Formation of α-tocopherol hydroperoxide and α-tocopheroxyl radical: relevance for photooxidative stress in Arabidopsis

. 2020 Nov 12 ; 10 (1) : 19646. [epub] 20201112

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33184329
Odkazy

PubMed 33184329
PubMed Central PMC7665033
DOI 10.1038/s41598-020-75634-0
PII: 10.1038/s41598-020-75634-0
Knihovny.cz E-zdroje

Tocopherols, lipid-soluble antioxidants play a crucial role in the antioxidant defense system in higher plants. The antioxidant function of α-tocopherol has been widely studied; however, experimental data on the formation of its oxidation products is missing. In this study, we attempt to provide spectroscopic evidence on the detection of oxidation products of α-tocopherol formed by its interaction with singlet oxygen and lipid peroxyl radical. Singlet oxygen was formed using photosensitizer rose bengal and thylakoid membranes isolated from Arabidopsis thaliana. Singlet oxygen reacts with polyunsaturated fatty acid forming lipid hydroperoxide which is oxidized by ferric iron to lipid peroxyl radical. The addition of singlet oxygen to double bond carbon on the chromanol head of α-tocopherol forms α-tocopherol hydroperoxide detected using fluorescent probe swallow-tailed perylene derivative. The decomposition of α-tocopherol hydroperoxide forms α-tocopherol quinone. The hydrogen abstraction from α-tocopherol by lipid peroxyl radical forms α-tocopheroxyl radical detected by electron paramagnetic resonance. Quantification of lipid and protein hydroperoxide from the wild type and tocopherol deficient (vte1) mutant Arabidopsis leaves using a colorimetric ferrous oxidation-xylenol orange assay reveals that α-tocopherol prevents formation of both lipid and protein hydroperoxides at high light. Identification of oxidation products of α-tocopherol might contribute to a better understanding of the protective role of α-tocopherol in the prevention of oxidative damage in higher plants at high light.

Zobrazit více v PubMed

Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 2008;98:551–564. doi: 10.1007/s11120-008-9349-3. PubMed DOI

Telfer A. Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of beta-carotene. Plant Cell. Physiol. 2014;55:1216–1223. doi: 10.1093/pcp/pcu040. PubMed DOI PMC

Triantaphylides C, Havaux M. Singlet oxygen in plants: production, detoxification and signaling. Trends Plant. Sci. 2009;14:219–228. doi: 10.1016/j.tplants.2009.01.008. PubMed DOI

Fischer BB, Hideg E, Krieger-Liszkay A. Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid. Redox Signal. 2013;18:2145–2162. doi: 10.1089/ars.2012.5124. PubMed DOI

Pospíšil P. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta. 2012;1817:218–231. doi: 10.1016/j.bbabio.2011.05.017. PubMed DOI

Kruk J, Hollander-Czytko H, Oettmeier W, Trebst A. Tocopherol as singlet oxygen scavenger in photosystem II. J. Plant Physiol. 2005;162:749–757. doi: 10.1016/j.jplph.2005.04.020. PubMed DOI

Munne-Bosch S, Alegre L. The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci. 2002;21:31–57. doi: 10.1016/S0735-2689(02)80037-5. DOI

DellaPenna D. A decade of progress in understanding vitamin E synthesis in plants. J. Plant Physiol. 2005;162:729–737. doi: 10.1016/j.jplph.2005.04.004. PubMed DOI

Falk J, Munne-Bosch S. Tocochromanol functions in plants: antioxidation and beyond. J. Exp. Bot. 2010;61:1549–1566. doi: 10.1093/jxb/erq030. PubMed DOI

Krieger-Liszkay A, Trebst A. Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. J.Exp. Bot. 2006;57:1677–1684. doi: 10.1093/jxb/erl002. PubMed DOI

Foote CS, Chang YC, Denny RW. Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J. Am. Chem. Soc. 1970;92:5216–5218. doi: 10.1021/ja00720a036. PubMed DOI

Fahrenholtz SR, Doleiden FH, Trozzolo AM, Lamola AA. On the quenching of singlet oxygen by alpha-tocopherol. Photochem. Photobiol. 1974;20:505–509. doi: 10.1111/j.1751-1097.1974.tb06610.x. PubMed DOI

Kruk J, Strzałka K. Occurrence and function of α-tocopherol quinone in plants. J. Plant Physiol. 1995;145:405–409. doi: 10.1016/S0176-1617(11)81762-1. DOI

Kobayashi N, DellaPenna D. Tocopherol metabolism, oxidation and recycling under high light stress in Arabidopsis. Plant J. 2008;55:607–618. doi: 10.1111/j.1365-313X.2008.03539.x. PubMed DOI

Neely WC, Martin JM, Barker SA. Products and relative reaction rates of the oxidation of tocopherols with singlet molecular oxygen. Photochem. Photobiol. 1988;48:423–428. doi: 10.1111/j.1751-1097.1988.tb02840.x. PubMed DOI

Kaiser S, Di Mascio P, Murphy ME, Sies H. Physical and chemical scavenging of singlet molecular oxygen by tocopherols. Arch. Biochem. Biophys. 1990;277:101–108. doi: 10.1016/0003-9861(90)90556-E. PubMed DOI

Yamauchi R, Matsushita S. Light-induced lipid peroxidation in isolated chloroplasts and role of α-tocopherol. Agric. Biol. Chem. 1979;43:2157–2161. doi: 10.1080/00021369.1979.10863773. DOI

Kruk J, Szymanska R, Krupinska K. Tocopherol quinone content of green algae and higher plants revised by a new high-sensitive fluorescence detection method using HPLC–effects of high light stress and senescence. J. Plant Physiol. 2008;165:1238–1247. doi: 10.1016/j.jplph.2008.03.006. PubMed DOI

Spicher L, Kessler F. Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism. Curr. Opin. Plant Biol. 2015;25:123–129. doi: 10.1016/j.pbi.2015.05.005. PubMed DOI

Munné-Bosch S, Alegre L. The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci. 2002;21:31–57. doi: 10.1016/S0735-2689(02)80037-5. DOI

Smirnoff N. Tocochromanols: rancid lipids, seed longevity, and beyond. Proc. Natl. Acad. Sci. USA. 2010;107:17857–17858. doi: 10.1073/pnas.1012749107. PubMed DOI PMC

Mehlhorn RJ, Fuchs J, Sumida S, Packer L. Preparation of tocopheroxyl radicals for detection by electron spin resonance. Methods Enzymol. 1990;186:197–205. doi: 10.1016/0076-6879(90)86109-9. PubMed DOI

Witting PK, Upston JM, Stocker R. Role of alpha-tocopheroxyl radical in the initiation of lipid peroxidation in human low-density lipoprotein exposed to horse radish peroxidase. Biochemistry. 1997;36:1251–1258. doi: 10.1021/bi962493j. PubMed DOI

Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. USA. 2002;99:12495–12500. doi: 10.1073/pnas.182330899. PubMed DOI PMC

Casazza AP, Tarantino D, Soave C. Preparation and functional characterization of thylakoids from Arabidopsis thaliana. Photosynth. Res. 2001;68:175–180. doi: 10.1023/A:1011818021875. PubMed DOI

Arnon DI. Copper enzymes in isolated chloroplasts, polyphenoloxidase in beta vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1. PubMed DOI PMC

Nowicka B, Kruk J. Plastoquinol is more active than alpha-tocopherol in singlet oxygen scavenging during high light stress of Chlamydomonas reinhardtii. Biochim. Biophys. Acta. 2012;1817:389–394. doi: 10.1016/j.bbabio.2011.12.002. PubMed DOI

Giusepponi D, et al. LC-MS/MS assay for the simultaneous determination of tocopherols, polyunsaturated fatty acids and their metabolites in human plasma and serum. Free Radic. Biol. Med. 2019;144:134–143. doi: 10.1016/j.freeradbiomed.2019.04.017. PubMed DOI

Soh N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 2006;386:532–543. doi: 10.1007/s00216-006-0366-9. PubMed DOI

Soh N, et al. Swallow-tailed perylene derivative: a new tool for fluorescent imaging of lipid hydroperoxides. Org. Biomol. Chem. 2007;5:3762–3768. doi: 10.1039/b713223a. PubMed DOI

Grintzalis K, Zisimopoulos D, Grune T, Weber D, Georgiou CD. Method for the simultaneous determination of free/protein malondialdehyde and lipid/protein hydroperoxides. Free. Radic. Biol. Med. 2013;59:27–35. doi: 10.1016/j.freeradbiomed.2012.09.038. PubMed DOI

Liebler DC, Kaysen KL, Kennedy TA. Redox cycles of vitamin E: hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxy)tocopherones. Biochemistry. 1989;28:9772–9777. doi: 10.1021/bi00451a034. PubMed DOI

Schneider C. Chemistry and biology of vitamin E. Mol. Nutr. Food Res. 2005;49:7–30. doi: 10.1002/mnfr.200400049. PubMed DOI

Atkinson J, Epand RF, Epand RM. Tocopherols and tocotrienols in membranes: a critical review. Free Radic. Biol. Med. 2008;44:739–764. doi: 10.1016/j.freeradbiomed.2007.11.010. PubMed DOI

Liebler DC, Burr JA, Philips L, Ham AJ. Gas chromatography–mass spectrometry analysis of vitamin E and its oxidation products. Anal. Biochem. 1996;236:27–34. doi: 10.1006/abio.1996.0127. PubMed DOI

Yamauchi R, Matsushita S. Products formed by photosensitized oxidation of tocopherols. Agric. Biol. Chem. 1979;43:2151–2156. doi: 10.1080/00021369.1979.10863772. DOI

Yamauchi R, Kato K, Ueno Y. Reaction of 8a-hydroperoxy tocopherones with ascorbic-acid. Agric. Biol. Chem. 1981;45:2855–2861. doi: 10.1080/00021369.1981.10864969. DOI

Burton GW, Ingold KU. Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc. Chem. Res. 1986;19:194–201. doi: 10.1021/ar00127a001. DOI

Burton GW, Ingold KU. Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. Chem. Soc. 1981;103:6472–6477. doi: 10.1021/ja00411a035. DOI

Burton GW, et al. Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J. Am. Chem. Soc. 1985;107:7053–7065. doi: 10.1021/ja00310a049. DOI

Yamauchi R, Matsui T, Satake Y, Kato K, Ueno Y. Reaction products of alpha-tocopherol with a free radical initiator, 2,2′-Azobis(2,4-dimethylvaleronitrile) Lipids. 1989;24:204–209. doi: 10.1007/bf02535235. PubMed DOI

Niki E, Tsuchiya J, Tanimura R, Kamiya Y. Regeneration of vitamin-E from alpha-chromanoxyl radical by glutathione and vitamin-C. Chem. Lett. 1982 doi: 10.1246/cl.1982.789. DOI

Chan AC, Tran K, Raynor T, Ganz PR, Chow CK. Regeneration of vitamin E in human platelets. J. Biol. Chem. 1991;266:17290–17295. PubMed

Mukai K, Nishimura M, Kikuchi S. Stopped-flow investigation of the reaction of vitamin C with tocopheroxyl radical in aqueous triton X-100 micellar solutions. The structure-activity relationship of the regeneration reaction of tocopherol by vitamin C. J. Biol. Chem. 1991;266:274–278. PubMed

Kamal-Eldin A, Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31:671–701. doi: 10.1007/BF02522884. PubMed DOI

Han D, Yi OS, Shin HK. Solubilization of vitamin C in fish oil and synergistic effect with vitamin E in retarding oxidation. J. Am. Oil Chem. Soc. 1991;68:740–743. doi: 10.1007/BF02662163. DOI

Munne-Bosch S, Queval G, Foyer CH. The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol. 2013;161:5–19. doi: 10.1104/pp.112.205690. PubMed DOI PMC

Kornbrust DJ, Mavis RD. Relative susceptibility of microsomes from lung, heart, liver, kidney, brain and testes to lipid peroxidation: correlation with vitamin E content. Lipids. 1980;15:315–322. doi: 10.1007/BF02533546. PubMed DOI

Sevanian A, Hacker AD, Elsayed N. Influence of vitamin E and nitrogen dioxide on lipid peroxidation in rat lung and liver microsomes. Lipids. 1982;17:269–277. doi: 10.1007/BF02534941. PubMed DOI

Munné-Bosch S. The role of alpha-tocopherol in plant stress tolerance. J. Plant Physiol. 2005;162:743–748. doi: 10.1016/j.jplph.2005.04.022. PubMed DOI

Niki E, Traber MG. A history of vitamin E. Ann. Nutr. Metab. 2012;61:207–212. doi: 10.1159/000343106. PubMed DOI

Salem H. Oxidants, Antioxidants and Free Radicals. Boca Raton: CRC Press; 1997.

Trebst A, Depka B, Hollander-Czytko H. A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett. 2002;516:156–160. doi: 10.1016/s0014-5793(02)02526-7. PubMed DOI

Havaux M, Eymery F, Porfirova S, Rey P, Dormann P. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell. 2005;17:3451–3469. doi: 10.1105/tpc.105.037036. PubMed DOI PMC

Kumar, A. et al. Interplay between antioxidants in response to photooxidative stress in Arabidopsis. Free Radic. Biol. Med.160, 894–907. 10.1016/j.freeradbiomed.2020.08.027 (2020). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cryo-EM structure of a plant photosystem II supercomplex with light-harvesting protein Lhcb8 and α-tocopherol

. 2023 Aug ; 9 (8) : 1359-1369. [epub] 20230807

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...