://doi.org/10.1093/plphys/kiab396 PubMed DOI PMC
Jajoo A, Mekala NR, Tongra T, Tiwari A, Grieco M, Tikkanen M, Aro EM (2014) Low pH-induced regulation of excitation energy between the two photosystems. FEBS Lett 588:970–974. https://doi.org/10.1016/j.febslet.2014.01.056 PubMed DOI
Karlický V, Kurasová I, Ptáčková B, Večeřová K, Urban O, Špunda V (2016) Enhanced thermal stability of the thylakoid membranes from spruce. A comparison with selected angiosperms. Photosynth Res 130:357–371. https://doi.org/10.1007/s11120-016-0269-3 PubMed DOI
Karlický V, Kmecová Materová Z, Kurasová I, Nezval J, Štroch M, Garab G, Špunda V (2021) Accumulation of geranylgeranylated chlorophylls in the pigment-protein complexes of Arabidopsis thaliana acclimated to green light: effects on the organization of light-harvesting complex II and photosystem II functions. Photosynth Res 149:233–252. https://doi.org/10.1007/s11120-021-00827-1 PubMed DOI PMC
Kirchhoff H (2013) Architectural switches in plant thylakoid membranes. Photosynth Res 116:481–487. https://doi.org/10.1007/s11120-013-9843-0 PubMed DOI
Klughammer C, Schreiber U (2008) Saturation pulse method for assessment of energy conversion in PSI. PAM Appl Notes 1:11–14
Kouřil R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta Bioenerg 1817:2–12. https://doi.org/10.1016/j.bbabio.2011.05.024 DOI
Kouřil R, Wientjes E, Bultema JB, Croce R, Boekema EJ (2013) High-light vs. low-light: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta Bioenerg 1827:411–419. https://doi.org/10.1016/j.bbabio.2012.12.003 DOI
Kouřil R, Nosek L, Bartoš J, Boekema EJ, Ilík P (2016) Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups - break-up of current dogma. New Phytol 210:808–814. https://doi.org/10.1111/nph.13947 PubMed DOI
Kouřil R, Nosek L, Semchonok D, Boekema EJ, Ilík P (2018) Organization of plant photosystem II and photosystem I supercomplexes. Subcell Biochem 87:259–286. https://doi.org/10.1007/978-981-10-7757-9_9 PubMed DOI
Kouřil R, Nosek L, Opatíková M, Arshad R, Semchonok DA, Chamrád I, Lenobel R, Boekema EJ, Ilík P (2020) Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. Plant J 104:215–225. https://doi.org/10.1111/tpj.14918 PubMed DOI PMC
Kovács L, Damkjӕr J, Kereïche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–3120. https://doi.org/10.1105/tpc.106.045641 PubMed DOI PMC
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of Q PubMed DOI
Kurasová I, Kalina J, Urban O, Štroch M, Špunda V (2003) Acclimation of two distinct plant species, spring barley and Norway spruce, to combined effect of various irradiance and CO DOI
Li YH, Liu B, Zhang J, Kong FN, Zhang L, Meng H, Li WJ, Rochaix JD, Li D, Peng LW (2019) OHP1, OHP2, and HCF244 form a transient functional complex with the Photosystem II reaction center. Plant Physiol 179:195–208. https://doi.org/10.1104/pp.18.01231 PubMed DOI
Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods in enzymology. Academic Press Inc., New York, pp 350–382
Michael TP, Bryant D, Gutierrez R, Borisjuk N, Chu P, Zhang HZ, Xia J, Zhou JF, Peng H, El Baidouri M et al (2017) Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J 89:617–635. https://doi.org/10.1111/tpj.13400 PubMed DOI
Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631. https://doi.org/10.1016/j.febslet.2008.09.044 PubMed DOI
Miyake C, Miyata M, Shinzaki Y, Tomizawa K (2005) CO PubMed DOI
Murchie EH, Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 20:438–448. https://doi.org/10.1046/j.1365-3040.1997.d01-95.x DOI
Nama S, Madireddi SK, Yadav RM, Subramanyam R (2019) Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress. Photosynth Res 139:387–400. https://doi.org/10.1007/s11120-018-0551-7 PubMed DOI
Ostroumov EE, Gotze JP, Reus M, Lambrev PH, Holzwarth AR (2020) Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Photosynth Res 144:171–193. https://doi.org/10.1007/s11120-020-00745-8 PubMed DOI
Rochaix JD, Bassi R (2019) LHC-like proteins involved in stress responses and biogenesis/repair of the photosynthetic apparatus. Biochem J 476:581–593. https://doi.org/10.1042/BCJ20180718 PubMed DOI
Rott M, Martins NF, Thiele W, Lein W, Bock R, Kramer DM, Schöttler MA (2011) ATP synthase repression in tobacco restricts photosynthetic electron transport, CO PubMed DOI PMC
Ruban AV, Wilson S (2021) The mechanism of non-photochemical quenching in plants: localization and driving forces. Plant Cell Physiol 62:1063–1072. https://doi.org/10.1093/pcp/pcaa155 PubMed DOI
Schöttler MA, Tóth SZ (2014) Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Front Plant Sci 5:188. https://doi.org/10.3389/fpls.2014.00188 PubMed DOI PMC
Shen LL, Huang ZH, Chang SH, Wang WD, Wang JF, Kuang TY, Han GY, Shen JR, Zhang X (2019) Structure of a C PubMed DOI PMC
Sheng X, Watanabe A, Li AJ, Kim E, Song CH, Murata K, Song DF, Minagawa J, Liu ZF (2019) Structural insight into light harvesting for photosystem II in green algae. Nat Plants 5:1320–1330. https://doi.org/10.1038/s41477-019-0543-4 PubMed DOI
Štroch M, Kuldová K, Kalina J, Špunda V (2008) Dynamics of the xanthophyll cycle and non-radiative dissipation of absorbed light energy during exposure of Norway spruce to high irradiance. J Plant Physiol 165:612–622. https://doi.org/10.1016/j.jplph.2007.03.013 PubMed DOI
Su XD, Ma J, Wei XP, Cao P, Zhu DJ, Chang WR, Liu ZF, Zhang XZ, Li M (2017) Structure and assembly mechanism of plant C PubMed DOI
Tikhonov AN (2013) pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth Res 116:511–534. https://doi.org/10.1007/s11120-013-9845-y PubMed DOI
Tikkanen M, Nurmi M, Kangasjärvi S, Aro EM (2008) Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim Biophys Acta Bioenerg 1777:1432–1437. https://doi.org/10.1016/j.bbabio.2008.08.004 DOI
Tóth TN, Rai N, Solymosi K, Zsiros O, Schröder WP, Garab G, van Amerongen H, Horton P, Kovács L (2016) Fingerprinting the macro-organisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochim Biophys Acta Bioenerg 1857:1479–1489. https://doi.org/10.1016/j.bbabio.2016.04.287 DOI
van Bezouwen LS, Caffarri S, Kale RS, Kouřil R, Thunnissen A, Oostergetel GT, Boekema EJ (2017) Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat Plants 3:17080. https://doi.org/10.1038/nplants.2017.80 PubMed DOI
Van Grondelle R, Dekker JP, Gillbro T, Sundstrom V (1994) Energy-transfer and trapping in photosynthesis. Biochim Biophys Acta Bioenerg 1187:1–65. https://doi.org/10.1016/0005-2728(94)90166-X DOI
Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447. https://doi.org/10.1093/jxb/eri060 PubMed DOI
Ware MA, Belgio E, Ruban AV (2015) Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities. Photosynth Res 126:261–274. https://doi.org/10.1007/s11120-015-0102-4 PubMed DOI
Weis E (1985) Chlorophyll fluorescence at 77 K in intact leaves—characterization of a technique to eliminate artifacts related to self-absorption. Photosynth Res 6:73–86. https://doi.org/10.1007/BF00029047 PubMed DOI
Wientjes E, van Amerongen H, Croce R (2013a) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta Bioenerg 1827:420–426. https://doi.org/10.1016/j.bbabio.2012.12.009 DOI
Wientjes E, van Amerongen H, Croce R (2013b) Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J Phys Chem B 117:11200–11208. https://doi.org/10.1021/jp401663w PubMed DOI
Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362. https://doi.org/10.1038/NMETH.1322 PubMed DOI
Yamamoto H, Shikanai T (2019) PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant Physiol 179:588–600. https://doi.org/10.1104/pp.18.01343 PubMed DOI
Yamamoto H, Takahashi S, Badger MR, Shikanai T (2016) Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis. Nat Plants 2:16012. https://doi.org/10.1038/NPLANTS.2016.12 PubMed DOI