Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
675006
Marie Curie - United Kingdom
PubMed
32654240
PubMed Central
PMC7590091
DOI
10.1111/tpj.14918
Knihovny.cz E-zdroje
- Klíčová slova
- Picea abies, Pinus sylvestris, clear native polyacrylamide electrophoresis, grana membrane, megacomplex, photosystem II, single-particle electron microscopy, supercomplex,
- MeSH
- fotosystém II - proteinový komplex chemie metabolismus MeSH
- smrk metabolismus MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- terciární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II - proteinový komplex MeSH
- světlosběrné proteinové komplexy MeSH
Photosystem II (PSII) complexes are organized into large supercomplexes with variable amounts of light-harvesting proteins (Lhcb). A typical PSII supercomplex in plants is formed by four trimers of Lhcb proteins (LHCII trimers), which are bound to the PSII core dimer via monomeric antenna proteins. However, the architecture of PSII supercomplexes in Norway spruce[Picea abies (L.) Karst.] is different, most likely due to a lack of two Lhcb proteins, Lhcb6 and Lhcb3. Interestingly, the spruce PSII supercomplex shares similar structural features with its counterpart in the green alga Chlamydomonas reinhardtii [Kouřil et al. (2016) New Phytol. 210, 808-814]. Here we present a single-particle electron microscopy study of isolated PSII supercomplexes from Norway spruce that revealed binding of a variable amount of LHCII trimers to the PSII core dimer at positions that have never been observed in any other plant species so far. The largest spruce PSII supercomplex, which was found to bind eight LHCII trimers, is even larger than the current largest known PSII supercomplex from C. reinhardtii. We have also shown that the spruce PSII supercomplexes can form various types of PSII megacomplexes, which were also identified in intact grana membranes. Some of these large PSII supercomplexes and megacomplexes were identified also in Pinus sylvestris, another representative of the Pinaceae family. The structural variability and complexity of LHCII organization in Pinaceae seems to be related to the absence of Lhcb6 and Lhcb3 in this family, and may be beneficial for the optimization of light-harvesting under varying environmental conditions.
Zobrazit více v PubMed
Albanese, P. , Nield, J. , Tabares, J.A.M. , Chiodoni, A. , Manfredi, M. , Gosetti, F. , Marengo, E. , Saracco, G. , Barber, J. and Pagliano, C. (2016) Isolation of novel PSII‐LHCII megacomplexes from pea plants characterized by a combination of proteomics and electron microscopy. Photosynth. Res. 130, 19–31. PubMed
Albanese, P. , Melero, R. , Engel, B.D. et al (2017) Pea PSII‐LHCII supercomplexes form pairs by making connections across the stromal gap. Sci. Rep. 7, 10067. PubMed PMC
Ballottari, M. , Dall'Osto, L. , Morosinotto, T. and Bassi, R. (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282, 8947–8958. PubMed
Barber, J. (2003) Photosystem II: the engine of life. Q. Rev. Biophys. 36, 71–89. PubMed
Bailey, S. , Walters, R.G. , Jansson, S. and Horton, P. (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta, 213, 794–801. PubMed
Beck, S. , Michalski, A. , Raether, O. et al (2015) The impact II, a very high‐resolution Quadrupole Time‐of‐Flight Instrument (QTOF) for deep shotgun proteomics. Mol. Cell. Proteomics, 14, 2014–2029. PubMed PMC
Boekema, E.J. , van Roon, H. , Calkoen, F. , Bassi, R. and Dekker, J.P. (1999a) Multiple types of association of photosystem II and its light‐harvesting antenna in partially solubilized photosystem II membranes. Biochemistry, 38, 2233–2239. PubMed
Boekema, E.J. , van Roon, H. , van Breemen, J.F.L. and Dekker, J.P. (1999b) Supramolecular organization of photosystem II and its light‐harvesting antenna in partially solubilized photosystem II membranes. Eur. J. Biochem. 266, 444–452. PubMed
Boekema, E.J. , Folea, M. and Kouřil, R. (2009) Single particle electron microscopy. Photosynth. Res. 102, 189–196. PubMed PMC
Caffarri, S. , Kouřil, R. , Kereiche, S. , Boekema, E.J. and Croce, R. (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 28, 3052–3063. PubMed PMC
Caffarri, S. , Croce, R. , Cattivelli, L. and Bassi, R. (2004) A look within LHCII: Differential analysis of the Lhcbl‐3 complexes building the major trimeric antenna complex of higher‐plant photosynthesis. Biochemistry, 43, 9467–9476. PubMed
Cox, J. , Neuhauser, N. , Michalski, A. , Scheltema, R.A. , Olsen, J.V. and Mann, M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805. PubMed
Crepin, A. and Caffarri, S. (2018) Functions and evolution of Lhcb isoforms composing LHCII, the major light harvesting complex of photosystem II of green eukaryotic organisms. Curr. Protein Pept. Sci. 19, 699–713. PubMed
Daum, B. , Nicastro, D. , Austin, J. , McIntosh, J. and Kühlbrandt, W. (2010) Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell, 22, 1299–1312. PubMed PMC
de Bianchi, S. , Dall'Osto, L. , Tognon, G. , Morosinotto, T. and Bassi, R. (2008) Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell, 20, 1012–1028. PubMed PMC
DeLano, W.L . (2002) The PyMOL Molecular Graphics System. San Carlos, CA: DeLano Scientific.
de Bianchi, S. , Betterle, N. , Kouřil, R. , Cazzaniga, S. , Boekema, E. , Bassi, R. and Dall'Osto, L. (2011) Arabidopsis mutants deleted in the light‐harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. Plant Cell, 23, 2659–2679. PubMed PMC
de la Rosa‐Trevín, J.M. , Quintana, A. , Del Cano, L. et al (2016) Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. J. Struct. Biol. 195, 93–99. PubMed
Dekker, J.P. and Boekema, E.J. (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta, 1706, 12–39. PubMed
Drop, B. , Webber‐Birungi, M. , Yadav, S.K. , Filipowicz‐Szymanska, A. , Fusetti, F. , Boekema, E.J. and Croce, R. (2014) Light‐harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii . Biochim. Biophys. Acta‐Bioenergetics, 1837, 63–72. PubMed
Franc, V. , Šebela, M. , Řehulka, P. , Končitíková, R. , Lenobel, R. , Madzak, C. and Kopečný, D. (2012) Analysis of N‐glycosylation in maize cytokinin oxidase/dehydrogenase 1 using a manual microgradient chromatographic separation coupled offline to MALDI‐TOF/TOF mass spectrometry. J. Proteomics, 75, 4027–4037. PubMed
Grebe, S. , Trotta, A. , Bajwa, A.A. , Suorsa, M. , Gollan, P.J. , Jansson, S. , Tikkanen, M. and Aro, E.M. (2019) The unique photosynthetic apparatus of Pinaceae: analysis of photosynthetic complexes in Picea abies . J. Exp. Bot. 70, 3211–3225. PubMed PMC
Jansson, S. (1994) The light–harvesting chlorophyll a/b binding‐proteins. Biochim. Biophys. Acta, 1184, 1–19. PubMed
Kawakami, K. , Tokutsu, R. , Kim, E. and Minagawa, J. (2019) Four distinct trimeric forms of light‐harvesting complex II isolated from the green alga Chlamydomonas reinhardtii . Photosynth. Res. 142, 195–201. PubMed
Kirchhoff, H. (2013) Architectural switches in plant thylakoid membranes. Photosynth. Res. 116, 481–487. PubMed
Kirchhoff, H. , Tremmel, I. , Haase, W. and Kubitscheck, U. (2004) Supramolecular photosystem II organization in grana thylakoid membranes: evidence for a structured arrangement. Biochemistry, 43, 9204–9213. PubMed
Kirchhoff, H. , Lenhert, S. , Büchel, C. , Chi, L. and Nield, J. (2008) Probing the organization of photosystem II in photosynthetic membranes by atomic force microscopy. Biochemistry, 47, 431–440. PubMed
Kouřil, R. , Dekker, J.P. and Boekema, E.J. (2012) Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta‐Bioenergetics, 1817, 2–12. PubMed
Kouřil, R. , Wientjes, E. , Bultema, J.B. , Croce, R. and Boekema, E.J. (2013) High‐light vs. low‐light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana . Biochim. Biophys. Acta‐Bioenergetics, 1827, 411–419. PubMed
Kouřil, R. , Strouhal, O. , Nosek, L. , Lenobel, R. , Chamrád, I. , Boekema, E.J. , Šebela, M. and Ilík, P. (2014) Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. Plant J. 77, 568–576. PubMed
Kouřil, R. , Nosek, L. , Bartoš, J. , Boekema, E.J. and Ilík, P. (2016) Evolutionary loss of light‐harvesting proteins Lhcb6 and Lhcb3 in major land plant groups ‐ break‐up of current dogma. New Phytol. 210, 808–814. PubMed
Kouřil, R. , Nosek, L. , Semchonok, D. , Boekema, E.J. and Ilík, P. (2018) Organization of plant photosystem II and photosystem I supercomplexes. Subcell. Biochem. 87, 259–286. PubMed
Kovács, L. , Damkjær, J. , Kereïche, S. , Ilioaia, C. , Ruban, A.V. , Boekema, E.J. , Jansson, S. and Horton, P. (2006) Lack of the light‐harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell, 18, 3106–3120. PubMed PMC
Kurasová, I. , Kalina, J. , Urban, O. , Štroch, M. and Špunda, V. (2003) Acclimation of two distinct plant species, spring barley and Norway spruce, to combined effect of various irradiance and CO2 concentration during cultivation in controlled environment. Photosynthetica, 41, 513–523.
León, I.R. , Schwämmle, V. , Jensen, O.N. and Sprenger, R.R. (2013) Quantitative assessment of in‐solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Mol. Cell. Proteomics, 12, 2992–3005. PubMed PMC
Morosinotto, T. , Bassi, R. , Frigerio, S. , Finazzi, G. , Morris, E. and Barber, J. (2006) Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I‐less mutant of barely. Consequences of a chronic over‐reduction of the plastoquinone pool. FEBS J. 273, 4616–4630. PubMed
Nosek, L. , Semchonok, D. , Boekema, E.J. , Ilík, P. and Kouřil, R. (2017) Structural variability of plant photosystem II megacomplexes in thylakoid membranes. Plant J. 89, 104–111. PubMed
Oostergetel, G.T. , Keegstra, W. and Brisson, A. (1998) Automation of specimen selection and data acquisition for protein electron crystallography. Ultramicroscopy, 74, 47–59.
Perez‐Riverol, Y. , Csordas, A. , Bai, J. et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450. PubMed PMC
Scheres, S.H. (2012) RELION: implementation of a Bayesian approach to cryo‐EM structure determination. J. Struct. Biol. 180, 519–530. PubMed PMC
Schwanhäusser, B. , Busse, D. , Li, N. , Dittmar, G. , Schuchhardt, J. , Wolf, J. , Chen, W. and Selbach, M. (2011) Global quantification of mammalian gene expression control. Nature, 473, 337–342. PubMed
Shen, L. , Huang, Z. , Chang, S. , Wang, W. , Wang, J. , Kuang, T. , Han, G. , Shen, J.R. and Zhang, X. (2019) Structure of a C2S2M2N2‐type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii . Proc. Natl. Acad. Sci. USA, 116, 21246–21255. PubMed PMC
Sheng, X. , Watanabe, A. , Li, A. , Kim, E. , Song, C. , Murata, K. , Song, D. , Minagawa, J. and Liu, Z. (2019) Structural insight into light harvesting for photosystem II in green algae. Nat. Plants, 5, 1320–1330. PubMed
Simerský, R. , Chamrád, I. , Kania, J. , Strnad, M. , Šebela, M. and Lenobel, R. (2017) Chemical proteomic analysis of 6‐benzylaminopurine molecular partners in wheat grains. Plant Cell Rep. 36, 1561–1570. PubMed
Štroch, M. , Kuldová, K. , Kalina, J. and Špunda, V. (2008) Dynamics of the xanthophyll cycle and non‐radiative dissipation of absorbed light energy during exposure of Norway spruce to high irradiance. J. Plant Physiol. 165, 612–622. PubMed
Su, X. , Ma, J. , Wei, X. , Cao, P. , Zhu, D. , Chang, W. , Liu, Z. , Zhang, X. and Li, M. (2017) Structure and assembly mechanism of plant C2S2M2‐type PSII‐LHCII supercomplex. Science, 357, 815–820. PubMed
Tokutsu, R. , Kato, N. , Bui, K.H. , Ishikawa, T. and Minagawa, J. (2012) Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii . J. Biol. Chem. 287, 31574–31581. PubMed PMC
Tyanova, S. , Temu, T. and Cox, J. (2016) The MaxQuant computational platform for mass spectrometry‐based shotgun proteomics. Nat. Protoc. 11, 2301–2319. PubMed
van Bezouwen, L.S. , Caffarri, S. , Kale, R.S. , Kouřil, R. , Thunnissen, A.M.W.H. , Oostergetel, G.T. and Boekema, E.J. (2017) Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat. Plants, 3, 17080. PubMed
van Eerden, F.J. , Melo, M.N. , Frederix, P.W.J.M. , Periole, X. and Marrink, S.J. (2017) Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nat. Commun. 8, 15214. PubMed PMC
Verhoeven, A. (2014) Sustained energy dissipation in winter evergreens. New Phytol. 201, 57–65.
Wei, X. , Su, X. , Cao, P. , Liu, X. , Chang, W. , Li, M. , Zhang, X. and Liu, Z. (2016) Structure of spinach photosystem II‐LHCII supercomplex at 3.2Å resolution. Nature, 534, 69–74. PubMed
A kaleidoscope of photosynthetic antenna proteins and their emerging roles
Light quality, oxygenic photosynthesis and more