Cryo-EM structure of photosystem II supercomplex from a green microalga with extreme phototolerance
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
41513636
PubMed Central
PMC12789144
DOI
10.1038/s41467-025-65861-2
PII: 10.1038/s41467-025-65861-2
Knihovny.cz E-zdroje
- MeSH
- Chlorella * metabolismus účinky záření fyziologie MeSH
- elektronová kryomikroskopie MeSH
- fotosyntéza MeSH
- fotosystém II (proteinový komplex) * metabolismus ultrastruktura chemie MeSH
- mikrořasy * metabolismus MeSH
- molekulární modely MeSH
- světlo MeSH
- světlosběrné proteinové komplexy metabolismus ultrastruktura chemie MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosystém II (proteinový komplex) * MeSH
- světlosběrné proteinové komplexy MeSH
Photosystem II (PSII) is essential for energy conversion during oxygenic photosynthesis in plants and algae. Chlorella ohadii, one of the fastest multiplying green algae, thrives under the harsh desert sun but lacks the standard PSII photoprotective mechanisms involving LhcSR/PsbS proteins or protein phosphorylation. Here, we present the cryo-EM structure of the PSII supercomplex from C. ohadii at 2.9 Å resolution, which is used to determine whether the exceptional resistance to desert conditions has a structural basis in PSII. The structure reveals a distinct PsbO isoform and additional subunits, PsbR and PsbY, which enhance core complex stability through extensive interactions. Furthermore, the trimeric light-harvesting complexes (LHCII) are bound to the PSII core by specific light-harvesting proteins whose down-regulation in response to high-light conditions implies a reduction in the number of bound LHCII trimers. These structural modifications, together with the high accumulation of specific polyamines in the thylakoid membrane, play a key role in maintaining PSII stability and photoprotection, allowing C. ohadii to survive in extreme conditions.
Central European Institute of Technology Masaryk University Kamenice 735 5 Brno Czech Republic
Czech Agrifood Research Center Šlechtitelů 29 Olomouc Czech Republic
Department of Biophysics Faculty of Science Palacký University Šlechtitelů 27 Olomouc Czech Republic
Zobrazit více v PubMed
Sahoo, D. & Seckbach, J. (Joseph).
Treves, H. et al. A newly isolated PubMed DOI
Treves, H. et al. The mechanisms whereby the green alga PubMed DOI
Niyogi, K. K., Li, X. P., Rosenberg, V. & Jung, H. S. Is PsbS the site of non-photochemical quenching in photosynthesis? PubMed DOI
Peers, G. et al. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. PubMed DOI
Levin, G. et al. A desert PubMed DOI
Levin, G. et al. The protein phosphorylation landscape in photosystem I of the desert algae PubMed DOI
Levin, G. et al. Processes independent of nonphotochemical quenching protect a high-light-tolerant desert alga from oxidative stress. PubMed DOI PMC
Dekker, J. P. & Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. PubMed
Blankenship, R. E. et al.
Van Amerongen, H. & Croce, R. Light harvesting in photosystem II. PubMed DOI PMC
Cao, P. et al. Structure, assembly and energy transfer of plant photosystem II supercomplex. PubMed DOI
Tandeau De Marsac, N. Phycobiliproteins and phycobilisomes: the early observations. PubMed DOI
Jansson, S., Stefansson, H., Nystrom, U., Gustafsson, P. & Albertsson, P. A. Antenna protein composition of PSI and PSII in thylakoid sub-domains. DOI
Jansson, S. A guide to the Lhc genes and their relatives in Arabidopsis. PubMed DOI
Sheng, X. et al. Structural insight into light harvesting for photosystem II in green algae. PubMed DOI
Shen, L. et al. Structure of a C2S2M2N2-type PSII–LHCII supercomplex from the green alga PubMed DOI PMC
Drop, B. et al. Light-harvesting complex II (LHCII) and its supramolecular organization in PubMed
Tokutsu, R., Kato, N., Bui, K. H., Ishikawa, T. & Minagawa, J. Revisiting the supramolecular organization of photosystem II in PubMed DOI PMC
Kouřil, R., Nosek, L., Bartoš, J., Boekema, E. J. & Ilík, P. Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups – break-up of current dogma. PubMed DOI
Kouřil, R. et al. Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. PubMed DOI PMC
Opatíková, M. et al. Cryo-EM structure of a plant photosystem II supercomplex with light-harvesting protein Lhcb8 and α-tocopherol. PubMed DOI
Wei, X. et al. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. PubMed DOI
Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. PubMed DOI
Van Bezouwen, L. S. et al. Subunit and chlorophyll organization of the plant photosystem II supercomplex. PubMed DOI
Zhang, Y. Z. et al. Structure of PubMed PMC
Pi, X. et al. The pigment-protein network of a diatom photosystem II–light-harvesting antenna supercomplex. PubMed DOI
Arshad, R., Calvaruso, C., Boekema, E. J., Büchel, C. & Kouřil, R. Revealing the architecture of the photosynthetic apparatus in the diatom PubMed PMC
Nagao, R. et al. Structural basis for energy harvesting and dissipation in a diatom PSII–FCPII supercomplex. PubMed DOI
Nagao, R. et al. Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex. PubMed DOI PMC
Zhao, S. et al. Structural insights into photosystem II supercomplex and trimeric FCP antennae of a centric diatom PubMed DOI PMC
Feng, Y. et al. Structure of a diatom photosystem II supercomplex containing a member of Lhcx family and dimeric FCPII. PubMed DOI PMC
Mao, Z. et al. Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga PubMed PMC
La Rocca, R. et al. Structure of a photosystem II-FCPII supercomplex from a haptophyte reveals a distinct antenna organization. PubMed DOI PMC
Caspy, I., Fadeeva, M., Mazor, Y. & Nelson, N. Structure of PubMed DOI PMC
Fadeeva, M., Klaiman, D., Caspy, I. & Nelson, N. Structure of PubMed DOI PMC
Shan, J., Niedzwiedzki, D. M., Tomar, R. S., Liu, Z. & Liu, H. Architecture and functional regulation of a plant PSII-LHCII megacomplex. PubMed DOI PMC
Graça, A. T., Hall, M., Persson, K. & Schröder, W. P. High-resolution model of Arabidopsis Photosystem II reveals the structural consequences of digitonin-extraction. PubMed DOI PMC
Lundin, B. et al. Towards understanding the functional difference between the two PsbO isoforms in PubMed DOI
Spetea, C. & Lundin, B. Evidence for nucleotide-dependent processes in the thylakoid lumen of plant chloroplasts - An update. PubMed DOI
De Las Rivas, J. & Barber, J. Analysis of the structure of the PsbO protein and its implications. PubMed DOI
Brown, T. J., Vass, I., Summerfield, T. C. & Eaton-Rye, J. J. Phe265 of the D1 protein is required to stabilize plastoquinone binding in the QB-binding site of photosystem II in PubMed DOI
Nakajima, Y. et al. Crystal structures of photosystem II from a cyanobacterium expressing psbA2 in comparison to psbA3 reveal differences in the D1 subunit. PubMed DOI PMC
Guskov, A. et al. Cyanobacterial photosystem II at 2.9 Å resolution and the role of quinones, lipids, channels and chloride. PubMed DOI
Saito, K., Rutherford, A. W. & Ishikita, H. Mechanism of proton-coupled quinone reduction in Photosystem II. PubMed DOI PMC
Ljungberg, U., Åkerlung, H. E., Larsson, C. & Andersson, B. Identification of polypeptides associated with the 23 and 33 kDa proteins of photosynthetic oxygen evolution. DOI
Ido, K. et al. Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex. PubMed DOI PMC
Suorsa, M. et al. PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. PubMed DOI
Roose, J. L., Wegener, K. M. & Pakrasi, H. B. The extrinsic proteins of Photosystem II. PubMed DOI
Roose, J. L., Frankel, L. K., Mummadisetti, M. P. & Bricker, T. M. The extrinsic proteins of photosystem II: update. PubMed DOI
Albanese, P. et al. Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. PubMed DOI PMC
Bricker, T. M., Roose, J. L., Fagerlund, R. D., Frankel, L. K. & Eaton-Rye, J. J. The extrinsic proteins of Photosystem II. PubMed
Zouni, A. et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. PubMed DOI
Caffarri, S., Croce, R., Breton, J. & Bassi, R. The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. PubMed DOI
Minagawa, J. & Takahashi, Y. Structure, function and assembly of Photosystem II and its light-harvesting proteins. PubMed DOI
Damkjaer, J. T. et al. The Photosystem I. I. light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. PubMed DOI PMC
Ilikova, I. et al. Towards spruce-type photosystem II: consequences of the loss of light-harvesting proteins LHCB3 and LHCB6 in Arabidopsis. PubMed DOI PMC
Morosinotto, T. et al. Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barley: Consequences of a chronic over-reduction of the plastoquinone pool. PubMed DOI
Kouřil, R., Wientjes, E., Bultema, J. B., Croce, R. & Boekema, E. J. High-light vs. low-light: Effect of light acclimation on photosystem II composition and organization in PubMed DOI
Polukhina, I., Fristedt, R., Dinc, E., Cardol, P. & Croce, R. Carbon supply and photoacclimation cross talk in the green alga PubMed DOI PMC
Bonente, G., Pippa, S., Castellano, S., Bassi, R. & Ballottari, M. Acclimation of PubMed DOI PMC
Levin, G. et al. The desert green algae PubMed DOI
Novoderezhkin, V., Marin, A. & Van Grondelle, R. Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield-Förster picture. PubMed DOI
Remelli, R., Varotto, C., Sandonà, D., Croce, R. & Bassi, R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. PubMed DOI
Georgakopoulou, S. et al. Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. PubMed DOI
Kwa, S. L. S. et al. Ultrafast energy transfer in LHC-II trimers from the Chl a/b light-harvesting antenna of Photosystem II. DOI
Croce, R., Müller, M. G., Bassi, R. & Holzwarth, A. R. Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. femtosecond transient absorption measurements. PubMed DOI PMC
Elias, E., Hu, C. & Croce, R. Inter-protein energy transfer dynamics in the PSII antenna. DOI
Schlau-Cohen, G. S. et al. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. PubMed DOI
Li, D. H. et al. Excitation dynamics and relaxation in the major antenna of a marine green alga PubMed DOI
Akhtar, P. et al. Spectral tuning of light-harvesting complex II in the siphonous alga Bryopsis corticulans and its effect on energy transfer dynamics. PubMed
Mascoli, V. et al. Capturing the quenching mechanism of light-harvesting complexes of plants by zooming in on the ensemble. DOI
Croce, R. & van Amerongen, H. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. PubMed
Treves, H. et al. Metabolic flexibility underpins growth capabilities of the fastest growing alga. PubMed DOI
Liu, J. H., Wang, W., Wu, H., Gong, X. & Moriguchi, T. Polyamines function in stress tolerance: from synthesis to regulation. PubMed DOI PMC
Lin, H. Y. & Lin, H. J. Polyamines in microalgae: something borrowed, something new. PubMed DOI PMC
Navakoudis, E. & Kotzabasis, K. Polyamines: a bioenergetic smart switch for plant protection and development. PubMed DOI
Navakoudis, E., Vrentzou, K. & Kotzabasis, K. A polyamine- and LHCII protease activity-based mechanism regulates the plasticity and adaptation status of the photosynthetic apparatus. PubMed DOI
Hamdani, S., Yaakoubi, H. & Carpentier, R. Polyamines interaction with thylakoid proteins during stress. PubMed DOI
Ioannidis, N. E., Cruz, J. A., Kotzabasis, K. & Kramer, D. M. Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PubMed DOI PMC
Ioannidis, N. E. & Kotzabasis, K. Polyamines in chemiosmosis in vivo: a cunning mechanism for the regulation of ATP synthesis during growth and stress. PubMed DOI PMC
Passarini, F., Xu, P., Caffarri, S., Hille, J. & Croce, R. Towards in vivo mutation analysis: knock-out of specific chlorophylls bound to the light-harvesting complexes of PubMed DOI
Hu, C., Mascoli, V., Elias, E. & Croce, R. The photosynthetic apparatus of the CAM plant PubMed DOI
Elias, E., Liguori, N., Saga, Y., Schäfers, J. & Croce, R. Harvesting far-red light with plant antenna complexes incorporating chlorophyll d. PubMed DOI PMC
Weißenborn, J., Snellenburg, J., Weigand, S. & van Stokkum, I. H. M. Pyglotaran: a Python library for global and target analysis v0.7.1. PubMed
Snellenburg, J. J., Laptenok, S., Seger, R., Mullen, K. M. & van Stokkum, I. H. M. Glotaran: a java-Based Graphical User Interface for the R Package TIMP. DOI
van Stokkum, I. H. M., Weißenborn, J., Weigand, S. & Snellenburg, J. J. Pyglotaran: a lego-like python framework for global and target analysis of time-resolved spectra. PubMed DOI
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. PubMed DOI
Ćavar Zeljković, S. et al. Comprehensive LC-MS/MS analysis of nitrogen-related plant metabolites. PubMed DOI PMC
Punjani, A. Real-time cryo-EM structure determination. DOI
Pettersen, E. F. et al. UCSF Chimera - a visualization system for exploratory research and analysis. PubMed DOI
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. PubMed DOI
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. PubMed DOI