Formation of α-tocopherol hydroperoxide and α-tocopheroxyl radical: relevance for photooxidative stress in Arabidopsis
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33184329
PubMed Central
PMC7665033
DOI
10.1038/s41598-020-75634-0
PII: 10.1038/s41598-020-75634-0
Knihovny.cz E-resources
- MeSH
- alpha-Tocopherol chemistry metabolism MeSH
- Antioxidants chemistry metabolism MeSH
- Arabidopsis genetics growth & development metabolism radiation effects MeSH
- Lipid Peroxides chemistry metabolism MeSH
- Oxidation-Reduction MeSH
- Oxidative Stress * MeSH
- Hydrogen Peroxide chemistry metabolism MeSH
- Singlet Oxygen chemistry metabolism MeSH
- Light adverse effects MeSH
- Vitamin E chemistry metabolism MeSH
- Free Radicals chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- alpha-Tocopherol MeSH
- Antioxidants MeSH
- Lipid Peroxides MeSH
- Hydrogen Peroxide MeSH
- Singlet Oxygen MeSH
- tocopheroxy radical MeSH Browser
- Vitamin E MeSH
- Free Radicals MeSH
Tocopherols, lipid-soluble antioxidants play a crucial role in the antioxidant defense system in higher plants. The antioxidant function of α-tocopherol has been widely studied; however, experimental data on the formation of its oxidation products is missing. In this study, we attempt to provide spectroscopic evidence on the detection of oxidation products of α-tocopherol formed by its interaction with singlet oxygen and lipid peroxyl radical. Singlet oxygen was formed using photosensitizer rose bengal and thylakoid membranes isolated from Arabidopsis thaliana. Singlet oxygen reacts with polyunsaturated fatty acid forming lipid hydroperoxide which is oxidized by ferric iron to lipid peroxyl radical. The addition of singlet oxygen to double bond carbon on the chromanol head of α-tocopherol forms α-tocopherol hydroperoxide detected using fluorescent probe swallow-tailed perylene derivative. The decomposition of α-tocopherol hydroperoxide forms α-tocopherol quinone. The hydrogen abstraction from α-tocopherol by lipid peroxyl radical forms α-tocopheroxyl radical detected by electron paramagnetic resonance. Quantification of lipid and protein hydroperoxide from the wild type and tocopherol deficient (vte1) mutant Arabidopsis leaves using a colorimetric ferrous oxidation-xylenol orange assay reveals that α-tocopherol prevents formation of both lipid and protein hydroperoxides at high light. Identification of oxidation products of α-tocopherol might contribute to a better understanding of the protective role of α-tocopherol in the prevention of oxidative damage in higher plants at high light.
See more in PubMed
Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 2008;98:551–564. doi: 10.1007/s11120-008-9349-3. PubMed DOI
Telfer A. Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of beta-carotene. Plant Cell. Physiol. 2014;55:1216–1223. doi: 10.1093/pcp/pcu040. PubMed DOI PMC
Triantaphylides C, Havaux M. Singlet oxygen in plants: production, detoxification and signaling. Trends Plant. Sci. 2009;14:219–228. doi: 10.1016/j.tplants.2009.01.008. PubMed DOI
Fischer BB, Hideg E, Krieger-Liszkay A. Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid. Redox Signal. 2013;18:2145–2162. doi: 10.1089/ars.2012.5124. PubMed DOI
Pospíšil P. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta. 2012;1817:218–231. doi: 10.1016/j.bbabio.2011.05.017. PubMed DOI
Kruk J, Hollander-Czytko H, Oettmeier W, Trebst A. Tocopherol as singlet oxygen scavenger in photosystem II. J. Plant Physiol. 2005;162:749–757. doi: 10.1016/j.jplph.2005.04.020. PubMed DOI
Munne-Bosch S, Alegre L. The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci. 2002;21:31–57. doi: 10.1016/S0735-2689(02)80037-5. DOI
DellaPenna D. A decade of progress in understanding vitamin E synthesis in plants. J. Plant Physiol. 2005;162:729–737. doi: 10.1016/j.jplph.2005.04.004. PubMed DOI
Falk J, Munne-Bosch S. Tocochromanol functions in plants: antioxidation and beyond. J. Exp. Bot. 2010;61:1549–1566. doi: 10.1093/jxb/erq030. PubMed DOI
Krieger-Liszkay A, Trebst A. Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. J.Exp. Bot. 2006;57:1677–1684. doi: 10.1093/jxb/erl002. PubMed DOI
Foote CS, Chang YC, Denny RW. Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J. Am. Chem. Soc. 1970;92:5216–5218. doi: 10.1021/ja00720a036. PubMed DOI
Fahrenholtz SR, Doleiden FH, Trozzolo AM, Lamola AA. On the quenching of singlet oxygen by alpha-tocopherol. Photochem. Photobiol. 1974;20:505–509. doi: 10.1111/j.1751-1097.1974.tb06610.x. PubMed DOI
Kruk J, Strzałka K. Occurrence and function of α-tocopherol quinone in plants. J. Plant Physiol. 1995;145:405–409. doi: 10.1016/S0176-1617(11)81762-1. DOI
Kobayashi N, DellaPenna D. Tocopherol metabolism, oxidation and recycling under high light stress in Arabidopsis. Plant J. 2008;55:607–618. doi: 10.1111/j.1365-313X.2008.03539.x. PubMed DOI
Neely WC, Martin JM, Barker SA. Products and relative reaction rates of the oxidation of tocopherols with singlet molecular oxygen. Photochem. Photobiol. 1988;48:423–428. doi: 10.1111/j.1751-1097.1988.tb02840.x. PubMed DOI
Kaiser S, Di Mascio P, Murphy ME, Sies H. Physical and chemical scavenging of singlet molecular oxygen by tocopherols. Arch. Biochem. Biophys. 1990;277:101–108. doi: 10.1016/0003-9861(90)90556-E. PubMed DOI
Yamauchi R, Matsushita S. Light-induced lipid peroxidation in isolated chloroplasts and role of α-tocopherol. Agric. Biol. Chem. 1979;43:2157–2161. doi: 10.1080/00021369.1979.10863773. DOI
Kruk J, Szymanska R, Krupinska K. Tocopherol quinone content of green algae and higher plants revised by a new high-sensitive fluorescence detection method using HPLC–effects of high light stress and senescence. J. Plant Physiol. 2008;165:1238–1247. doi: 10.1016/j.jplph.2008.03.006. PubMed DOI
Spicher L, Kessler F. Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism. Curr. Opin. Plant Biol. 2015;25:123–129. doi: 10.1016/j.pbi.2015.05.005. PubMed DOI
Munné-Bosch S, Alegre L. The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci. 2002;21:31–57. doi: 10.1016/S0735-2689(02)80037-5. DOI
Smirnoff N. Tocochromanols: rancid lipids, seed longevity, and beyond. Proc. Natl. Acad. Sci. USA. 2010;107:17857–17858. doi: 10.1073/pnas.1012749107. PubMed DOI PMC
Mehlhorn RJ, Fuchs J, Sumida S, Packer L. Preparation of tocopheroxyl radicals for detection by electron spin resonance. Methods Enzymol. 1990;186:197–205. doi: 10.1016/0076-6879(90)86109-9. PubMed DOI
Witting PK, Upston JM, Stocker R. Role of alpha-tocopheroxyl radical in the initiation of lipid peroxidation in human low-density lipoprotein exposed to horse radish peroxidase. Biochemistry. 1997;36:1251–1258. doi: 10.1021/bi962493j. PubMed DOI
Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. USA. 2002;99:12495–12500. doi: 10.1073/pnas.182330899. PubMed DOI PMC
Casazza AP, Tarantino D, Soave C. Preparation and functional characterization of thylakoids from Arabidopsis thaliana. Photosynth. Res. 2001;68:175–180. doi: 10.1023/A:1011818021875. PubMed DOI
Arnon DI. Copper enzymes in isolated chloroplasts, polyphenoloxidase in beta vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1. PubMed DOI PMC
Nowicka B, Kruk J. Plastoquinol is more active than alpha-tocopherol in singlet oxygen scavenging during high light stress of Chlamydomonas reinhardtii. Biochim. Biophys. Acta. 2012;1817:389–394. doi: 10.1016/j.bbabio.2011.12.002. PubMed DOI
Giusepponi D, et al. LC-MS/MS assay for the simultaneous determination of tocopherols, polyunsaturated fatty acids and their metabolites in human plasma and serum. Free Radic. Biol. Med. 2019;144:134–143. doi: 10.1016/j.freeradbiomed.2019.04.017. PubMed DOI
Soh N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 2006;386:532–543. doi: 10.1007/s00216-006-0366-9. PubMed DOI
Soh N, et al. Swallow-tailed perylene derivative: a new tool for fluorescent imaging of lipid hydroperoxides. Org. Biomol. Chem. 2007;5:3762–3768. doi: 10.1039/b713223a. PubMed DOI
Grintzalis K, Zisimopoulos D, Grune T, Weber D, Georgiou CD. Method for the simultaneous determination of free/protein malondialdehyde and lipid/protein hydroperoxides. Free. Radic. Biol. Med. 2013;59:27–35. doi: 10.1016/j.freeradbiomed.2012.09.038. PubMed DOI
Liebler DC, Kaysen KL, Kennedy TA. Redox cycles of vitamin E: hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxy)tocopherones. Biochemistry. 1989;28:9772–9777. doi: 10.1021/bi00451a034. PubMed DOI
Schneider C. Chemistry and biology of vitamin E. Mol. Nutr. Food Res. 2005;49:7–30. doi: 10.1002/mnfr.200400049. PubMed DOI
Atkinson J, Epand RF, Epand RM. Tocopherols and tocotrienols in membranes: a critical review. Free Radic. Biol. Med. 2008;44:739–764. doi: 10.1016/j.freeradbiomed.2007.11.010. PubMed DOI
Liebler DC, Burr JA, Philips L, Ham AJ. Gas chromatography–mass spectrometry analysis of vitamin E and its oxidation products. Anal. Biochem. 1996;236:27–34. doi: 10.1006/abio.1996.0127. PubMed DOI
Yamauchi R, Matsushita S. Products formed by photosensitized oxidation of tocopherols. Agric. Biol. Chem. 1979;43:2151–2156. doi: 10.1080/00021369.1979.10863772. DOI
Yamauchi R, Kato K, Ueno Y. Reaction of 8a-hydroperoxy tocopherones with ascorbic-acid. Agric. Biol. Chem. 1981;45:2855–2861. doi: 10.1080/00021369.1981.10864969. DOI
Burton GW, Ingold KU. Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc. Chem. Res. 1986;19:194–201. doi: 10.1021/ar00127a001. DOI
Burton GW, Ingold KU. Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. Chem. Soc. 1981;103:6472–6477. doi: 10.1021/ja00411a035. DOI
Burton GW, et al. Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J. Am. Chem. Soc. 1985;107:7053–7065. doi: 10.1021/ja00310a049. DOI
Yamauchi R, Matsui T, Satake Y, Kato K, Ueno Y. Reaction products of alpha-tocopherol with a free radical initiator, 2,2′-Azobis(2,4-dimethylvaleronitrile) Lipids. 1989;24:204–209. doi: 10.1007/bf02535235. PubMed DOI
Niki E, Tsuchiya J, Tanimura R, Kamiya Y. Regeneration of vitamin-E from alpha-chromanoxyl radical by glutathione and vitamin-C. Chem. Lett. 1982 doi: 10.1246/cl.1982.789. DOI
Chan AC, Tran K, Raynor T, Ganz PR, Chow CK. Regeneration of vitamin E in human platelets. J. Biol. Chem. 1991;266:17290–17295. PubMed
Mukai K, Nishimura M, Kikuchi S. Stopped-flow investigation of the reaction of vitamin C with tocopheroxyl radical in aqueous triton X-100 micellar solutions. The structure-activity relationship of the regeneration reaction of tocopherol by vitamin C. J. Biol. Chem. 1991;266:274–278. PubMed
Kamal-Eldin A, Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31:671–701. doi: 10.1007/BF02522884. PubMed DOI
Han D, Yi OS, Shin HK. Solubilization of vitamin C in fish oil and synergistic effect with vitamin E in retarding oxidation. J. Am. Oil Chem. Soc. 1991;68:740–743. doi: 10.1007/BF02662163. DOI
Munne-Bosch S, Queval G, Foyer CH. The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol. 2013;161:5–19. doi: 10.1104/pp.112.205690. PubMed DOI PMC
Kornbrust DJ, Mavis RD. Relative susceptibility of microsomes from lung, heart, liver, kidney, brain and testes to lipid peroxidation: correlation with vitamin E content. Lipids. 1980;15:315–322. doi: 10.1007/BF02533546. PubMed DOI
Sevanian A, Hacker AD, Elsayed N. Influence of vitamin E and nitrogen dioxide on lipid peroxidation in rat lung and liver microsomes. Lipids. 1982;17:269–277. doi: 10.1007/BF02534941. PubMed DOI
Munné-Bosch S. The role of alpha-tocopherol in plant stress tolerance. J. Plant Physiol. 2005;162:743–748. doi: 10.1016/j.jplph.2005.04.022. PubMed DOI
Niki E, Traber MG. A history of vitamin E. Ann. Nutr. Metab. 2012;61:207–212. doi: 10.1159/000343106. PubMed DOI
Salem H. Oxidants, Antioxidants and Free Radicals. Boca Raton: CRC Press; 1997.
Trebst A, Depka B, Hollander-Czytko H. A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett. 2002;516:156–160. doi: 10.1016/s0014-5793(02)02526-7. PubMed DOI
Havaux M, Eymery F, Porfirova S, Rey P, Dormann P. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell. 2005;17:3451–3469. doi: 10.1105/tpc.105.037036. PubMed DOI PMC
Kumar, A. et al. Interplay between antioxidants in response to photooxidative stress in Arabidopsis. Free Radic. Biol. Med.160, 894–907. 10.1016/j.freeradbiomed.2020.08.027 (2020). PubMed