Cryo-EM structure of a plant photosystem II supercomplex with light-harvesting protein Lhcb8 and α-tocopherol
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/18_046/0015974
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
21-05497S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
RO0423
Ministerstvo Zemědělství (Ministry of Agriculture)
391498659
Deutsche Forschungsgemeinschaft (German Research Foundation)
RTG 2467
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
37550369
DOI
10.1038/s41477-023-01483-0
PII: 10.1038/s41477-023-01483-0
Knihovny.cz E-zdroje
- MeSH
- alfa-tokoferol * analýza metabolismus MeSH
- elektronová kryomikroskopie MeSH
- fotosyntéza MeSH
- fotosystém II - proteinový komplex * metabolismus MeSH
- rostliny metabolismus MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa-tokoferol * MeSH
- fotosystém II - proteinový komplex * MeSH
The heart of oxygenic photosynthesis is the water-splitting photosystem II (PSII), which forms supercomplexes with a variable amount of peripheral trimeric light-harvesting complexes (LHCII). Our knowledge of the structure of green plant PSII supercomplex is based on findings obtained from several representatives of green algae and flowering plants; however, data from a non-flowering plant are currently missing. Here we report a cryo-electron microscopy structure of PSII supercomplex from spruce, a representative of non-flowering land plants, at 2.8 Å resolution. Compared with flowering plants, PSII supercomplex in spruce contains an additional Ycf12 subunit, Lhcb4 protein is replaced by Lhcb8, and trimeric LHCII is present as a homotrimer of Lhcb1. Unexpectedly, we have found α-tocopherol (α-Toc)/α-tocopherolquinone (α-TQ) at the boundary between the LHCII trimer and the inner antenna CP43. The molecule of α-Toc/α-TQ is located close to chlorophyll a614 of one of the Lhcb1 proteins and its chromanol/quinone head is exposed to the thylakoid lumen. The position of α-Toc in PSII supercomplex makes it an ideal candidate for the sensor of excessive light, as α-Toc can be oxidized to α-TQ by high-light-induced singlet oxygen at low lumenal pH. The molecule of α-TQ appears to shift slightly into the PSII supercomplex, which could trigger important structure-functional modifications in PSII supercomplex. Inspection of the previously reported cryo-electron microscopy maps of PSII supercomplexes indicates that α-Toc/α-TQ can be present at the same site also in PSII supercomplexes from flowering plants, but its identification in the previous studies has been hindered by insufficient resolution.
Central European Institute of Technology Masaryk University Brno Czech Republic
Czech Advanced Technology and Research Institute Palacký University Olomouc Czech Republic
Department of Biophysics Faculty of Science Palacký University Olomouc Czech Republic
Department of Experimental Biology Faculty of Science Palacký University Olomouc Czech Republic
Institute of Chemical Biology National Hallenic Research Foundation Athens Greece
Zobrazit více v PubMed
Shen, L. et al. Structure of a C PubMed DOI PMC
Sheng, X. et al. Structural insight into light harvesting for photosystem II in green algae. Nat. Plants 5, 1320–1330 (2019). PubMed DOI
Wei, X. et al. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016). PubMed DOI
van Bezouwen, L. S. et al. Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat. Plants 3, 17080 (2017). PubMed DOI
Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII–LHCII supercomplex. Science 357, 815–820 (2017). PubMed DOI
Kamiya, N. & Shen, J.-R. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc. Natl Acad. Sci. USA 100, 98–103 (2003). PubMed DOI
Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004). PubMed DOI
Loll, B., Kern, J., Saenger, W., Zouni, A. & Biesiadka, J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438, 1040–1044 (2005). PubMed DOI
Minagawa, J. & Takahashi, Y. Structure, function and assembly of photosystem II and its light-harvesting proteins. Photosynth. Res. 82, 241–263 (2004). PubMed DOI
Jansson, S. The light-harvesting chlorophyll a/b-binding proteins. Biochim. Biophys. Acta 1184, 1–19 (1994). PubMed DOI
Kouřil, R., Nosek, L., Semchonok, D., Boekema, E. J. & Ilík, P. Organization of plant photosystem II and photosystem I supercomplexes. Subcell. Biochem. 87, 259–286 (2018). PubMed DOI
Cao, P., Pan, X., Su, X., Liu, Z. & Li, M. Assembly of eukaryotic photosystem II with diverse light-harvesting antennas. Curr. Opin. Struct. Biol. 63, 49–57 (2020). PubMed DOI
Croce, R. & van Amerongen, H. Light harvesting in oxygenic photosynthesis: structural biology meets spectroscopy. Science 369, eaay2058 (2020). PubMed DOI
Kouřil, R., Nosek, L., Bartoš, J., Boekema, E. J. & Ilík, P. Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups—break-up of current dogma. N. Phytol. 210, 808–814 (2016). DOI
Kouřil, R. et al. Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. Plant J. 104, 215–225 (2020). PubMed DOI PMC
Grebe, S. et al. The unique photosynthetic apparatus of Pinaceae: analysis of photosynthetic complexes in Picea abies. J. Exp. Bot. 70, 3211–3225 (2019). PubMed DOI PMC
Klimmek, F., Sjödin, A., Noutsos, C., Leister, D. & Jansson, S. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol. 140, 793–804 (2006). PubMed DOI PMC
Albanese, P. et al. Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Biochim. Biophys. Acta Bioenerg. 1857, 1651–1660 (2016). DOI
Grinzato, A. et al. High-light versus low-light: effects on paired photosystem II supercomplex structural rearrangement in pea plants. Int. J. Mol. Sci. 21, 8643 (2020). PubMed DOI PMC
Kashino, Y. et al. Ycf12 is a core subunit in the photosystem II complex. Biochim. Biophys. Acta 1767, 1269–1275 (2007). PubMed DOI
Crepin, A. & Caffarri, S. Functions and evolution of Lhcb isoforms composing LHCII, the major light harvesting complex of photosystem II of green eukaryotic organisms. Curr. Protein Pept. Sci. 19, 699–713 (2018). PubMed DOI
Guardini, Z., Gomez, R. L., Caferri, R., Dall’Osto, L. & Bassi, R. Loss of a single chlorophyll in CP29 triggers re-organization of the photosystem II supramolecular assembly. Biochim. Biophys. Acta Bioenerg. 1863, 148555 (2022). PubMed DOI
Kruk, J. & Srzałka, K. Occurrence and function of alpha-tocopherol quinone in plants. J. Plant Physiol. 145, 405–409 (1995). DOI
Kumar, A., Prasad, A. & Pospíšil, P. Formation of α-tocopherol hydroperoxide and α-tocopheroxyl radical: relevance for photooxidative stress in Arabidopsis. Sci. Rep. 10, 19646 (2020). PubMed DOI PMC
Graça, A. T., Hall, M., Persson, K. & Schröder, W. P. High-resolution model of Arabidopsis photosystem II reveals the structural consequences of digitonin-extraction. Sci. Rep. 11, 15534 (2021). PubMed DOI PMC
Triantaphylides, C. & Havaux, M. Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci. 14, 219–228 (2009). PubMed DOI
Krieger-Liszkay, A. & Trebst, A. Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. J. Exp. Bot. 57, 1677–1684 (2006). PubMed DOI
Shi, L. X., Lorkovic, Z. J., Oelmuller, R. & Schroder, W. P. The low molecular mass PsbW protein is involved in the stabilization of the dimeric photosystem II complex in Arabidopsis thaliana. J. Biol. Chem. 275, 37945–37950 (2000). PubMed DOI
Granvogl, B., Zoryan, M., Plöscher, M. & Eichacker, L. A. Localization of 13 one-helix integral membrane proteins in photosystem II subcomplexes. Anal. Biochem. 383, 279–288 (2008). PubMed DOI
Kruk, J., Schmid, G. H. & Strzałka, K. Interaction of α-tocopherol quinone, α-tocopherol and other prenyllipids with photosystem II. Plant Physiol. Biochem. 38, 271–277 (2000). DOI
Bielczynski, L. W., Xu, P. & Croce, R. PSII supercomplex disassembly is not needed for the induction of energy quenching (qE). Photosynth. Res. 152, 275–281 (2022). PubMed DOI PMC
Novoderezhkin, V., Marin, A. & van Grondelle, R. Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield–Förster picture. Phys. Chem. Chem. Phys. 13, 17093–17103 (2011). PubMed DOI
Papadatos, S., Charalambous, A. C. & Daskalakis, V. A pathway for protective quenching in antenna proteins of photosystem II. Sci. Rep. 7, 2523 (2017). PubMed DOI PMC
Hakala-Yatkin, M. et al. Magnetic field protects plants against high light by slowing down production of singlet oxygen. Physiol. Plant. 42, 26–34 (2011). DOI
Niewiadomska, E. et al. Lack of tocopherols influences the PSII antenna and the functioning of photosystems under low light. J. Plant Physiol. 223, 57–64 (2018). PubMed DOI
Dau, H. et al. Structural consequences of ammonia binding to the manganese center of the photosynthetic oxygen-evolving complex: an X-ray absorption spectroscopy study of isotropic and oriented photosystem II particles. Biochemistry 34, 5274–5287 (1995). PubMed DOI
Lichtenthaler, H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987). DOI
Caffari, S., Kouril, R., Kereiche, S., Boekema, E. J. & Croce, R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 28, 3052–3063 (2009). DOI
Sorzano, C. O. S. et al. A new algorithm for high-resolution reconstruction of single particles by electron microscopy. J. Struct. Biol. 204, 329–337 (2018). PubMed DOI
Zheng, A. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 4, 331–332 (2017). DOI
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). PubMed DOI PMC
de la Rosa Tevín, J. M. et al. Xmipp 3.0: an improved software suite for image processing in electron microscopy. J. Struct. Biol. 184, 321–328 (2013). DOI
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). PubMed DOI
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). PubMed DOI PMC
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed DOI
DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, 2002).
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011). PubMed DOI PMC
Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D 60, 2256–2268 (2004). PubMed DOI
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007). PubMed DOI
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009). PubMed DOI