Towards spruce-type photosystem II: consequences of the loss of light-harvesting proteins LHCB3 and LHCB6 in Arabidopsis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34618099
PubMed Central
PMC8644234
DOI
10.1093/plphys/kiab396
PII: 6361658
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika metabolismus MeSH
- fotosystém II - proteinový komplex genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny vázající chlorofyl genetika metabolismus MeSH
- smrk metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II - proteinový komplex MeSH
- Lhcb6 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- proteiny vázající chlorofyl MeSH
The largest stable photosystem II (PSII) supercomplex in land plants (C2S2M2) consists of a core complex dimer (C2), two strongly (S2) and two moderately (M2) bound light-harvesting protein (LHCB) trimers attached to C2 via monomeric antenna proteins LHCB4-6. Recently, we have shown that LHCB3 and LHCB6, presumably essential for land plants, are missing in Norway spruce (Picea abies), which results in a unique structure of its C2S2M2 supercomplex. Here, we performed structure-function characterization of PSII supercomplexes in Arabidopsis (Arabidopsis thaliana) mutants lhcb3, lhcb6, and lhcb3 lhcb6 to examine the possibility of the formation of the "spruce-type" PSII supercomplex in angiosperms. Unlike in spruce, in Arabidopsis both LHCB3 and LHCB6 are necessary for stable binding of the M trimer to PSII core. The "spruce-type" PSII supercomplex was observed with low abundance only in the lhcb3 plants and its formation did not require the presence of LHCB4.3, the only LHCB4-type protein in spruce. Electron microscopy analysis of grana membranes revealed that the majority of PSII in lhcb6 and namely in lhcb3 lhcb6 mutants were arranged into C2S2 semi-crystalline arrays, some of which appeared to structurally restrict plastoquinone diffusion. Mutants without LHCB6 were characterized by fast induction of non-photochemical quenching and, on the contrary to the previous lhcb6 study, by only transient slowdown of electron transport between PSII and PSI. We hypothesize that these functional changes, associated with the arrangement of PSII into C2S2 arrays in thylakoids, may be important for the photoprotection of both PSI and PSII upon abrupt high-light exposure.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Department of Physics Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Global Change Research Institute of the Czech Academy of Sciences 603 00 Brno Czech Republic
Zobrazit více v PubMed
Adamiec M, Gibasiewicz K, Luciński R, Giera W, Chełminiak P, Szewczyk S, Sipińska W, van Grondelle R, Jackowski G (2015) Excitation energy transfer and charge separation are affected in Arabidopsis thaliana mutants lacking light-harvesting chlorophyll a/b binding protein Lhcb3. J Photochem Photobiol B 153:423–428 PubMed
Albanese P, Manfredi M, Meneghesso A, Marengo E, Saracco G, Barber J, Morosinotto T, Pagliano C (2016a) Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Biochim Biophys Acta 1857:1651–1660 PubMed
Albanese P, Nield J, Tabares JAM, Chiodoni A, Manfredi M, Gosetti F, Marengo E, Saracco G, Barber J, Pagliano C (2016b) Isolation of novel PSII-LHCII megacomplexes from pea plants characterized by a combination of proteomics and electron microscopy. Photosynth Res 130:19–31. PubMed
Albanese P, Melero R, Engel BD, Grinzato A, Berto P, Manfredi M, Chiodoni A, Vargas J, Sorzano CÓS, Marengo E, et al. (2017) Pea PSII–LHCII supercomplexes form pairs by making connections across the stromal gap. Sci Rep. 7:10067. PubMed PMC
Albanese P, Manfredi M, Re A, Marengo E, Saracco G, Pagliano C (2018) Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non-model organism aided by transcriptomic data integration. Plant J 96:786–800 PubMed
Albanese P, Manfredi M, Marengo E, Saracco G, Pagliano C (2019) Structural and functional differentiation of the light‐harvesting protein Lhcb4 during land plant diversification. Physiol Plant 166:336–350 PubMed
Alboresi A, Caffarri S, Nogue F, Bassi R, Morosinotto T (2008) In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: Identification of subunits which evolved upon land adaptation. PLoS ONE 3:e2033. PubMed PMC
Allahverdiyeva Y, Isojärvi J, Zhang P, Aro E-M (2015) Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. Life Basel Switz 5:716–743 PubMed PMC
Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: New links in the chain. Trends Plant Sci 8:15–19 PubMed
Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958 PubMed
Barzda V, Mustárdy L, Garab G (1994) Size dependency of circular dichroism in macroaggregates of photosynthetic pigment–protein complexes. Biochemistry 33:10837–10841 PubMed
Belgio E, Kapitonova E, Chmeliov J, Duffy CDP, Ungerer P, Valkunas L, Ruban AV (2014) Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nat Commun 5:4433. PubMed
Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266 PubMed PMC
van Bezouwen LS, Caffarri S, Kale RS, Kouřil R, Thunnissen A-MWH, Oostergetel GT, Boekema EJ (2017) Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat. Plants 3:17080. PubMed
de Bianchi S, Betterle N, Kouril R, Cazzaniga S, Boekema E, Bassi R, Dall’Osto L (2011) Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. Plant Cell 23:2659–2679 PubMed PMC
de Bianchi S, Dall’Osto L, Tognon G, Morosinotto T, Bassi R (2008) Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20:1012–1028 PubMed PMC
Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185 PubMed
Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504 PubMed
Boekema EJ, van Roon H, Calkoen F, Bassi R, Dekker JP (1999) Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38:2233–2239 PubMed
Boekema EJ, van Breemen JFL, van Roon H, Dekker JP (2000) Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 301:1123–1133 PubMed
Bratt CE, Arvidsson PO, Carlsson M, Akerlund HE (1995) Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth Res 45:169–175 PubMed
Caffarri S, Croce R, Cattivelli L, Bassi R (2004) A look within LHCII: Differential analysis of the Lhcb1 − 3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43:9467–9476 PubMed
Caffarri S, Kouřil R, Kereïche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063 PubMed PMC
Charuvi D, Nevo R, Shimoni E, Naveh L, Zia A, Adam Z, Farrant JM, Kirchhoff H, Reich Z (2015) Photoprotection conferred by changes in photosynthetic protein levels and organization during dehydration of a homoiochlorophyllous resurrection plant. Plant Physiol 167:1554–1565 PubMed PMC
Chen Y-E, Ma J, Wu N, Su Y-Q, Zhang Z-W, Yuan M, Zhang H-Y, Zeng X-Y, Yuan S (2018) The roles of Arabidopsis proteins of Lhcb4, Lhcb5 and Lhcb6 in oxidative stress under natural light conditions. Plant Physiol Biochem 130:267–276 PubMed
Dall’Osto L, Cazzaniga S, Bressan M, Paleček D, Židek K, Niyogi KK, Fleming GR, Zigmantas D, Bassi R (2017) Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nat Plants 3:17033. PubMed
Damkjær JT, Kereiche S, Johnson MP, Kovács L, Kiss AZ, Boekema EJ, Ruban AV, Horton P, Jansson S (2009) The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell 21:3245–3256. PubMed PMC
Dau H, Andrews JC, Roelofs TA, Latimer MJ, Liang W, Yachandra VK, Sauer K, Klein MP (1995) Structural consequences of ammonia binding to the manganese center of the photosynthetic oxygen-evolving complex: An X-ray absorption spectroscopy study of isotropic and oriented photosystem II particles. Biochemistry 34:5274–5287 PubMed
Daum B, Nicastro D, Austin J, McIntosh JR, Kühlbrandt W (2010) Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22:1299–1312 PubMed PMC
Deák Z, Sass L, Kiss É, Vass I (2014) Characterization of wave phenomena in the relaxation of flash-induced chlorophyll fluorescence yield in cyanobacteria. Biochim Biophys Acta 1837:1522–1532 PubMed
Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39 PubMed
Dobrikova AG, Várkonyi Z, Krumova SB, Kovács L, Kostov GK, Todinova SJ, Busheva MC, Taneva SG, Garab G (2003) Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Biochemistry 42:11272–11280 PubMed
Garab G, Kieleczawa J, Sutherland JC, Bustamante C, Hind G (1991) Organization of pigment–protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll-b less mutant of barley as revealed by circular dichroism. Photochem Photobiol 54:273–281
Garab G, van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101:135–146 PubMed PMC
Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92
Goral TK, Johnson MP, Duffy CDP, Brain APR, Ruban AV, Mullineaux CW (2012) Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J 69:289–301 PubMed
Grebe S, Trotta A, Bajwa AA, Suorsa M, Gollan PJ, Jansson S, Tikkanen M, Aro E-M (2019) The unique photosynthetic apparatus of Pinaceae: Analysis of photosynthetic complexes in Picea abies. J Exp Bot 10:3211–3225 PubMed PMC
Grinzato A, Albanese P, Marotta R, Swuec P, Saracco G, Bolognesi M, Zanotti G, Pagliano C (2020) High-light versus low-light: Effects on paired photosystem II supercomplex structural rearrangement in pea plants. Int J Mol Sci 21:8643 PubMed PMC
Günther G, Thiele A, Laasch H (1994) A new method for the determination of the transthylakoid pH gradient in isolated chloroplasts: The pH-dependent activity of violaxanthin de-epoxidase. Plant Sci 102:19–30.
Haferkamp S, Haase W, Pascal AA, van Amerongen H, Kirchhoff H (2010) Efficient light harvesting by photosystem II requires an optimized protein packing density in grana thylakoids. J Biol Chem 285:17020–17028 PubMed PMC
Ilík P, Kotabová E, Spundová M, Novák O, Kana R, Strzałka K (2010) Low-light-induced violaxanthin de-epoxidation in shortly preheated leaves: uncoupling from Delta pH-dependent nonphotochemical quenching. Photochem Photobiol 86:722–726 PubMed
Ilík P, Pavlovič A, Kouřil R, Alboresi A, Morosinotto T, Allahverdiyeva Y, Aro E-M, Yamamoto H, Shikanai T (2017) Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms. New Phytol 214:967–972 PubMed
Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–240 PubMed
Johnson MP (2020) Just the essentials: Photoprotective energy dissipation pared-down. J Exp Bot 71:3380–3382 PubMed
Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99:10209–10214 PubMed PMC
Kereïche S, Kiss AZ, Kouřil R, Boekema EJ, Horton P (2010) The PSBS protein controls the macro-organisation of photosystem II complexes in the grana membranes of higher plant chloroplasts. FEBS Lett 584:759–764 PubMed
Kirchhoff H (2008) Significance of protein crowding, order and mobility for photosynthetic membrane functions. Biochem Soc Trans 36:967–970 PubMed
Kirchhoff H, Haase W, Wegner S, Danielsson R, Ackermann R, Albertsson P-A (2007) Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry 46:11169–11176 PubMed
Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115 PubMed
Klimmek F, Sjödin A, Noutsos C, Leister D, Jansson S (2006) Abundantly and rarely expressed LHC protein genes exhibit distinct regulation patterns in plants. Plant Physiol 140:793–804 PubMed PMC
Klughammer C, Schreiber U (2008) Saturation pulse method for assessment of energy conversion in PS I. PAM Appl Notes 1:11–14.
Kouřil R, Wientjes E, Bultema JB, Croce R, Boekema EJ (2013) High-light vs. low-light: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419 PubMed
Kouřil R, Strouhal O, Nosek L, Lenobel R, Chamrád I, Boekema EJ, Šebela M, Ilík P (2014) Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. Plant J 77:568–576 PubMed
Kouřil R, Nosek L, Bartoš J, Boekema EJ, Ilík P (2016) Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups—break-up of current dogma. New Phytol 210:808–814 PubMed
Kouřil R, Nosek L, Semchonok D, Boekema EJ, Ilík P (2018) Organization of plant photosystem II and photosystem I supercomplexes. InHarris JR, Boekema EJ, eds, Membrane Protein Complexes: Structure and Function, Vol. Subcellular Biochemistry. Springer, Singapore, pp 259–286 PubMed
Kouřil R, Nosek L, Opatíková M, Arshad R, Semchonok DA, Chamrád I, Lenobel R, Boekema EJ, Ilík P (2020) Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. Plant J 104:215–225 PubMed PMC
Kovács L, Damkjær J, Kereiche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–3120 PubMed PMC
Kurasova I, Kalina J, Urban O, Stroch M, Spunda V (2003) Acclimation of two distinct plant species, Spring Barley and Norway Spruce, to combined effect of various irradiance and CO2 concentration during cultivation in controlled environment. Photosynthetica 41:513–523
Lazár D (1999) Chlorophyll a fluorescence induction 1. Biochim Biophys Acta 1412:1–28 PubMed
Lazár D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30. PubMed
Lazár D, Nauš J (1998) Statistical properties of chlorophyll fluorescence induction parameters. Photosynthetica 35:121–127
Lazár D, Tomek P, Ilík P, Nauš J (2001) Determination of the antenna heterogeneity of photosystem II by direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different light intensities. Photosynth Res 68:247–257 PubMed
Li X-P, Gilmore AM, Niyogi KK (2002) Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. J Biol Chem 277:33590–33597 PubMed
Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In: R Douce and L Packer, eds, Methods in Enzymology, Academic Press Inc., New York, pp 350–382
Lípová L, Krchnák P, Komenda J, Ilík P (2010) Heat-induced disassembly and degradation of chlorophyll-containing protein complexes in vivo. Biochim Biophys Acta 1797:63–70 PubMed
Malkin S, Armond PA, Mooney HA, Fork DC (1981) Photosystem II photosynthetic unit sizes from fluorescence induction in leaves : Correlation to photosynthetic capacity. Plant Physiol 67:570–579 PubMed PMC
McKenzie SD, Ibrahim IM, Aryal UK, Puthiyaveetil S (2020) Stoichiometry of protein complexes in plant photosynthetic membranes. Biochim Biophys Acta 1861:148141 PubMed
Miller KR, Miller GJ, Mclntyre KR (1976) The light-harvesting chlorophyll–protein complex of photosystem II. Its location in the photosynthetic membrane. J Cell Biol 71: 624–638 PubMed PMC
Miyake C (2010) Alternative electron flows (water–water cycle and cyclic electron flow around PSI) in photosynthesis: Molecular mechanisms and physiological functions. Plant Cell Physiol 51:1951–1963 PubMed
Miyake C (2020) Molecular mechanism of oxidation of P700 and suppression of ROS production in photosystem I in response to electron–sink limitations in C3 plants. Antioxidants 9:230 PubMed PMC
Morosinotto T, Caffarri S, Dall’Osto L, Bassi R (2003) Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiol Plant 119:347–354
Morosinotto T, Bassi R, Frigerio S, Finazzi G, Morris E, Barber J (2006) Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barley. FEBS J 273:4616–4630 PubMed
Munekage Y, Takeda S, Endo T, Jahns P, Hashimoto T, Shikanai T (2001) Cytochrome b(6)f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J 28:351–359 PubMed
Nosek L, Semchonok D, Boekema EJ, Ilík P, Kouřil R (2017) Structural variability of plant photosystem II megacomplexes in thylakoid membranes. Plant J 89:104–111 PubMed
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, et al. (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584 PubMed
Onoa B, Schneider AR, Brooks MD, Grob P, Nogales E, Geissler PL, Niyogi KK, Bustamante C (2014) Atomic force microscopy of photosystem II and its unit cell clustering quantitatively delineate the mesoscale variability in Arabidopsis thylakoids. PLoS ONE 9:e101470. PubMed PMC
van Oort B, Alberts M, de Bianchi S, Dall’Osto L, Bassi R, Trinkunas G, Croce R, van Amerongen H (2010) Effect of antenna-depletion in photosystem II on excitation energy transfer in Arabidopsis thaliana. Biophys J 98:922–931 PubMed PMC
Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—calculation of qP and Fv’/Fm’; without measuring Fo’. Photosynth Res 54:135–142
Park RB, Biggins J (1964) Quantasome: size and composition. Science 144:1009–1011 PubMed
Peter GF, Thornber JP (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment–proteins. J Biol Chem 266:16745–16754 PubMed
de la Rosa-Trevín JM, Quintana A, Del Cano L, Zaldívar A, Foche I, Gutiérrez J, Gómez-Blanco J, Burguet-Castell J, Cuenca-Alba J, Abrishami V, et al. (2016) Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy. J Struct Biol 195:93–99 PubMed
Ruban AV, Johnson MP (2009) Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth Res 99:173–183 PubMed
Ruban AV, Wentworth M, Yakushevska AE, Andersson J, Lee PJ, Keegstra W, Dekker JP, Boekema EJ, Jansson S, Horton P (2003) Plants lacking the main light-harvesting complex retain photosystem II macro-organization. Nature 421:648–652 PubMed
Ruban AV, Wilson S (2020). The mechanism of non-photochemical quenching in plants: Localisation and driving forces. Plant Cell Physiol (doi: 10.1093/pcp/pcaa155) PubMed
Saccon F, Giovagnetti V, Shukla MK, Ruban AV (2020) Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes. J Exp Bot 71:3626–3637 PubMed PMC
Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22. PubMed
Scheres SHW (2012) RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530 PubMed PMC
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675 PubMed PMC
Semenova GA (1995) Particle regularity on thylakoid fracture faces is influenced by storage conditions. Can J Bot 73:1676–1682
Simpson DJ (1979) Freeze–fracture studies on barley plastid membranes. III. Location of the light-harvesting chlorophyll-protein. Carlsberg Res Commun 44:305–336
Standfuss J, Kühlbrandt W, (2004) The three isoforms of the light-harvesting complex II: Spectroscopic features, trimer formation, and functional roles. J Biol Chem 279:36884–36891 PubMed
Stirbet A, Lazár D, Kromdijk J, Govindjee (2018) Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56:86–104.
Stoylova S, Flint TD, Ford RC, Holzenburg A (2000) Structural analysis of photosystem II in far-red-light-adapted thylakoid membranes: New crystal forms provide evidence for a dynamic reorganization of light-harvesting antennae subunits. Eur J Biochem 267:207–215 PubMed
Strasser RJ, Srivastava A (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42
Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. InPapageorgiou GC and Govindjee, eds, Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Springer, Dordrecht, Netherlands, pp 321–362
Su X, Ma J, Wei X, Cao P, Zhu D, Chang W, Liu Z, Zhang X, Li M (2017) Structure and assembly mechanism of plant C2S2M2-type PSII–LHCII supercomplex. Science 357:815–820 PubMed
Sznee K, Dekker JP, Dame RT, van Roon H, Wuite GJL, Frese RN (2011) Jumping mode atomic force microscopy on grana membranes from Spinach. J Biol Chem 286:39164–39171 PubMed PMC
Tietz S., Puthiyaveetil S, Enlow HM, Yarbrough R, Wood M, Semchonok DA, Lowry T, Li Z, Jahns P, Boekema EJ, et al. (2015) Functional implications of photosystem II crystal formation in photosynthetic membranes. J Biol Chem 290:14091–14106 PubMed PMC
Tóth TN, Rai N, Solymosi K, Zsiros O, Schröder WP, Garab G, van Amerongen H, Horton P, Kovács L (2016) Fingerprinting the macro-organisation of pigment–protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochim Biophys Acta 1857:1479–1489 PubMed
Townsend AJ, Saccon F, Giovagnetti V, Wilson S, Ungerer P, Ruban AV (2018) The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes. Biochim Biophys Acta 1859:666–675 PubMed
Tremmel IG, Kirchhoff H, Weis E, Farquhar GD (2003) Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. Biochim Biophys Acta 1607:97–109 PubMed
Tsvetkova NM, Apostolova EL, Brain APR, Patrick Williams W, Quinn PJ (1995) Factors influencing PS II particle array formation in Arabidopsis thaliana chloroplasts and the relationship of such arrays to the thermostability of PS II. Biochim Biophys Acta 1228:201–210.
Vass I, Kirilovsky D, Etienne AL (1999) UV-B radiation-induced donor- and acceptor-side modifications of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 38:12786–12794 PubMed
Wang YH (2008) How effective is T-DNA insertional mutagenesis in Arabidopsis? J Biochem Technol 1:11–20.
Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II—LHCII supercomplex at 3.2 Å resolution. Nature 534:69–74 PubMed
Wientjes E, Drop B, Kouřil R, Boekema EJ, Croce R (2013) During state 1 to state 2 transition in Arabidopsis thaliana, the photosystem II supercomplex gets phosphorylated but does not disassemble. J Biol Chem 288:32821–32826 PubMed PMC
Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362 PubMed
Wittig I, Karas M, Schägger H (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 6:1215–1225 PubMed
Yakushevska AE, Jensen PE, Keegstra W, van Roon H, Scheller HV, Boekema EJ, Dekker JP (2001) Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana: Supermolecular organization of photosystem II. Eur J Biochem 268:6020–6028. PubMed
Yakushevska AE, Keegstra W, Boekema EJ, Dekker JP, Andersson J, Jansson S, Ruban AV, Horton P (2003) The structure of photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. Biochemistry 42:608–613 PubMed
Yamamoto H, Shikanai T (2019) PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant Physiol 179:588–600 PubMed PMC