Light quality, oxygenic photosynthesis and more

. 2022 ; 60 (1) : 25-28. [epub] 20220106

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39648998

Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.

Zobrazit více v PubMed

Aasamaa K., Aphalo P.J.: The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components. – Tree Physiol. 37: 209-219, 2016. https://academic.oup.com/treephys/article/37/2/209/2548380 PubMed

Acuña A.M., Lemaire C., van Grondelle R. et al.: Energy transfer and trapping in Synechococcus WH 7803. – Photosynth. Res. 135: 115-124, 2018b. https://link.springer.com/article/10.1007/s11120-017-0451-2 PubMed DOI PMC

Acuña A.M., van Alphen P., van Grondelle R., van Stokkum I.H.M.: The phycobilisome terminal emitter transfers its energy with a rate of (20 ps)−1 to photosystem II. – Photosynthetica 56: 265-274, 2018a. https://ps.ueb.cas.cz/artkey/phs-201801-0025_the-phycobilisome-terminal-emitter-transfers-its-energy-with-a-rate-of-20-ps-1-to-photosystem-ii.php

Agati G., Fusi F., Mazzinghi P., di Paola M.L.: A simple approach to the evaluation of the reabsorption of chlorophyll fluorescence spectra in intact leaves. – J. Photoch. Photobio. B 17: 163-171, 1993. https://www.sciencedirect.com/science/article/pii/101113449380009X#!

Alami M., Lazar D., Green B.R.: The harmful alga Aureococcus anophagefferens utilizes 19'-butanoyloxyfucoxanthin as well as xanthophyll cycle carotenoids in acclimating to higher light intensities. – BBA-Bioenergetics 1817: 1557-1564, 2012. https://www.sciencedirect.com/science/article/pii/S0005272812001569?via%3Dihub PubMed

Alboresi A., Gerotto C., Cazzaniga S. et al.: A red-shifted antenna protein associated with photosystem II in Physcomitrella patens. – J. Biol. Chem. 286: 28978-28987, 2011. https://www.sciencedirect.com/science/article/pii/S0021925820574425 PubMed PMC

Allakhverdiev S.I., Tomo T., Stamatakis K., Govindjee G.: International conference on 'Photosysnthesis Research for sustainibility-2015 in honor of George C. Papageorgiou', September 21–26, 2015, Crete, Greece. – Photosynth. Res. 130: 1-10, 2016. https://link.springer.com/article/10.1007%2Fs11120-015-0207-9 PubMed

Anderson J.M., Andersson B.: The dynamic photosynthetic membrane and regulation of solar-energy conversion. – Trends Biochem. Sci. 13: 351-355, 1988. https://www.sciencedirect.com/science/article/pii/0968000488901065?via%3Dihub PubMed

Anderson J.M., Aro E.-M.: Grana stacking and protection of Photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: A hypothesis. – Photosynth. Res. 41: 315-326, 1994. https://link.springer.com/article/10.1007/BF00019409 PubMed DOI

Andrés Z., Pérez-Hormaeche J., Leidi E.O. et al.: Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. – P. Natl. Acad. Sci. USA 111: E1806-E1814, 2014. https://www.pnas.org/content/111/17/E1806 PubMed PMC

Arp T.B., Barlas Y., Aji V., Gabor N.M.: Natural regulation of energy flow in a green quantum photocell. – Nano Lett. 16: 7461-7466, 2016. https://pubs.acs.org/doi/10.1021/acs.nanolett.6b03136 PubMed DOI

Arp T.B., Kistner-Morris J., Aji V. et al.: Quieting a noisy antenna reproduces photosynthetic light-harvesting spectra. – Science 368: 1490-1495, 2020. https://www.science.org/lookup/doi/10.1126/science.aba6630 PubMed DOI

Assmann S.M., Simoncini L., Schroeder J.I.: Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba L. – Nature 318: 285-287, 1985. https://www.nature.com/articles/318285a0

Bąba W., Kompała-Bąba A., Zabochnicka-Świątek M. et al.: Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence. – Photosynthetica 57: 668-679, 2019. https://ps.ueb.cas.cz/artkey/phs-201902-0038_discovering-trends-in-photosynthesis-using-modern-analytical-tools-more-than-100-reasons-to-use-chlorophyll-flu.php

Bae G., Choi G.: Decoding of light signals by plant phytochromes and their interacting proteins. – Annu. Rev. Plant Biol. 59: 281-311, 2008. https://www.annualreviews.org/doi/10.1146/annurev.arplant.59.032607.092859 PubMed DOI

Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. – Annu. Rev. Plant Biol. 59: 89-113, 2008. https://www.annualreviews.org/doi/10.1146/annurev.arplant.59.032607.092759 PubMed DOI

Ballottari M., Dall'Osto L., Morosinotto T., Bassi R.: Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. – J. Biol. Chem. 282: 8947-8958, 2007. https://www.sciencedirect.com/science/article/pii/S0021925819834798?via%3Dihub PubMed

Bantis F., Smirnakou S., Ouzounis T. et al.: Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). – Sci. Hortic.-Amsterdam 235: 437-451, 2018. https://www.sciencedirect.com/science/article/pii/S0304423818301420?via%3Dihub

Baránková B., Lazár D., Nauš J.: Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves. – Remote Sens. Environ. 174: 181-196, 2016. https://www.sciencedirect.com/science/article/pii/S0034425715302327?via%3Dihub

Belyaeva N.E., Schmitt F.-J., Paschenko V.Z. et al.: Model based analysis of transient fluorescence yield induced by actinic laser flashes in spinach leaves and cells of green alga Chlorella pyrenoidosa Chick. – Plant Physiol. Bioch. 77: 49-59, 2014. https://www.sciencedirect.com/science/article/abs/pii/S098194281400031X PubMed

Belyaeva O.B.: Studies of chlorophyll biosynthesis in Russia. – Photosynth. Res. 76: 405-411, 2003. https://link.springer.com/article/10.1023%2FA%3A1024951212053 PubMed

Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I. – Nature 426: 630-635, 2003. https://www.nature.com/articles/nature02200 PubMed

Bernacchi C.J., Kimball B.A., Quarles D.R. et al.: Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. – Plant Physiol. 143: 134-144, 2007. https://academic.oup.com/plphys/article/143/1/134/6106572 PubMed PMC

Bertolino L.T., Caine R.S., Gray J.E.: Impact of stomatal density and morphology on water use efficiency in a changing world. – Front. Plant Sci. 10: 225, 2019. https://www.frontiersin.org/articles/10.3389/fpls.2019.00225/full PubMed DOI PMC

Bhaya D.: In the limelight: Photoreceptors in cyanobacteria. – mBio 7: e00741-16, 2016. https://journals.asm.org/doi/10.1128/mBio.00741-16 PubMed DOI PMC

Bielczynski L.W., Schansker G., Croce R.: Consequences of the reduction of the Photosystem II antenna size on the light acclimation capacity of Arabidopsis thaliana. – Plant Cell Environ. 43: 866-879, 2020. https://onlinelibrary.wiley.com/doi/10.1111/pce.13701 PubMed DOI PMC

Bína D., Gardian Z., Herbstová M. et al.: Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. II. Biochemistry and spectroscopy. – BBA-Bioenergetics 1837: 802-810, 2014. https://www.sciencedirect.com/science/article/pii/S0005272814000139?via%3Dihub PubMed

Björkman O., Demmig B.: Photon yield of O2 evolution of chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. – Planta 170: 489-504, 1987. https://link.springer.com/article/10.1007%2FBF00402983 PubMed

Björn L.O.: Why are plants green? Relationships between pigment absorption and photosynthetic efficiency. – Photosynthetica 10: 121-129, 1976.

Björn L.O., Ghiradella H.: Spectral tuning in biology I: Pigments. – In: Björn L.O. (ed.): Photobiology. Pp. 97-117. Springer, New York: 2015. https://link.springer.com/chapter/10.1007/978-1-4939-1468-5_9 DOI

Björn L.O., Govindjee G.: The evolution of photosynthesis and chloroplasts. – Curr. Sci. India 96: 1466-1474, 2009. http://hoffman.cm.utexas.edu/courses/bjorn_govindjee.pdf

Björn L.O., Papageorgiou G.C., Blankenship R.E., Govindjee G.: A viewpoint: Why chlorophyll a? – Photosynth. Res. 99: 85-98, 2009. https://link.springer.com/article/10.1007/s11120-008-9395-x PubMed DOI

Blain-Hartung M., Rockwell N.C., Moreno M.V. et al.: Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. – J. Biol. Chem. 293: 8473-8483, 2018. https://www.sciencedirect.com/science/article/pii/S0021925820390918?via%3Dihub PubMed PMC

Blankenship R.E.: Molecular Mechanisms of Photosynthesis. 3rd Edition. Pp. 320. Wiley-Blackwell, Oxford: 2021.

Boichenko V.A., Klimov V.V., Miyashita H., Miyachi S.: Functional characteristics of chlorophyll d-predominating photosynthetic apparatus in intact cells of Acaryochloris marina. – Photosynth. Res. 65: 269-277, 2000. https://link.springer.com/article/10.1023%2FA%3A1010637631417 PubMed

Brecht M., Hussels M., Schlodder E., Karapetyan N.V.: Red antenna states of photosystem I trimers from Arthrospira platensis revealed by single-molecule spectroscopy. – BBA-Bioenergetics 1817: 445-452, 2012. https://www.sciencedirect.com/science/article/pii/S0005272811002842?via%3Dihub PubMed

Briantais J.-M., Vernotte C., Picaud M., Krause G.H.: A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. – BBA-Bioenergetics 548: 128-138, 1979. https://www.sciencedirect.com/science/article/pii/0005272879901932?via%3Dihub PubMed

Briggs W.R.: Phototropism: some history, some puzzles, and a look ahead. – Plant Physiol. 164: 13-23, 2014. https://academic.oup.com/plphys/article/164/1/13/6112777 PubMed PMC

Briggs W.R., Christie J.M.: Phototropins 1 and 2: versatile plant blue-light receptors. – Trends Plant Sci. 7: 204-210, 2002. https://www.sciencedirect.com/science/article/pii/S1360138502022458?via%3Dihub PubMed

Brodersen C.R., Vogelmann T.C.: Do changes in light direction affect absorption profiles in leaves? – Funct. Plant Biol. 37: 403-412, 2010. https://www.publish.csiro.au/fp/FP09262

Brody S.S.: New excited state of chlorophyll. – Science 128: 838-839, 1958. https://www.science.org/doi/10.1126/science.128.3328.838 PubMed DOI

Brugnoli E., Björkman O.: Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. – Photosynth. Res. 32: 23-35, 1992. https://link.springer.com/article/10.1007/BF00028795 PubMed DOI

Büchel C.: Light harvesting complexes in chlorophyll c- containing algae. – BBA-Bioenergetics 1861: 148027, 2020. https://www.sciencedirect.com/science/article/pii/S0005272819300519?via%3Dihub PubMed

Campbell D., Hurry V., Clarke A.K. et al.: Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. – Microbiol. Mol. Biol. Rev. 62: 667-683, 1998. https://journals.asm.org/doi/10.1128/MMBR.62.3.667-683.1998 PubMed DOI PMC

Castillon A., Shen H., Huq E.: Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. – Trends Plant Sci. 12: 514-521, 2007. https://www.sciencedirect.com/science/article/pii/S1360138507002464?via%3Dihub PubMed

Chater C.C.C., Caine R.S., Fleming A.J., Gray J.E.: Origins and evolution of stomatal development. – Plant Physiol. 174: 624-638, 2017. https://academic.oup.com/plphys/article/174/2/624/6117400 PubMed PMC

Chaves I., Pokorny R., Byrdin M. et al.: The cryptochromes: blue light photoreceptors in plants and animals. – Annu. Rev. Plant Biol. 62: 335-364, 2011. https://www.annualreviews.org/doi/10.1146/annurev-arplant-042110-103759 PubMed DOI

Chen M., Blankenship R.E.: Expanding the solar spectrum used by photosynthesis. – Trends Plant Sci. 16: 427-431, 2011. https://www.sciencedirect.com/science/article/pii/S1360138511000598?via%3Dihub PubMed

Chen M., Floetenmeyer M., Bibby T.S.: Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. – FEBS Lett. 583: 2535-2539, 2009. https://febs.onlinelibrary.wiley.com/doi/full/10.1016/j.febslet.2009.07.012 PubMed DOI

Chen M., Schliep M., Willows R.D. et al.: A red-shifted chlorophyll. – Science 329: 1318-1319, 2010. https://www.science.org/doi/abs/10.1126/science.1191127 PubMed DOI

Chow W.S.: Photoprotection and photoinhibition damage. – In: Barber J. (ed.): Advances in Molecular and Cell Biology. Vol. 10. Pp. 151-196. JAI Press Inc., Stamford: 1994. https://www.sciencedirect.com/science/article/pii/S1569255808603975

Christie J.M.: Phototropin blue-light receptors. – Annu. Rev. Plant Biol. 58: 21-45, 2007. https://www.annualreviews.org/doi/10.1146/annurev.arplant.58.032806.103951 PubMed DOI

Christie J.M., Blackwood L., Petersen J., Sullivan S.: Plant flavoprotein photoreceptors. – Plant Cell Physiol. 56: 401-413, 2015. https://academic.oup.com/pcp/article/56/3/401/2461097 PubMed PMC

Christie J.M., Briggs W.R.: Blue light sensing in higher plants. – J. Biol. Chem. 276: 11457-11460, 2001. https://www.sciencedirect.com/science/article/pii/S0021925819460067?via%3Dihub PubMed

Chukhutsina V.U., Liu X., Xu P., Croce R.: Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. – Nat. Plants 6: 860-868, 2020. https://www.nature.com/articles/s41477-020-0693-4 PubMed

Croce R.: Beyond ‘seeing is believing’: the antenna size of the photosystems in vivo. – New Phytol. 228: 1214-1218, 2020. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16758 PubMed DOI PMC

Croce R., Chojnicka A., Morosinotto T. et al.: The low-energy forms of photosystem I light-harvesting complexes: Spectroscopic properties and pigment-pigment interaction characteristics. – Biophys J. 93: 2418-2428, 2007. https://www.sciencedirect.com/science/article/pii/S0006349507714972?via%3Dihub PubMed PMC

Croce R., van Amerongen H.: Light-harvesting in photosystem I. – Photosynth. Res. 116: 153-166, 2013a. https://link.springer.com/article/10.1007%2Fs11120-013-9838-x PubMed PMC

Croce R., van Amerongen H.: Light harvesting in photosystem II. – Photosynth. Res. 116: 251-263, 2013b. https://link.springer.com/article/10.1007/s11120-013-9824-3 PubMed DOI PMC

Croce R., van Amerongen H.: Natural strategies for photosynthetic light harvesting. – Nat. Chem. Biol. 10: 492-501, 2014. https://www.nature.com/articles/nchembio.1555 PubMed

Croce R., van Amerongen H.: Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. – Science 369: eaay2058, 2020. https://www.science.org/lookup/doi/10.1126/science.aay2058 PubMed DOI

Croce R., van Grondelle R., van Amerongen H., van Stokkum I.H.M. (ed.): Light Harvesting in Photosynthesis. Foundations of Biochemistry and Biophysics. Pp. 625. CRC Press, Taylor & Francis Group, London: 2018.

Cui M., Vogelmann T.C., Smith W.K.: Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea. – Plant Cell Environ. 14: 493-500, 1991. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01519.x DOI

D'Amico-Damião V., Carvalho R.F.: Cryptochrome-related abiotic stress responses in plants. – Front. Plant Sci. 9: 1897, 2018. https://www.frontiersin.org/articles/10.3389/fpls.2018.01897/full PubMed DOI PMC

Darko E., Heydarizadeh P., Schoefs B., Sabzalian M.R.: Photosynthesis under artificial light: the shift in primary and secondary metabolism. – Philos. T. Roy. Soc. B 369: 20130243, 2014. https://royalsocietypublishing.org/doi/10.1098/rstb.2013.0243 PubMed DOI PMC

Das M., Rabinowitch E., Szalay L., Papageorgiou G.: The “sieve effect” in Chlorella suspensions. – J. Phys. Chem. 71: 3543-3549, 1967. https://pubs.acs.org/doi/pdf/10.1021/j100870a031?casa_token=4uMfu5mSZdUAAAAA%3AZ-t1NqRTC9dpSrVq28ktY_Wwsez6Ez4VxJVjXTxLkFQY7fArxOM6hLu_vTg5q5dhFoO9xsDf4Z5Y4DQ& DOI

Daszkowska-Golec A., Szarejko I.: Open or close the gate – stomata action under the control of phytohormones in drought stress conditions. – Front Plant Sci. 4: 138, 2013. https://www.frontiersin.org/articles/10.3389/fpls.2013.00138/full PubMed DOI PMC

Dau H.: Molecular mechanisms and quantitative models of variable photosystem II fluorescence. – Photochem. Photobiol. 60: 1-23, 1994. https://onlinelibrary.wiley.com/doi/10.1111/j.1751-1097.1994.tb03937.x DOI

Davis P.A., Caylor S., Whippo C.W., Hangarter R.P.: Changes in leaf optical properties associated with light-dependent chloroplast movements. – Plant Cell Environ. 34: 2047-2059, 2011. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2011.02402.x PubMed DOI

Demmig-Adams B., Garab G., Adams W.W. III, Govindjee G. (ed.): Nonphotochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Vol. 40. Pp. 649. Springer, Dordrecht: 2014. https://link.springer.com/book/10.1007/978-94-017-9032-1 DOI

Demotes-Mainard S., Péron T., Corot A. et al.: Plant responses to red and far-red lights, applications in horticulture. – Environ. Exp. Bot. 121: 4-21, 2016. https://www.sciencedirect.com/science/article/abs/pii/S0098847215000933?via%3Dihub

Dismukes G.C., Klimov V.V., Baranov S.V. et al.: The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. – P. Natl. Acad. Sci. USA 98: 2170-2175, 2001. https://www.pnas.org/content/98/5/2170 PubMed PMC

Drake P.L., de Boer H.J., Schymanski S.J., Veneklaas E.J.: Two sides to every leaf: water and CO2 transport in hypostomatous and amphistomatous leaves. – New Phytol. 222: 1179-1187, 2019. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.15652 PubMed DOI

Driesen E., Van den Ende W., De Proft M., Saeys W.: Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. – Agronomy 10: 1975, 2020. https://www.mdpi.com/2073-4395/10/12/1975

Dueck T., Ieperen W., Taulavuori K.: Light perception, signalling and plant responses to spectral quality and photoperiod in natural and horticultural environments. – Environ. Exp. Bot. 121: 1-3, 2016. https://www.sciencedirect.com/science/article/abs/pii/S0098847215001215

Dutta S., Cruz J.A., Imran S.M. et al.: Variations in chloroplast movement and chlorophyll fluorescence among chloroplast division mutants under light stress. – J. Exp. Bot. 68: 3541-3555, 2017. https://academic.oup.com/jxb/article/68/13/3541/3883924 PubMed PMC

Duxbury Z., Schliep M., Ritchie R.J. et al.: Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. – Photosynth. Res. 101: 69-75, 2009. https://link.springer.com/article/10.1007/s11120-009-9466-7 PubMed DOI

Duysens L.N.M.: The flattening of the absorption spectrum of suspension as compared to that of solutions. – Biochim. Biophys. Acta 19: 1-12, 1956. https://www.sciencedirect.com/science/article/abs/pii/0006300256903808?via%3Dihub PubMed

Duysens L.N.M.: Transfer and trapping of excitation energy in photosystem II. – In: Wolstenholme G.E.W., Fitzsimons D.W. (ed.): Chlorophyll Organization and Energy Transfer in Photosynthesis. Ciba Foundation Symposium 61 (New Series). Pp. 323-340. Excerpta Medica, Amsterdam-Oxford-New York: 1979. https://onlinelibrary.wiley.com/doi/10.1002/9780470720431.ch17 PubMed DOI

Duysens L.N.M., Sweers H.E.: Mechanisms of two photochemical reactions in algae as studied by means of fluorescence. – In: Japanese Society of Plant Physiologists (ed.): Studies on microalgae and photosynthetic bacteria. Pp. 353-372. University of Tokyo Press, Tokyo: 1963.

Emerson R., Chalmers R., Cederstrand C.: Some factors influencing the long-wave limit of photosynthesis. – P. Natl. Acad. Sci. USA 43: 133-143, 1957. https://www.pnas.org/content/43/1/133 PubMed PMC

Emerson R., Lewis C.M.: The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. – Am. J. Bot. 30: 165-178, 1943. https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1943.tb14744.x DOI

Emerson R., Rabinowitch E.: Red drop and the role of auxiliary pigments in photosynthesis. – Plant Physiol. 35: 477-485, 1960. https://academic.oup.com/plphys/article/35/4/477/6089550 PubMed PMC

Engelmann E., Zucchelli G.., Casazza A.P. et al.: Influence of the photosystem I-light harvesting complex I antenna domains on fluorescence decay. – Biochemistry 45: 6947-6955, 2006. https://pubs.acs.org/doi/10.1021/bi060243p PubMed DOI

Evans J.R.: The dependence of quantum yield on wavelength and growth irradiance. – Aust. J. Plant Physiol. 14: 69-79, 1987. https://www.publish.csiro.au/fp/PP9870069

Evans J.R.: Leaf anatomy enables more equal access to light and CO2 between chloroplasts. – New Phytol. 143: 93-104, 1999. https://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.1999.00440.x DOI

Evans J.R.: Potential errors in electron transport rates calculated from chlorophyll fluorescence as revealed by a multilayer leaf model. – Plant Cell Physiol. 50: 698-706, 2009. https://academic.oup.com/pcp/article/50/4/698/1909490 PubMed

Evans J.R., Morgan P.B., von Caemmerer S.: Light quality affects chloroplast electron transport rates estimated from Chl fluorescence measurements. – Plant Cell Physiol. 58: 1652-1660, 2017. https://academic.oup.com/pcp/article/58/10/1652/4056559 PubMed

Evans J.R., Vogelmann T.C.: Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. – Plant Cell Environ. 26: 547-560, 2003. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2003.00985.x DOI

Everroad C., Six C., Partensky F. et al.: Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. – J. Bacteriol. 188: 3345-3356, 2006. https://journals.asm.org/doi/10.1128/JB.188.9.3345-3356.2006 PubMed DOI PMC

Flexas J., Escalona J.M., Evain S. et al.: Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. – Physiol. Plantarum 114: 231-240, 2002. https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.2002.1140209.x PubMed DOI

Franklin K.A., Quail P.H.: Phytochrome functions in Arabidopsis development. – J. Exp. Bot. 61: 11-24, 2010. https://academic.oup.com/jxb/article/61/1/11/570607 PubMed PMC

Frechilla S., Talbott L.D., Bogomolni R.A., Zeiger E.: Reversal of blue light-stimulated stomatal opening by green light. – Plant Cell Physiol. 41: 171-176, 2000. https://academic.oup.com/pcp/article/41/2/171/1853516 PubMed

French C.S.: The distribution and action in photosynthesis of several forms of chlorophyll. – P. Natl. Acad. Sci. USA 68: 2893-2897, 1971. https://www.pnas.org/content/68/11/2893 PubMed PMC

French C.S., Brown J.S., Lawrence M.C.: Four universal forms of chlorophyll a. – Plant Physiol. 49: 421-429, 1972. https://academic.oup.com/plphys/article/49/3/421/6094267 PubMed PMC

Fuente D., Keller J, Conejero J.A. et al.: Light distribution and spectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors. – Algal Res. 23: 166-177, 2017. https://www.sciencedirect.com/science/article/abs/pii/S2211926417300371?via%3Dihub

Fujita Y., Ohki K.: On the 710 nm fluorescence emitted by the diatom Phaeodactylum tricornutum at room temperature. – Plant Cell Physiol. 45: 392-397, 2004. https://academic.oup.com/pcp/article/45/4/392/1921974 PubMed

Fushimi K., Hasegawa M., Ito T. et al.: Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. – P. Natl. Acad. Sci. USA 117: 15573-15580, 2020. https://www.pnas.org/content/117/27/15573 PubMed PMC

Fushimi K., Narikawa R.: Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. – Curr. Opin. Struct. Biol. 57: 39-46, 2019. https://www.sciencedirect.com/science/article/abs/pii/S0959440X18301283?via%3Dihub PubMed

Fushimi K., Narikawa R.: Phytochromes and cyanobacteriochromes: Photoreceptor molecules incorporating a linear tetrapyrrole chromophore. – In: Yawo H., Kandori H., Koizumi A., Kageyama R. (ed.): Optogenetics. Advances in Experimental Medicine and Biology. Vol. 1293. Pp. 167-187. Springer, Singapore: 2021. https://link.springer.com/chapter/10.1007%2F978-981-15-8763-4_10 PubMed

Gaidukov N.: Die Farbervänderung bei den Prozessen der Komplementären chromatischen Adaptation. [The color change in the processes of complementary chromatic adaptation.] – Ber. Deutsch. Bot. Ges 21: 517-522, 1903. [In German]

Gan F., Zhang S., Rockwell N.C. et al.: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. – Science 345: 1312-1317, 2014. https://www.science.org/doi/abs/10.1126/science.1256963 PubMed DOI

Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – BBA-Gen. Subjects 990: 87-92, 1989. https://www.sciencedirect.com/science/article/abs/pii/S0304416589800169?via%3Dihub

Giera W., Szewczyk S., McConnel M.D. et al.: Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K. – Photosynth. Res. 137: 321-335, 2018. https://link.springer.com/article/10.1007%2Fs11120-018-0506-z PubMed

Gisriel C., Shen G., Kurashov V. et al.: The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. – Sci. Adv. 6: eaay6415, 2020a. https://www.science.org/doi/10.1126/sciadv.aay6415 PubMed DOI PMC

Gisriel C.J., Wang J., Brudvig G.W., Bryant D.A.: Opportunities and challenges for assigning cofactors in cryo-EM density maps of chlorophyll-containing proteins. – Commun. Biol. 3: 408, 2020b. https://www.nature.com/articles/s42003-020-01139-1 PubMed PMC

Gitelson A.A., Buschmann C., Lichtenthaler H.K.: Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. – J. Plant Physiol. 152: 283-296, 1998. https://www.sciencedirect.com/science/article/abs/pii/S0176161798801430?via%3Dihub

Gobets B., van Grondelle R.: Energy transfer and trapping in photosystem I. – BBA-Bioenergetics 1507: 80-99, 2001. https://www.sciencedirect.com/science/article/pii/S0005272801002031?via%3Dihub PubMed

Goh C.-H.: Phototropins and chloroplast activity in plant blue light signaling. – Plant Signal. Behav. 4: 693-695, 2009. https://www.tandfonline.com/doi/full/10.4161/psb.4.8.8981 PubMed DOI PMC

Golbeck J.H.: Structure, function and organization of the photosystem I reaction center complex. – BBA-Rev. Bioenergetics 895: 167-204, 1987. https://www.sciencedirect.com/science/article/pii/S0304417387800022?via%3Dihub PubMed

Gotoh E., Suetsugu N., Higa T. et al.: Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis. – Sci. Rep.-UK 8: 1472, 2018b. https://www.nature.com/articles/s41598-018-19896-9 PubMed PMC

Gotoh E., Suetsugu N., Yamori W. et al.: Chloroplast accumulation response enhances leaf photosynthesis and plant biomass production. – Plant Physiol. 178: 1358-1369, 2018a. https://academic.oup.com/plphys/article/178/3/1358/6116734 PubMed PMC

Govindjee G.: Observations on P750A from Anacystis nidulans. – Naturwissenschaften 50: 720-721, 1963. https://link.springer.com/article/10.1007/BF00637218 DOI

Govindjee G.: Sixty-three years since Kautsky: Chlorophyll a fluorescence. – Aust. J. Plant Physiol. 22: 131-160, 1995. https://www.life.illinois.edu/govindjee/63yrsKautsky.PDF

Govindjee G.: Chlorophyll a fluorescence: a bit of basics and history. – In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 1-41. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_1 DOI

Govindjee G., Braun B.Z.: Light absorption, emission and photosynthesis. – In: Stewart W.D.P. (ed.): Algal Physiology and Biochemistry, Pp. 346-390. Blackwell Scientific Publication Ltd., Oxford: 1974.

Govindjee G., Papageorgiou G.C.: Chlorophyll fluorescence and photosynthesis: fluorescence transients. – In: Giese A.C. (ed.): Photophysiology: Current Topics in Photobiology and Photochemistry. Vol. 6. Pp. 1-46. Academic Press, New York: 1971. https://www.sciencedirect.com/science/article/pii/B9780122826061500076?via%3Dihub

Govindjee G., Papageorgiou G.C., Govindjee R.: Eugene I. Rabinowitch: A prophet of photosynthesis and of peace in the world. – Photosynth. Res. 141: 143-150, 2019. https://link.springer.com/article/10.1007%2Fs11120-019-00641-w PubMed

Govindjee G., Shevela D., Björn L.O.: Evolution of the Z-scheme of photosynthesis: a perspective. – Photosynth. Res. 133: 5-15, 2017. https://link.springer.com/article/10.1007%2Fs11120-016-0333-z PubMed

Greenbaum N.L., Mauzerall D.: Effect of irradiance level on distribution of chlorophylls between PS II and PS I as determined from optical cross-sections. – BBA-Bioenergetics 1057: 195-207, 1991. https://www.sciencedirect.com/science/article/pii/S0005272805801021?via%3Dihub

Grossman A.R.: A molecular understanding of complementary chromatic adaptation. – Photosynth. Res. 76: 207-215, 2003. https://link.springer.com/article/10.1023/A:1024907330878 PubMed DOI

Guruprasad K., Bhattacharjee S., Kataria S. et al.: Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves. – Photosynth. Res. 94: 299-306, 2007. https://link.springer.com/article/10.1007%2Fs11120-007-9190-0 PubMed

Hák R., Lichtenthaler H.K., Rinderle U.: Decrease of the fluorescence ratio F690/F730 during greening and development of leaves. – Radiat. Environ. Bioph. 29: 329-336, 1990. https://link.springer.com/article/10.1007/BF01210413 PubMed DOI

Hall J., Renger T., Müh F. et al.: The lowest-energy chlorophyll of photosystem II is adjacent to the peripheral antenna: Emitting states of CP47 assigned via circularly polarized luminescence. – BBA-Bioenergetics 1857: 1580-1593, 2016. https://www.sciencedirect.com/science/article/pii/S0005272816305655?via%3Dihub PubMed

Hamaguchi T., Kawakami K., Shinzawa-Itoh K. et al.: Structure of the far-red light utilizing photosystem I of Acaryochloris marina. – Nat. Commun. 12: 2333, 2021. https://www.nature.com/articles/s41467-021-22502-8 PubMed PMC

Hamdani S., Khan N., Perveen S. et al.: Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. – Photosynth. Res. 139: 107-121, 2019. https://link.springer.com/article/10.1007%2Fs11120-018-0589-6 PubMed

Harper S.M., Neil L.C., Gardner K.H.: Structural basis of a phototropin light switch. – Science 301: 1541-1544, 2003. https://www.science.org/doi/abs/10.1126/science.1086810 PubMed DOI

Harris D., Bar-Zvi S., Lahav A. et al.: The structural basis for the extraordinary energy-transfer capabilities of the phycobilisome. – In: Harris J.R., Boekema E.J. (ed.): Membrane Protein Complexes: Structure and Function, Subcellular Biochemistry. Vol. 87. Pp. 57-82. Springer, Singapore: 2018. https://link.springer.com/chapter/10.1007%2F978-981-10-7757-9_3 PubMed

Harris D., Tal O., Jallet D. et al.: Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. – P. Natl. Acad. Sci. USA 113: E1655-E1662, 2016. https://www.pnas.org/content/113/12/E1655 PubMed PMC

Hasan M.M., Bashir T., Ghosh R. et al.: An overview of LEDs' effects on the production of bioactive compounds and crop quality. – Molecules 22: 1420, 2017. https://www.mdpi.com/1420-3049/22/9/1420 PubMed PMC

Haupt W., Scheuerlein R.: Chloroplast movement. – Plant Cell Environ. 13: 595-614, 1990. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01078.x DOI

Hayes S.: Location, location, location: phototropin 2 action at the chloroplast membrane. – Plant Physiol. 183: 27-28, 2020. https://academic.oup.com/plphys/article/183/1/27/6116348 PubMed PMC

He D., Kozai T., Niu G., Zhang X.: Light-emitting diodes for horticulture. – In: Li J., Zhang G.Q. (ed.): Light-Emitting Diodes. Solid State Lighting Technology and Application Series. Vol. 4. Pp. 513-547. Springer, Cham: 2019. https://link.springer.com/chapter/10.1007%2F978-3-319-99211-2_14

Herbstová M., Bína D., Kaňa R. et al.: Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. – Sci. Rep.-UK 7: 11976, 2017. https://www.nature.com/articles/s41598-017-12247-0 PubMed PMC

Hernández R., Kubota C.: Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. – Sci. Hortic.-Amsterdam 173: 92-99, 2014. https://www.sciencedirect.com/science/article/abs/pii/S0304423814002404?via%3Dihub

Hirose Y., Rockwell N.C., Nishiyama K. et al.: Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. – P. Natl. Acad. Sci. USA 110: 4974-4979, 2013. https://www.pnas.org/content/110/13/4974 PubMed PMC

Hirose Y., Song C., Watanabe M. et al.: Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. – Mol. Plant 12: 715-725, 2019. https://www.sciencedirect.com/science/article/pii/S1674205219300644#! PubMed

Ho M.Y., Niedzwiedzki D.M., MacGregor-Chatwin C. et al.: Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. – BBA-Bioenergetics 1861: 148064, 2020. https://www.sciencedirect.com/science/article/pii/S0005272819301033 PubMed

Ho M.Y., Shen G., Canniffe D.P. et al.: Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. – Science 353: 213-227, 2016. https://www.science.org/lookup/doi/10.1126/science.aaf9178 PubMed DOI

Hoang Q.T.N., Han Y.J., Kim J.I.: Plant phytochromes and their phosphorylation. – Int. J. Mol. Sci. 20: 3450, 2019. https://www.mdpi.com/1422-0067/20/14/3450 PubMed PMC

Hogewoning S.W., Douwstra P., Trouwborst G. et al.: An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. – J. Exp. Bot. 61: 1267-1276, 2010. https://academic.oup.com/jxb/article/61/5/1267/441174 PubMed

Hogewoning S.W., Trouwborst G., Engbers G.J. et al.: Plant physiological acclimation to irradiation by light-emitting diodes (LEDs). – Acta Hortic. 761: 183-191, 2007. https://www.actahort.org/books/761/761_23.htm

Hogewoning S.W., Wientjes E., Douwstra P. et al.: Photosynthetic quantum yield dynamics: from photosystems to leaves. – Plant Cell 24: 1921-1935, 2012. https://academic.oup.com/plcell/article/24/5/1921/6097455 PubMed PMC

Hohmann-Marriott M.F., Blankenship R.E.: Evolution of photosynthesis. – Annu. Rev. Plant Biol. 62: 515-548, 2011. https://www.annualreviews.org/doi/10.1146/annurev-arplant-042110-103811 PubMed DOI

Howard M.M., Bae A., Königer M.: The importance of chloroplast movement, nonphotochemical quenching, and electron transport rates in light acclimation and tolerance to high light in Arabidopsis thaliana. – Am. J. Bot. 106: 1444-1453, 2019. https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/ajb2.1378 PubMed DOI

Hu K., Govindjee G., Tan J. et al.: Co-author and co-cited reference network analysis for chlorophyll fluorescence research from 1991 to 2018. – Photosynthetica 58: 110-124, 2020. https://ps.ueb.cas.cz/artkey/phs-202001-0013_co-author-and-co-cited-reference-network-analysis-for-chlorophyll-fluorescence-research-from-1991-to-2018.php

Hu Q., Miyashita H., Iwasaki I. et al.: A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. – P. Natl. Acad. Sci. USA 95: 13319-13323, 1998. https://www.pnas.org/content/95/22/13319 PubMed PMC

Huché-Thélier L., Crespel L., Le Gourrierec J. et al.: Light signaling and plant responses to blue and UV radiations – Perspectives for applications in horticulture. – Environ. Exp. Bot. 121: 22-38, 2016. https://www.sciencedirect.com/science/article/abs/pii/S0098847215001185?via%3Dihub

Iino M., Ogawa T., Zeiger E.: Kinetic properties of the blue-light response of stomata. – P. Natl. Acad. Sci. USA 82: 8019-8023, 1985. https://www.pnas.org/content/82/23/8019 PubMed PMC

Ikeuchi M., Ishizuka T.: Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. – Photoch. Photobio. Sci. 7: 1159-1167, 2008. https://pubs.rsc.org/en/content/articlelanding/2008/PP/b802660m PubMed

Inada K.: Action spectra for photosynthesis in higher plants. – Plant Cell Physiol. 17: 355-365, 1976. https://academic.oup.com/pcp/article-abstract/17/2/355/1907877

Inoue S.I., Kinoshita T: Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. – Plant Physiol. 174: 531-538, 2017. https://academic.oup.com/plphys/article/174/2/531/6117432 PubMed PMC

Ishishita K., Higa T., Tanaka H. et al.: Phototropin2 contributes to the chloroplast avoidance response at the chloroplast-plasma membrane interface. – Plant Physiol. 183: 304-316, 2020. https://academic.oup.com/plphys/article/183/1/304/6116383 PubMed PMC

Jarillo J.A., Gabrys H., Capel J. et al.: Phototropin-related NPL1 controls chloroplast relocation induced by blue light. – Nature 410: 952-954, 2001. https://www.nature.com/articles/35073622 PubMed

Jávorfi T., Erostyák J., Gál J. et al.: Quantitative spectrophotometry using integrating cavities. – J. Photoch. Photobio. B 82: 127-131, 2006. https://www.sciencedirect.com/science/article/pii/S1011134405001946?via%3Dihub PubMed

Jennings R.C., Zuccerelli G., Croce R., Garlaschi F.M.: The photochemical trapping rate from red spectral states in PSI-LHCI is determined by thermal activation of energy transfer to bulk chlorophylls. – BBA-Bioenergetics 1557: 91-98, 2003. https://www.sciencedirect.com/science/article/pii/S0005272802003997?via%3Dihub PubMed

Johnson D.M., Smith W.K., Vogelmann T.C., Brodersen C.R.: Leaf architecture and direction of incident light influence mesophyll fluorescence profiles. – Am. J. Bot. 92: 1425-1431, 2005. https://bsapubs.onlinelibrary.wiley.com/doi/10.3732/ajb.92.9.1425 PubMed DOI

Joliot P., Joliot A.: Compartaive study of the fluorescence yield and of the C550 absorption change at room temperature. – BBA-Bioenergetics 546: 93-105, 1979. https://www.sciencedirect.com/science/article/pii/0005272879901737?via%3Dihub PubMed

Jordan P., Fromme P., Witt H.T. et al.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. – Nature 411: 909-917, 2001. https://www.nature.com/articles/35082000 PubMed

Kadota A., Yamada N., Suetsugu N. et al.: Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. – P. Natl. Acad. Sci. USA 106: 13106-13111, 2009. https://www.pnas.org/content/106/31/13106 PubMed PMC

Kalaitzoglou P., van Ieperen W., Harbinson J. et al.: Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. – Front. Plant Sci. 10: 322, 2019. https://www.frontiersin.org/articles/10.3389/fpls.2019.00322/full PubMed DOI PMC

Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. – Photosynth. Res. 132: 13-66, 2017. https://link.springer.com/article/10.1007%2Fs11120-016-0318-y PubMed PMC

Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about chlorophyll fluorescence: practical issues. – Photosynth. Res. 122: 121-158, 2014. https://link.springer.com/article/10.1007/s11120-014-0024-6 PubMed DOI PMC

Kale R., Hebert A.E., Frankel L.K. et al.: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of photosystem II. – P. Natl. Acad. Sci. USA 114: 2988-2993, 2017. https://www.pnas.org/content/114/11/2988 PubMed PMC

Kami C., Lorrain S., Hornitschek P., Fankhauser C.: Light-regulated plant growth and development. – Curr. Top. Dev. Biol. 91: 29-66, 2010. https://www.sciencedirect.com/science/article/abs/pii/S0070215310910028?via%3Dihub PubMed

Kaňa R., Kotabová E., Komárek O. et al.: The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. – BBA-Bioenergetics 1817: 1237-1247, 2012. https://www.sciencedirect.com/science/article/pii/S0005272812000606?via%3Dihub PubMed

Kaňa R., Prášil O., Komárek O. et al.: Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942). – BBA-Bioenergetics 1787: 1170-1178, 2009. https://www.sciencedirect.com/science/article/pii/S0005272809001376?via%3Dihub PubMed

Karapetyan N.V., Bolychevtseva Yu.V., Yurina N.P. et al.: Long-wavelength chlorophylls in PSI of cyanobacteria: Origin, localization, and functions. – Biochemistry-Moscow 79: 213-220, 2014. https://link.springer.com/article/10.1134%2FS0006297914030067 PubMed

Karapetyan N.V., Schlodder E., van Grondelle R., Dekker J.P.: The long wavelength chlorophylls of photosystem I. – In: Golbeck J.H., Govindjee G., Sharkey T. (ed.): The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase. Advances in Photosynthesis and Respiration. Vol. 24. Pp. 177-192. Springer, Dordrecht: 2006. https://link.springer.com/chapter/10.1007/978-1-4020-4256-0_13 DOI

Karlsson P.E.: Blue light regulation of stomata in wheat seedlings. I. Influence of red background illumination and initial conductance level. – Physiol. Plantarum 66: 202-206, 1986. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1986.tb02409.x DOI

Kasajima I., Suetsugu N., Wada M., Takahara K: Collective calculation of actual values of non-photochemical quenching from their apparent values after chloroplast movement and photoinhibition. – Am. J. Plant Sci. 6: 1792-1805, 2015. https://www.scirp.org/journal/paperinformation.aspx?paperid=58347

Kato K., Shinoda T., Nagao R. et al.: Structural basis for the adaptation and function of chlorophyll f in photosystem I. – Nat. Commun. 11: 238, 2020. https://www.nature.com/articles/s41467-019-13898-5 PubMed PMC

Katz J.J., Norris J.R.: Chlorophyll and light energy transduction in photosynthesis. – In: Sanadi D.R., Packer L. (ed.): Current Topics in Bioenergetics. Vol. 5. Pp. 41-75. Academic Press, New York: 1973. https://www.sciencedirect.com/science/article/abs/pii/B9780121525057500090

Kautsky H., Hirsch A.: Neue Versuche zur Kohlensäureassimilation. [New attempts on carbon dioxide assimilation.] – Naturwissenschaften 19: 964, 1931. [In German] https://link.springer.com/article/10.1007/BF01516164 DOI

Keenan T.F., Hollinger D.Y., Bohrer G. et al.: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. – Nature 499: 324-327, 2013. https://www.nature.com/articles/nature12291 PubMed

Kehoe D.M., Gutu A.: Responding to color: The regulation of complementary chromatic adaptation. – Annu. Rev. Plant Biol. 57: 127-150, 2006. https://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.57.032905.105215?journalCode=arplant PubMed DOI

Khanna R., Li J., Tseng T.-S. et al.: COP1 jointly modulates cytoskeletal processes and electrophysiological responses required for stomatal closure. – Mol. Plant 7: 1441-1454, 2014. https://www.cell.com/molecular-plant/fulltext/S1674-2052(14)60947-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1674205214609473%3Fshowall%3Dtrue PubMed PMC

Kiang N.Y., Segura A., Tinetti G. et al.: Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar worlds. – Astrobiology 7: 252-274, 2007b. https://www.liebertpub.com/doi/10.1089/ast.2006.0108 PubMed DOI

Kiang N.Y., Siefert J., Govindjee G., Blankenship R.E.: Spectral signatures of photosynthesis. I. Review of Earth organisms. – Astrobiology 7: 222-251, 2007a. https://www.liebertpub.com/doi/10.1089/ast.2006.0105 PubMed DOI

Kinoshita T., Shimazaki K.: Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H+-ATPase by blue light. – Plant Cell Physiol. 43: 1359-1365, 2002. https://academic.oup.com/pcp/article/43/11/1359/1934953 PubMed

Kirilovsky D., Kerfeld C.A.: Cyanobacterial photoprotection by the orange carotenoid protein. – Nat. Plants 2: 16180, 2016. https://www.nature.com/articles/nplants2016180 PubMed

Kitajima M., Butler W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. – BBA-Bioenergetics 376: 105-115, 1975. https://www.sciencedirect.com/science/article/abs/pii/0005272875902091?via%3Dihub PubMed

Knox R.S.: Thermodynamics and the primary processes of photosynthesis. – Biophys. J. 9: 1351-1362, 1969. https://www.sciencedirect.com/science/article/pii/S000634956986457X PubMed PMC

Kodru S., Malavath T., Devadasu E. et al.: The slow S to M rise of chlorophyll a fluorescence induction reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. – Photosynth. Res. 125: 219-231, 2015. https://link.springer.com/article/10.1007%2Fs11120-015-0084-2 PubMed

Koizumi M., Takahashi K., Mineuchi K. et al.: Light gradients and the transverse distribution of chlorophyll fluorescence in mangrove and Camellia leaves. – Ann. Bot.-London 81: 527-533, 1998. https://academic.oup.com/aob/article/81/4/527/2587777

Kok B.: A critical consideration of the quantum yield of Chlorella photosynthesis. – Enzymologia 13: 1-56, 1948.

Kolber Z.S., Prášil O., Falkowski P.G.: Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: Defining methodology and experimental protocols. – BBA-Bioenergetics 1367: 88-106, 1998. https://www.sciencedirect.com/science/article/pii/S0005272898001352?via%3Dihub PubMed

Kollist H., Nuhkat M., Roelfsema M.R.G.: Closing gaps: linking elements that control stomatal movement. – New Phytol. 203: 44-62, 2014. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.12832 PubMed DOI

Kong S.G., Okajima K.: Diverse photoreceptors and light responses in plants. – J. Plant Res. 129: 111-114, 2016. https://link.springer.com/article/10.1007%2Fs10265-016-0792-5 PubMed

Kong S.G., Wada M.: Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. – BBA-Bioenergetics 1837: 522-530, 2014. https://www.sciencedirect.com/science/article/pii/S0005272813002181?via%3Dihub PubMed

Kosugi M., Ozawa S.I., Takahashi Y. et al.: Red-shifted chlorophyll a bands allow uphill energy transfer to photosystem II reaction centers in an aerial green alga, Prasiola crispa, harvested in Antarctica. – BBA-Bioenergetics 1861: 148139, 2020. https://www.sciencedirect.com/science/article/pii/S0005272819301938?via%3Dihub PubMed

Kotabová E., Jarešová J., Kaňa R. et al.: Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. – BBA-Bioenergetics 1837: 734-743, 2014. https://www.sciencedirect.com/science/article/pii/S0005272814000140?via%3Dihub PubMed

Kouřil R., Nosek L., Opatíková M. et al.: Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. – Plant J. 104: 215-225, 2020. https://onlinelibrary.wiley.com/doi/10.1111/tpj.14918 PubMed DOI PMC

Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: The basics. – Annu. Rev. Plant Phys. 42: 313-349, 1991. https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.42.060191.001525 DOI

Kubota-Kawai H., Burton-Smith R.N., Tokutsu R. et al.: Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii. – J. Biol. Chem. 294: 4304-4314, 2019. https://www.jbc.org/article/S0021-9258(20)39006-2/fulltext PubMed PMC

Kumazaki S., Abiko K., Ikegami I. et al.: Energy equilibration and primary charge separation in chlorophyll d-based photosystem I reaction center isolated from Acaryochloris marina. – FEBS Lett. 530: 153-157, 2002. https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/S0014-5793%2802%2903446-4 PubMed DOI

Laisk A., Oja V.: Variable fluorescence of closed photochemical reaction centers. – Photosynth. Res. 143: 335-346, 2020. https://link.springer.com/article/10.1007%2Fs11120-020-00712-3 PubMed

Langsdorf G., Buschmann C., Sowinska M. et al.: Multicolour fluorescence imaging of sugar beet leaves with different N-status by flash lamp UV-excitation. – Photosynthetica 38: 539-551, 2000. https://ps.ueb.cas.cz/artkey/phs-200004-0014_multicolour-fluorescence-imaging-of-sugar-beet-leaves-with-different-nitrogen-status-by-flash-lamp-uv-excitatio.php

Larkum A.W.D.: The evolution of chlorophylls and photosynthesis. – In: Grimm B., Porra R.J., Rüdiger W., Scheer H. (ed.): Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. Pp. 261-282. Springer, Dordrecht: 2006. https://link.springer.com/chapter/10.1007%2F1-4020-4516-6_18

Larkum A.W.D., Kühl M.: Chlorophyll d: the puzzle resolved. – Trends Plant Sci. 10: 355-357, 2005. https://www.cell.com/trends/plant-science/fulltext/S1360-1385(05)00149-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138505001494%3Fshowall%3Dtrue PubMed

Latouche G., Cerovic Z.G., Montagnini F., Moya I.: Light-induced changes of NADPH fluorescence in isolated chloroplasts: a spectral and fluorescence lifetime study. – BBA-Bioenergetics 1460: 311-329, 2000. https://www.sciencedirect.com/science/article/pii/S0005272800001985?via%3Dihub PubMed

Lawson T., Blatt M.R.: Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. – Plant Physiol. 164: 1556-1570, 2014. https://academic.oup.com/plphys/article/164/4/1556/6112797 PubMed PMC

Lawson T., Terashima I., Fujita T., Wang Y.: Coordination between photosynthesis and stomatal behavior. – In: Adams W.W. III, Terashima I. (ed.): The Leaf: A Platform for Performing Photosynthesis. Pp. 141-161. Springer, Cham: 2018. https://link.springer.com/chapter/10.1007/978-3-319-93594-2_6 DOI

Lawson T., Vialet-Chabrand S.: Speedy stomata, photosynthesis and plant water use efficiency. – New Phytol. 221: 93-98, 2019. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.15330 PubMed DOI

Lazár D.: Chlorophyll a fluorescence induction. – BBA-Bioenergetics 1412: 1-28, 1999. https://www.sciencedirect.com/science/article/pii/S000527289900047X?via%3Dihub PubMed

Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. – Funct. Plant Biol. 33: 9-30, 2006. https://www.publish.csiro.au/fp/FP05095 PubMed

Lazár D.: Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise. – J. Theor. Biol. 335: 249-264, 2013. https://www.sciencedirect.com/science/article/abs/pii/S0022519313003007?via%3Dihub PubMed

Lazár D.: Parameters of photosynthetic energy partitioning. – J. Plant Physiol. 175: 131-147, 2015. https://www.sciencedirect.com/science/article/abs/pii/S0176161714003332?via%3Dihub PubMed

Lazár D., Nauš J.: Statistical properties of chlorophyll fluorescence parameters. – Photosynthetica 35: 121-127, 1998. https://ps.ueb.cas.cz/artkey/phs-199801-0017_statistical-properties-of-chlorophyll-fluorescence-induction-parameters.php

Lee Y., Kim Y.W., Jeon B.W. et al.: Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening. – Plant J. 52: 803-816, 2007. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2007.03277.x PubMed DOI

Lehmer O.R., Catling D.C., Parenteau M.N. et al.: The peak absorbance wavelength of photosynthetic pigments around other stars from spectral optimization. – Front. Astron. Space Sci. 8: 689441, 2021. https://www.frontiersin.org/articles/10.3389/fspas.2021.689441/full DOI

Levitan O., Chen M., Kuang X. et al.: Structural and functional analyses of photosystem II in the marine diatom Phaeodactylum tricornutum. – P. Natl. Acad. Sci. USA 116: 17316-17322, 2019. https://www.pnas.org/content/116/35/17316 PubMed PMC

Li J., Li G., Wang H., Deng X.W.: Phytochrome signaling mechanisms. – The Arabidopsis Book 2011: e0148, 2011. https://bioone.org/journals/the-arabidopsis-book/volume-2011/issue-9/tab.0148/Phytochrome-Signaling-Mechanisms/10.1199/tab.0148.full PubMed DOI PMC

Li T., Podola B., Melkonian M.: Investigating dynamic processes in a porous substrate biofilm photobioreactor – A modeling approach. – Algal Res. 13: 30-40, 2016. https://www.sciencedirect.com/science/article/abs/pii/S2211926415300965?via%3Dihub

Li X.-P., Björkman O., Shih C. et al.: A pigment-binding protein essential for regulation of photosynthetic light harvesting. – Nature 403: 391-395, 2000. https://www.nature.com/articles/35000131 PubMed

Lichtenberg M., Kühl M.: Pronounced gradients of light, photosynthesis and O2 consumption in the tissue of the brown alga Fucus serratus. – New Phytol. 207: 559-569, 2015. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.13396 PubMed DOI

Lichtenberg M., Trampe E.C.L., Vogelmann T.C., Kühl M.: Light sheet microscopy imaging of light absorption and photosynthesis distribution in plant tissue. – Plant Physiol. 175: 721-733, 2017. https://academic.oup.com/plphys/article/175/2/721/6116762 PubMed PMC

Lichtenthaler H.K.: Multi-colour fluorescence imaging of photosynthetic activity and plant stress. – Photosynthetica 59: 364-380, 2021. https://ps.ueb.cas.cz/artkey/phs-202103-0002_multi-colour-fluorescence-imaging-of-photosynthetic-activityand-plant-stress.php

Lichtenthaler H.K., Babani F.: Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. – Plant Physiol. Bioch. 38: 889-895, 2000. https://www.sciencedirect.com/science/article/abs/pii/S0981942800011992?via%3Dihub

Lichtenthaler H.K., Buschmann C., Rahmsdorf U.: The importance of blue light for the development of sun-type chloroplasts. – In: Senger H. (ed.): The Blue Light Syndrome. Proceedings in Life Sciences. Pp. 485-494. Springer, Berlin-Heidelberg: 1980. https://link.springer.com/chapter/10.1007%2F978-3-642-67648-2_45

Lichtenthaler H.K., Lang M., Sowinska M. et al.: Detection of vegetation stress via a new high resolution fluorescence imaging system. – J. Plant Physiol. 148: 599-612, 1996. https://www.sciencedirect.com/science/article/abs/pii/S0176161796800812?via%3Dihub

Lin C.: Blue light receptors and signal transduction. – Plant Cell 14: S207-S225, 2002. https://academic.oup.com/plcell/article/14/suppl_1/S207/6009900 PubMed PMC

Liscum E., Nittler P., Koskie K.: The continuing arc toward phototropic enlightenment. – J. Exp. Bot. 71: 1652-1658, 2020. https://academic.oup.com/jxb/article/71/5/1652/5697446 PubMed PMC

Litvin F.F., Krasnovsky A.A.: Investigation of intermediate stages of chlorophyll formation. – Doklady Akademii Nauk SSSR 117: 106-109, 1957.

Liu H., Blankenship R.E.: On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. – BBA-Bioenergetics 1860: 148079, 2019. https://www.sciencedirect.com/science/article/pii/S0005272819301264?via%3Dihub PubMed

Liu H., Liu B., Zhao C. et al.: The action mechanisms of plant cryptochromes. – Trends Plant Sci. 16: 684-691, 2011. https://www.cell.com/trends/plant-science/fulltext/S1360-1385(11)00193-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138511001932%3Fshowall%3Dtrue PubMed PMC

Lüttge U.: CO2-concentrating: consequences in crassulacean acid metabolism. – J. Exp. Bot. 53: 2131-2142, 2002. https://academic.oup.com/jxb/article/53/378/2131/426549 PubMed

Lysenko V., Lazár D., Verduny T.: A method of a bicolor fast-Fourier pulse-amplitude modulation chlorophyll fluorometry. – Photosynthetica 56: 1447-1452, 2018. https://ps.ueb.cas.cz/artkey/phs-201804-0051_a-method-of-a-bicolor-fast-fourier-pulse-amplitude-modulation-chlorophyll-fluorometry.php

Magdaong N.C.M., Blankenship R.E.: Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. – J. Biol. Chem. 293: 5018-5025, 2018. https://www.jbc.org/article/S0021-9258(20)40975-5/fulltext PubMed PMC

Magyar M., Sipka G., Kovács L. et al.: Rate-limiting steps in the dark-to-light transition of Photosystem II – revealed by chlorophyll-a fluorescence induction. – Sci. Rep.-UK 8: 2755, 2018. https://www.nature.com/articles/s41598-018-21195-2 PubMed PMC

Mamedov M., Govindjee G., Nadtochenko V., Semenov A.: Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. – Photosynth. Res. 125: 51-63, 2015. https://link.springer.com/article/10.1007/s11120-015-0088-y PubMed DOI

Mao J., Zhang Y.C., Sang Y. et al.: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. – P. Natl. Acad. Sci. USA 102: 12270-12275, 2005. https://www.pnas.org/content/102/34/12270 PubMed PMC

Marosvölgyi M.A., van Gorkom H.J.: Cost of color of photosynthesis. – Photosynth. Res. 103: 105-109, 2010. https://link.springer.com/article/10.1007%2Fs11120-009-9522-3 PubMed PMC

Marrs J.K., Reblin J.S., Logan B.A. et al.: Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. – Geophys. Res. Lett. 47: e2020GL087956, 2020. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL087956 DOI

Mascoli V., Bersanini L., Croce R.: Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis. – Nat. Plants 6: 1044-1053, 2020. https://www.nature.com/articles/s41477-020-0718-z PubMed

Matsubara S., Morosinotto T., Osmond C.B., Bassi R.: Short- and long-term operation of the lutein-epoxide cycle in light-harvesting antenna complexes. – Plant Physiol. 144: 926-941, 2007. https://academic.oup.com/plphys/article/144/2/926/6106962 PubMed PMC

Matsuda R., Ohashi-Kaneko K., Fujiwara K., Kurata K.: Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. – Soil Sci. Plant Nutr. 53: 459-465, 2007. https://www.tandfonline.com/doi/full/10.1111/j.1747-0765.2007.00150.x DOI

Matthews J.S.A., Lawson T.: Climate change and stomatal physiology. – Annu. Plant Rev. Online 2: apr0667, 2019. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119312994.apr0667 DOI

Matthews J.S.A., Vialet-Chabrand S., Lawson T.: Acclimation to fluctuating light impacts the rapidity of response and diurnal rhythm of stomatal conductance. – Plant Physiol. 176: 1939-1951, 2018. https://academic.oup.com/plphys/article/176/3/1939/6116880 PubMed PMC

Matthews J.S.A., Vialet-Chabrand S., Lawson T.: Role of blue and red light in stomatal dynamic behaviour. – J. Exp. Bot. 71: 2253-2269, 2020. PubMed PMC

Mauzerall D.: Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen. – P. Natl. Acad. Sci. USA 69: 1358-1362, 1972. https://www.pnas.org/content/69/6/1358 PubMed PMC

Mauzerall D.: Why chlorophyll? – Ann. N. Y. Acad. Sci. 206: 483-494, 1973. https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1973.tb43231.x PubMed DOI

Mauzerall D.: Chlorophyll and photosynthesis. – Philos. T. Roy. Soc. B 273: 287-294, 1976. https://royalsocietypublishing.org/doi/10.1098/rstb.1976.0014 DOI

Mawson B.T., Franklin A., Filion W.G., Cummins W.R.: Comparative studies of fluorescence from mesophyll and guard cell chloroplasts in Saxifraga cernua 1: Analysis of fluorescence kinetics as a function of excitation intensity. – Plant Physiol. 74: 481-486, 1984. https://academic.oup.com/plphys/article/74/3/481/6079551 PubMed PMC

McKown A.D., Guy R.D., Quamme L. et al.: Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. – Mol. Ecol. 23: 5771-5790, 2014. https://onlinelibrary.wiley.com/doi/10.1111/mec.12969 PubMed DOI

Merzlyak M.N., Chivkunova O.B., Zhigalova T.V., Naqvi K.R.: Light absorption by isolated chloroplasts and leaves: effects of scattering and ‘packing’. – Photosynth. Res. 102: 31-41, 2009. https://link.springer.com/article/10.1007%2Fs11120-009-9481-8 PubMed

Mi H., Klughammer C., Schreiber U.: Light-induced dynamic changes of NADPH fluorescence in Synechocystis PCC 6803 and its ndhB-defective mutant M55. – Plant Cell Physiol. 41: 1129-1135, 2000. https://academic.oup.com/pcp/article/41/10/1129/1859423 PubMed

Mimuro M.: Photon capture, exciton migration and trapping and fluorescence emission in cyanobacteria and red algae. – In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 173-195. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007%2F978-1-4020-3218-9_7

Mirkovic T., Ostroumov E.E., Anna J.M. et al.: Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. – Chem. Rev. 117: 249-293, 2017. https://pubs.acs.org/doi/10.1021/acs.chemrev.6b00002 PubMed DOI

Miyashita H., Ikemoto H., Kurano N. et al.: Chlorophyll d as a major pigment. – Nature 383: 402, 1996. https://www.nature.com/articles/383402a0?foxtrotcallback=true&error=cookies_not_supported&code=01eada92-d044-4a31-a16c-5383adfe0d94

Möglich A., Yang X., Ayers R.A., Moffat K.: Structure and function of plant photoreceptors. – Annu. Rev. Plant Biol. 61: 21-47, 2010. https://www.annualreviews.org/doi/10.1146/annurev-arplant-042809-112259 PubMed DOI

Montgomery B.L.: Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. – J. Exp. Bot. 67: 4079-4090, 2016. https://academic.oup.com/jxb/article/67/14/4079/2197747 PubMed

Montgomery B.L.: Lessons from Plants. Pp. 240. Harvard University Press, Cambridge: 2021.

Moreno M.V., Rockwell N.C., Mora M. et al.: A far-red cyanobacteriochrome lineage specific for verdins. – P. Natl. Acad. Sci. USA 117: 27962-27970, 2020. https://www.pnas.org/content/117/45/27962 PubMed PMC

Muir C.D.: Making pore choices: repeated regime shifts in stomatal ratio. – P. Roy. Soc. Lond. B Bio. 282: 20151498, 2015. https://royalsocietypublishing.org/doi/10.1098/rspb.2015.1498 PubMed DOI PMC

Myers J., Graham J.R.: Enhancement in Chlorella. – Plant Physiol. 38: 105-116, 1963. https://academic.oup.com/plphys/article/38/1/105/6088451 PubMed PMC

Natali A., Croce R.: Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii. – PLoS ONE 10: e0119211, 2015. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119211 PubMed PMC

Nauš J., Klinkovský T., Ilík P., Cikánek D.: Model studies of chlorophyll fluorescence reabsorption at chloroplast level under different exciting conditions. – Photosynth. Res. 40: 67-74, 1994. https://link.springer.com/article/10.1007%2FBF00019046 PubMed

Nauš J., Lazár D., Baránková B., Arnoštová B.: On the source of non-linear light absorbance in photosynthetic samples. – Photosynth. Res. 136: 345-355, 2018. https://link.springer.com/article/10.1007%2Fs11120-017-0468-6 PubMed

Nauš J., Prokopová J., Řebíček J., Špundová M.: SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement. – Photosynth. Res. 105: 265-271, 2010. https://link.springer.com/article/10.1007%2Fs11120-010-9587-z PubMed

Nedbal L., Trtílek M., Kaftan D.: Flash fluorescence induction: A novel method to study regulation of photosystem II. – J. Photoch. Photobio. B 48: 154-157, 1999. https://www.sciencedirect.com/science/article/pii/S1011134499000329?via%3Dihub

Negi S., Perrine Z., Friedland N. et al.: Light regulation of light harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. – Plant J. 103: 584-603, 2020. https://onlinelibrary.wiley.com/doi/10.1111/tpj.14751 PubMed DOI

Nelson N., Junge W.: Structure and energy transfer in photosystems of oxygenic photosynthesis. – Annu. Rev. Biochem. 84: 659-683, 2015. https://www.annualreviews.org/doi/10.1146/annurev-biochem-092914-041942 PubMed DOI

Nishio J.N.: Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. – Plant Cell Environ. 23: 539-548, 2000. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.2000.00563.x DOI

Nishio J.N., Sun J., Vogelmann T.C.: Carbon fixation gradients across spinach leaves do not follow internal light gradients. – Plant Cell 5: 953-961, 1993. https://academic.oup.com/plcell/article/5/8/953/5984586 PubMed PMC

Nobel P.S.: Photochemistry of photosynthesis. – In: Nobel P.S.: Photochemical and Environmental Plant Physiology. 4th Edition. Pp. 228-275. Academic Press, Amsterdam: 2009. https://www.sciencedirect.com/science/article/pii/B9780123741431000053?via%3Dihub

Nürnberg D.J., Morton J., Santabarbara S. et al.: Photochemistry beyond the red limit in chlorophyll f-containing photo-systems. – Science 360: 1210-1213, 2018. https://www.science.org/lookup/doi/10.1126/science.aar8313 PubMed DOI

Ogawa T., Grantz D., Boyer J., Govindjee G.: Effects of cations and abscisic acid on chlorophyll a fluorescence in guard cells of Vicia faba. – Plant Physiol. 69: 1140-1144, 1982. https://academic.oup.com/plphys/article/69/5/1140/6078317 PubMed PMC

Ogawa T., Misumi M., Sonoike K.: Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. – Photosynth. Res. 133: 63-73, 2017. https://link.springer.com/article/10.1007%2Fs11120-017-0367-x PubMed

Oguchi R., Douwstra P., Fujita T. et al.: Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. – New Phytol. 191: 146-159, 2011. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03669.x PubMed DOI

Oguchi R., Terashima I., Chow W.S.: The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. plants. – Plant Cell Physiol. 50: 1815-1825, 2009. https://academic.oup.com/pcp/article/50/10/1815/1851165 PubMed

Oh S., Montgomery B.L.: Phytochromes: Where to start? – Cell 171: 1254-1256, 2017. https://www.sciencedirect.com/science/article/pii/S0092867417313673?via%3Dihub PubMed

Ohkubo S., Miyashita H.: A niche for cyanobacteria producing chlorophyll f within a microbial mat. – ISME J. 11: 2368-2378, 2017. https://www.nature.com/articles/ismej201798 PubMed PMC

Oka K., Ueno Y., Yokono M. et al.: Adaptation of light harvesting and energy transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. – Photosynth. Res. 146: 227-234, 2020. https://link.springer.com/article/10.1007/s11120-020-00714-1 PubMed DOI

Olson J.M., Blankenship R.E.: Thinking about the evolution of photosynthesis. – Photosynth. Res. 80: 373-386, 2004. https://link.springer.com/article/10.1023/B:PRES.0000030457.06495.83 PubMed DOI

Ort D.R., Merchant S.S., Alric J. et al.: Redesigning photosynthesis to sustainably meet global food and bioenergy demand. – P. Natl. Acad. Sci. USA 112: 8529-8536, 2015. https://www.pnas.org/content/112/28/8529 PubMed PMC

Osmond B., Chow W.S., Wyber R. et al.: Relative functional and optical absorption cross-sections of PSII and other photosynthetic parameters monitored in situ, at a distance with a time resolution of a few seconds, using a prototype light induced fluorescence transient (LIFT) device. – Funct. Plant Biol. 44: 985-1006, 2017. https://www.publish.csiro.au/fp/FP17024 PubMed

Ostroumov E.E., Khan Y.R., Scholes G.D., Govindjee G.: Photophysics of photosynthetic pigment-protein complexes. – In: Demmig-Adams B., Garab G., Adams W.W. III, Govindjee G. (ed.): Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in Photosynthesis and Respiration. Vol. 40. Pp. 97-128. Springer, Dordrecht: 2014. https://link.springer.com/chapter/10.1007/978-94-017-9032-1_4 DOI

Ouzounis T., Rosenqvist E., Ottosen C.-O.: Spectral effects of artificial light on plant physiology and secondary metabolism: A review. – HortScience 50: 1128-1135, 2015. https://journals.ashs.org/hortsci/view/journals/hortsci/50/8/article-p1128.xml

Padhi B., Chauhan G., Kandoi D. et al.: A comparison of chlorophyll fluorescence transient measurements, using Handy PEA and FluorPen fluorometers. – Photosynthetica 59: 399-408, 2021. https://ps.ueb.cas.cz/artkey/phs-202103-0004_a-comparison-of-chlorophyll-fluorescence-transient-measurements-using-handy-pea-and-fluorpen-fluorometers.php

Paik I., Huq E.: Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. – Semin. Cell Dev. Biol. 92: 114-121, 2019. https://www.sciencedirect.com/science/article/abs/pii/S1084952117305748?via%3Dihub PubMed PMC

Palenik B.: Chromatic adaptation in marine Synechococcus strains. – Appl. Environ. Microb. 67: 991-994, 2001. https://journals.asm.org/doi/10.1128/AEM.67.2.991-994.2001 PubMed DOI PMC

Palmitessa O.D., Pantaleo M.A., Santamaria P.: Applications and development of LEDs as supplementary lighting for tomato at different latitudes. – Agronomy 11: 835, 2021. https://www.mdpi.com/2073-4395/11/5/835

Pan X., Cao P., Su X. et al.: Structural analysis and comparison of light-harvesting complexes I and II. – BBA-Bioenergetics 1861: 148038, 2020. https://www.sciencedirect.com/science/article/pii/S0005272819300623?via%3Dihub PubMed

Pan X., Ma J., Su X. et al.: Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. – Science 360: 1109-1113, 2018. https://www.science.org/lookup/doi/10.1126/science.aat1156 PubMed DOI

Papageorgiou G.C.: Chlorophyll fluorescence: an intrinsic probe of photosynthesis. – In: Govindjee G. (ed.): Bioenergetics of Photosynthesis. Pp. 319-371. Academic Press, New York: 1975. https://www.sciencedirect.com/science/article/pii/B9780122943508500118?via%3Dihub

Papageorgiou G.C.: The photosynthesis of cyanobacteria (blue bacteria) from the perspective of signal analysis of chlorophyll a fluorescence. – J. Sci. Ind. Res. India 155: 596-617, 1996.

Papageorgiou G.C., Govindjee G.: Changes in intensity and spectral distribution of fluorescence. Effect of light treatment on normal and DCMU-poisoned Anacystis nidulans. – Biophys. J. 7: 375-389, 1967. https://www.cell.com/biophysj/pdf/S0006-3495(67)86595-0.pdf PubMed PMC

Papageorgiou G.C., Govindjee G.: Light-induced changes in the fluorescence yield of chlorophyll a in vivo. I. Anacystis nidulans. – Biophys. J. 8: 1299-1315, 1968a. https://www.cell.com/biophysj/pdf/S0006-3495(68)86557-9.pdf PubMed PMC

Papageorgiou G.C., Govindjee G.: Light induced changes in the fluorescence yield of chlorophyll a in vivo. II. Chlorella pyrenoidosa. – Biophys. J. 8: 1316-1328, 1968b. https://www.cell.com/biophysj/pdf/S0006-3495(68)86558-0.pdf PubMed PMC

Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 818. Springer, Dordrecht: 2004. https://www.springer.com/gp/book/9781402032172

Papageorgiou G.C., Govindjee G.: Photosystem II fluorescence: slow changes – scaling from the past. – J. Photoch. Photobio. B 104: 258-270, 2011. https://www.sciencedirect.com/science/article/abs/pii/S1011134411000844?via%3Dihub PubMed

Papageorgiou G.C., Govindjee G.: The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: definitions, timelines, viewpoints, open questions. – In: Demmig-Adams B., Garab G., Adams W.W. III, Govindjee G. (ed.): Nonphotochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Pp. 1-44. Advances in Photosynthesis and Respiration. Vol. 40. Springer, Dordrecht: 2014. https://link.springer.com/chapter/10.1007/978-94-017-9032-1_1 DOI

Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K.: The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. – Photosynth. Res. 94: 275-290, 2007. https://link.springer.com/article/10.1007/s11120-007-9193-x PubMed DOI

Paradiso R., Proietti S.: Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. – J. Plant Growth Regul., 2021. (In press) https://link.springer.com/article/10.1007/s00344-021-10337-y DOI

Pattison P.M., Tsao J.Y., Brainard G.C., Bugbee B.: LEDs for photons, physiology and food. – Nature 563: 493-500, 2018. https://www.nature.com/articles/s41586-018-0706-x/ PubMed

Peers G., Truong T.B., Ostendorf E. et al.: An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. – Nature 462: 518-521, 2009. https://www.nature.com/articles/nature08587 PubMed

Pérez-Bueno M.K., Pineda M., Díaz-Casado E., Barón M.: Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. – Physiol. Plantarum 153: 161-174, 2015. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12237 PubMed DOI

Pettai H., Oja V., Freiberg A., Laisk A.: Photosynthetic activity of far-red light in green plants. – BBA-Bioenergetics 1708: 311-321, 2005a. https://www.sciencedirect.com/science/article/pii/S0005272805001192?via%3Dihub PubMed

Pettai H., Oja V., Freiberg A., Laisk A.: The long-wavelength limit of plant photosynthesis. – FEBS Lett. 579: 4017-4019, 2005b. https://febs.onlinelibrary.wiley.com/doi/full/10.1016/j.febslet.2005.04.088 PubMed DOI

Pfündel E.E.: Deriving room temperature excitation spectra for photosystem I and photosystem II fluorescence in intact leaves from the dependence of FV/FM on excitation wavelength. – Photosynth. Res. 100: 163-177, 2009. https://link.springer.com/article/10.1007/s11120-009-9453-z PubMed DOI

Pfündel E.E.: Simultaneously measuring pulse amplitude modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. – Photosynth. Res. 147: 345-358, 2021. https://link.springer.com/article/10.1007%2Fs11120-021-00821-7 PubMed

Pfündel E.E., Latouche G., Meister A., Cerovic Z.G.: Linking chloroplast relocation to different responses of photosynthesis to blue and red radiation in low and high light-acclimated leaves of Arabidopsis thaliana (L.). – Photosynth. Res. 137: 105-128, 2018. https://link.springer.com/article/10.1007%2Fs11120-018-0482-3 PubMed

Pi X., Zhao S., Wang W. et al.: The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. – Science 365: eaaax4406, 2019. https://www.science.org/doi/10.1126/science.aax4406 PubMed DOI

Prášil O., Kolber Z.S., Falkowski P.G.: Control of the maximal chlorophyll fluorescence yield by the QB binding site. – Photosynthetica 56: 150-162, 2018. https://ps.ueb.cas.cz/artkey/phs-201801-0013_control-of-the-maximal-chlorophyll-fluorescence-yield-by-the-qb-binding-site.php

Ptushenko O.S., Ptushenko V.V., Solovchenko A.E.: Spectrum of light as a determinant of plant functioning: A historical perspective. – Life 10: 25, 2020. https://www.mdpi.com/2075-1729/10/3/25 PubMed PMC

Qin X., Suga M., Kuang T., Shen J.R.: Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. – Science 348: 989-995, 2015. https://www.science.org/lookup/doi/10.1126/science.aab0214 PubMed DOI

Rappaport F., Béal D., Joliot A., Joliot P.: On the advantages of using green light to study fluorescence yield changes in leaves. – BBA-Bioenergetics 1767: 56-65, 2007. https://www.sciencedirect.com/science/article/pii/S0005272806003094?via%3Dihub PubMed

Raven J.A.: Functional evolution of photochemical energy transformations in oxygen-producing organisms. – Funct. Plant Biol. 36: 505-515, 2009. https://www.publish.csiro.au/fp/FP09087 PubMed

Razzak M.A., Ranade S.S., Strand Å., García-Gil M.: Environment: Differential response of Scots pine seedlings to variable intensity and ratio of R and FR light. – Plant Cell Environ. 40: 1332-1340, 2017. https://onlinelibrary.wiley.com/doi/10.1111/pce.12921 PubMed DOI

Remelli W., Santabarbara S.: Excitation and emission wavelength dependence of fluorescence spectra in whole cells of the cyanobacterium Synechocystis sp. PPC6803: Influence on the estimation of photosystem II maximal quantum efficiency. – BBA-Bioenergetics 1859: 1207-1222, 2018. https://www.sciencedirect.com/science/article/pii/S000527281830642X?via%3Dihub PubMed

Ritchie R.J., Larkum A.W.D., Ribas I.: Could photosynthesis function on Proxima Centauri b? – Int. J. Astrobiol. 17: 147-176, 2018. https://www.cambridge.org/core/journals/international-journal-of-astrobiology/article/could-photosynthesis-function-on-proxima-centauri-b/4418B56656F8EE751FAF7D3304851836

Rivadossi A., Zucchelli G., Garlaschi F.M., Jennings R.C.: The importance of PS I chlorophyll red forms in light-harvesting by leaves. – Photosynth. Res. 60: 209-215, 1999. https://link.springer.com/article/10.1023/A:1006236829711 DOI

Rockwell N.C., Duanmu D., Martin S.S. et al.: Eukaryotic algal phytochromes span the visible spectrum. – P. Natl. Acad. Sci. USA 111: 3871-3876, 2014. https://www.pnas.org/content/111/10/3871 PubMed PMC

Rockwell N.C., Lagarias J.C.: A brief history of phytochromes. – ChemPhysChem 11: 1172-1180, 2010. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.200900894 PubMed DOI PMC

Rockwell N.C., Lagarias J.C.: Phytochrome diversification in cyanobacteria and eukaryotic algae. – Curr. Opin. Plant Biol. 37: 87-93, 2017. https://www.sciencedirect.com/science/article/abs/pii/S136952661630200X?via%3Dihub PubMed PMC

Rockwell N.C., Su Y.S., Lagarias J.C.: Phytochrome structure and signaling mechanisms. – Annu. Rev. Plant Biol. 57: 837-858, 2006. https://www.annualreviews.org/doi/10.1146/annurev.arplant.56.032604.144208 PubMed DOI PMC

Roelfsema M.R.G., Hedrich R.: In the light of stomatal opening: new insights into 'the Watergate'. New Phytol. 167: 665-691, 2005. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2005.01460.x PubMed DOI

Romero J.M., Cordon G.B., Lagorio M.G.: Modeling re-absorption of fluorescence from the leaf to the canopy level. – Remote Sens. Environ. 204: 138-146, 2018. https://www.sciencedirect.com/science/article/abs/pii/S0034425717304984?via%3Dihub

Ronald J., Davis S.J.: Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. – Plant Cell Environ. 42: 2871-2884, 2019. https://onlinelibrary.wiley.com/doi/10.1111/pce.13634 PubMed DOI

Ross R.T., Calvin M.: Thermodynamics of light emission and free-energy storage in photosynthesis. – Biophys. J. 7: 595-614, 1967. https://www.cell.com/biophysj/pdf/S0006-3495(67)86609-8.pdf PubMed PMC

Ruberti I., Sessa G., Ciolfi A. et al.: Plant adaptation to dynamically changing environment: the shade avoidance response. – Biotechnol. Adv. 30: 1047-1058, 2012. https://www.sciencedirect.com/science/article/abs/pii/S0734975011001467?via%3Dihub PubMed

Rudall P.J., Hilton J., Bateman R.M.: Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants. – New Phytol. 200: 598-614, 2013. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.12406 PubMed DOI

Russo M., Casazza A.P., Cerullo G. et al.: Direct evidence for excitation energy transfer limitations imposed by low-energy chlorophylls in photosystem I – Light harvesting complex I of land plants. – J. Phys. Chem. B 125: 3566-3573, 2021. https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01498 PubMed DOI PMC

Sanfilippo J.E, Garczarek L., Partensky F., Kehoe D.M.: Chromatic acclimation in cyanobacteria: A diverse and widespread process for optimizing photosynthesis. – Annu. Rev. Microbiol. 73: 407-433, 2019. https://www.annualreviews.org/doi/10.1146/annurev-micro-020518-115738 PubMed DOI

Sanfilippo J.E., Nguyen A.A.., Karty J.A. et al.: Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus. – P. Natl. Acad. Sci. USA 113: 6077-6082, 2016. https://www.pnas.org/content/113/21/6077 PubMed PMC

Santabarbara S., Casazza A.P., Belgio E. et al.: Light harvesting by long-wavelength chlorophyll forms (red forms) in algae: Focus on their presence, distribution and function. – In: Larkum A.W.D., Grossman A.R., Raven J.R. (ed.): Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration. Vol. 45. Pp. 261-297. Springer, Cham: 2020. https://link.springer.com/chapter/10.1007/978-3-030-33397-3_11 DOI

Santabarbara S., Monteleone F.V., Remellia W. et al.: Comparative excitation-emission dependence of the FV/FM ratio in model green algae and cyanobacterial strains. – Physiol. Plantarum 166: 351-364, 2019. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12931 PubMed DOI

Schansker G., Tóth Z.S., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. – BBA-Bioenergetics 1807: 1032-1043, 2011. https://www.sciencedirect.com/science/article/pii/S000527281100140X?via%3Dihub PubMed

Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. – In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 279-319. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007%2F978-1-4020-3218-9_11

Schreiber U., Klughammer C.: New NADPH/9-AA module for the DUAL-PAM-100: Description, operation and examples of application. – PAM Appl. Notes 2: 1-13, 2009. https://www.walz.com/downloads/pan/PAN09001_Rev04.pdf

Schreiber U., Klughammer C.: Evidence for variable chlorophyll fluorescence of photosystem I in vivo. – Photosynth. Res. 149: 213-231, 2021. https://link.springer.com/article/10.1007/s11120-020-00814-y PubMed DOI PMC

Schreiber U., Klughammer C., Koblowski J.: High-end chlorophyll fluorescence analysis with the MULTI-COLOR-PAM. I. Various light qualities and their applications. – PAM Appl. Notes 1: 1-21, 2011. https://www.walz.com/downloads/pan/PAN11001.pdf

Schreiber U., Klughammer C., Kolbowski J.: Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. – Photosynth. Res. 113: 127-144, 2012. https://link.springer.com/article/10.1007/s11120-012-9758-1 PubMed DOI PMC

Schreiber U., Kühl M., Klimant I., Reising H.: Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. – Photosynth. Res. 47: 103-109, 1996. https://link.springer.com/article/10.1007/BF00017758 PubMed DOI

Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. – Photosynth. Res. 10: 51-62, 1986. https://link.springer.com/article/10.1007%2FBF00024185 PubMed

Segečová A., Pérez-Bueno M.L., Barón M. et al.: Non-invasive determination of toxic stress biomarkers by high-throughput screening of photoautotrophic cell suspension cultures with multi-colour fluorescence imaging. – Plant Methods 15: 100, 2019. https://0-plantmethods-biomedcentral-com.brum.beds.ac.uk/articles/10.1186/s13007-019-0484-y PubMed DOI PMC

Semchonok D.A., Li M., Bruce B.D. et al.: Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. – BBA-Bioenergetics 1857: 1619-1626, 2016. https://www.sciencedirect.com/science/article/pii/S0005272816305722?via%3Dihub PubMed

Semer J., Navrátil M., Špunda V., Štroch M.: Chlorophyll fluorescence parameters to assess utilization of excitation energy in photosystem II independently of changes in leaf absorption. – J. Photoch. Photobio. B 197: 111535, 2019. https://www.sciencedirect.com/science/article/abs/pii/S1011134419304592?via%3Dihub PubMed

Sheng X., Watanabe A., Li A. et al.: Structural insight into light harvesting for photosystem II in green algae. – Nat. Plants 5: 1320-1330, 2019. https://www.nature.com/articles/s41477-019-0543-4 PubMed

Shevela D., Kern J.F., Govindjee G. et al.: Photosystem II. – eLS 2: 1-20, 2021. https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0029372 DOI

Shibata Y., Nishi S., Kawakami K. et al.: Photosystem II does not possess a simple excitation energy funnel: Time-resolved fluorescence spectroscopy meets theory. – J. Am. Chem. Soc. 135: 6903-6914, 2013. https://pubs.acs.org/doi/10.1021/ja312586p PubMed DOI PMC

Shimazaki K., Doi M., Assmann S.M., Kinoshita T.: Light regulation of stomatal movement. – Annu. Rev. Plant Biol. 58: 219-247, 2007. https://www.annualreviews.org/doi/10.1146/annurev.arplant.57.032905.105434 PubMed DOI

Shtein I., Popper Z.A., Harpaz-Saad S.: Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns. – Plant Signal. Behav. 12: e1339858, 2017. https://www.tandfonline.com/doi/full/10.1080/15592324.2017.1339858 PubMed DOI PMC

Shukla A., Biswas A., Blot N. et al.: Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus. – P. Natl. Acad. Sci. USA 109: 20136-20141, 2012. https://www.pnas.org/content/109/49/20136 PubMed PMC

Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. – Plant Cell 33: 1286-1302, 2021. https://academic.oup.com/plcell/article-abstract/33/4/1286/6119330?redirectedFrom=fulltext PubMed PMC

Sipka H., Müller P., Brettel K. et al.: Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus. – Physiol. Plantarum 166: 22-32, 2019. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12945 PubMed DOI

Slattery R.A., Grennan A.K., Sivaguru M. et al.: Light sheet microscopy reveals more gradual light attenuation in light-green versus dark-green soybean leaves. – J. Exp. Bot. 67: 4697-4709, 2016. https://academic.oup.com/jxb/article/67/15/4697/1749899 PubMed PMC

Slattery R.A., Ort D.R.: Perspectives on improving light distribution and light use efficiency in crop canopies. – Plant Physiol. 185: 34-48, 2021. https://academic.oup.com/plphys/article/185/1/34/6149974 PubMed PMC

Smith H., Whitelam G.C.: The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. – Plant Cell Environ. 20: 840-844, 1997. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.1997.d01-104.x DOI

Somers D.E., Devlin P.F., Kay S.A.: Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. – Science 282: 1488-1490, 1998. https://www.science.org/doi/abs/10.1126/science.282.5393.1488 PubMed DOI

Sonoike K., Hihara Y., Ikeuchi M.: Physiological significance of the regulation of photosystem stoichiometry upon high light acclimation of Synechocystis sp. PCC 6803. – Plant Cell Physiol. 42: 379-384, 2001. https://academic.oup.com/pcp/article/42/4/379/1873262 PubMed

Srivastava A., Zeiger E.: Fast fluorescence quenching from isolated guard cell chloroplasts of Vicia faba is induced by blue light and not by red light. – Plant Physiol. 100: 1562-1566, 1992. https://academic.oup.com/plphys/article/100/3/1562/6085841 PubMed PMC

Stamatakis Κ., Papageorgiou G.C., Govindjee G.: Effects of exogenous β-carotene, a chemical scavenger of singlet oxygen, on the millisecond rise of chlorophyll a fluorescence of cyanobacterium Synechococcus sp. PCC 7942. – Photosynth. Res. 130: 317-324, 2016. https://link.springer.com/article/10.1007%2Fs11120-016-0255-9 PubMed

Stamatakis K., Tsimilli-Michael M., Papageorgiou G.C.: Fluorescence induction in the phycobilisome-containing cyanobacterium Synechococcus sp PCC 7942: Analysis of the slow fluorescence transient. – BBA-Bioenergetics 1767: 766-772, 2007. https://www.sciencedirect.com/science/article/pii/S0005272807000369?via%3Dihub PubMed

Stirbet A., Govindjee G.: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. – J. Photoch. Photobio. B 104: 236-257, 2011. https://www.sciencedirect.com/science/article/abs/pii/S1011134410002812?via%3Dihub PubMed

Stirbet A., Govindjee G.: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. – Photosynth. Res. 113: 15-61, 2012. https://link.springer.com/article/10.1007%2Fs11120-012-9754-5 PubMed

Stirbet A., Lazár D., Guo Y., Govindjee G.: Photosynthesis: basics, history and modelling. – Ann. Bot.-London 126: 511-537, 2020. https://academic.oup.com/aob/article/126/4/511/5602694 PubMed PMC

Stirbet A., Lazár D., Kromdijk J., Govindjee G.: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? – Photosynthetica 56: 86-104, 2018. https://ps.ueb.cas.cz/artkey/phs-201801-0008_chlorophyll-a-fluorescence-induction-can-just-a-one-second-measurement-be-used-to-quantify-abiotic-stress-resp.php

Stirbet A., Lazár D., Papageorgiou G.C., Govindjee G.: Chlorophyll a fluorescence in cyanobacteria: relation to photosynthesis. – In: Mishra A.K., Tiwari D.N., Rai A.N. (ed.): Cyanobacteria – From Basic Science to Applications. Pp. 79-130. Academic Press, London: 2019. https://www.sciencedirect.com/science/article/pii/B9780128146675000052

Stomp M., Huisman J., de Jongh F. et al.: Adaptive divergence in pigment composition promotes phytoplankton biodiversity. – Nature 432: 104-107, 2004. https://www.nature.com/articles/nature03044 PubMed

Stomp M., Huisman J., Stal L.J., Matthijs H.C.P.: Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. – ISME J. 1: 271-282, 2007a. https://www.nature.com/articles/ismej200759/tables/ PubMed

Stomp M., Huisman J., Vörös L. et al.: Colourful coexistence of red and green picocyanobacteria in lakes and seas. – Ecol. Lett. 10: 290-298, 2007b. https://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2007.01026.x PubMed DOI

Stomp M., van Dijk M.A., van Overzee H.M.J. et al.: The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. – Am. Nat. 172: 169-185, 2008. https://www.journals.uchicago.edu/doi/10.1086/591680 PubMed DOI

Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP test. – In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic, Dordrecht: 1995. https://www.researchgate.net/publication/284763350_Measuring_Fast_Fluorescence_Transients_to_Address_Environmental_Questions_The_JIP-Test

Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll fluorescence transient. – In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 321-362. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_12 DOI

Suetsugu N., Dolja V.V., Wada M.: Why have chloroplasts developed a unique motility system? – Plant Signal. Behav. 5: 1190-1196, 2010. https://www.tandfonline.com/doi/full/10.4161/psb.5.10.12802 PubMed DOI PMC

Suetsugu N., Higa T., Gotoh E., Wada M.: Light-induced movements of chloroplasts and nuclei are regulated in both cp-actin-filament-dependent and -independent manners in Arabidopsis thaliana. – PLoS ONE 11: e0157429, 2016. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157429 PubMed PMC

Suetsugu N., Takami T., Ebisu Y. et al.: Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis. – PLoS ONE 9: e108374, 2014. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108374 PubMed PMC

Suetsugu N., Wada M.: Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. – Biol. Chem. 388: 927-935, 2007. https://www.degruyter.com/document/doi/10.1515/BC.2007.118/html PubMed DOI

Suetsugu N., Wada M.: Chloroplast photorelocation movement. – In: Sandelius A.S., Aronsson H. (ed.): The Chloroplasts. Plant Cell Monographs Series. Pp. 335-366. Springer, Berlin-Heidelberg: 2009. https://link.springer.com/chapter/10.1007%2F978-3-540-68696-5_8

Suga M., Ozawa S.I., Yoshida-Motomura K. et al.: Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. – Nat. Plants 5: 626-636, 2019. https://www.nature.com/articles/s41477-019-0438-4 PubMed

Sun J., Nishio J.N., Vogelmann T.C.: Green light drives CO2 fixation deep within leaves. – Plant Cell Physiol. 39: 1020-1026, 1998. https://academic.oup.com/pcp/article/39/10/1020/1844911

Sušila P., Lazár D., Ilík P. et al.: The gradient of exciting radiation within a sample affects the relative height of steps in the fast chlorophyll a fluorescence rise. – Photosynthetica 42: 161-172, 2004. https://ps.ueb.cas.cz/artkey/phs-200402-0001_the-gradient-of-exciting-radiation-within-a-sample-affects-the-relative-height-of-steps-in-the-fast-chlorophyll.php

Takahashi K., Mineuchi K., Nakamura T. et al.: A system for imaging transverse distribution of scattered light and chlorophyll fluorescence in intact rice leaves. – Plant Cell Environ. 17: 105-110, 1994. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00271.x DOI

Takemiya A., Sugiyama N., Fujimoto H. et al.: Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. – Nat. Commun. 4: 2094, 2013. https://www.nature.com/articles/ncomms3094 PubMed

Talbott L.D., Hammad J.W., Harn L.C. et al.: Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement. – Plant Cell Physiol. 47: 332-339, 2006. https://academic.oup.com/pcp/article/47/3/332/1922980 PubMed

Talbott L.D., Nikolova G., Ortiz A. et al.: Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. – Am. J. Bot. 89: 366-368, 2002. https://bsapubs.onlinelibrary.wiley.com/doi/10.3732/ajb.89.2.366 PubMed DOI

Tandeau de Marsac N.: Occurrence and nature of chromatic adaptation in cyanobacteria. – J. Bacteriol. 130: 82-91, 1977. https://journals.asm.org/doi/10.1128/jb.130.1.82-91.1977 PubMed DOI PMC

Terashima I., Fujita T., Inoue T. et al.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. – Plant Cell Physiol. 50: 684-697, 2009. https://academic.oup.com/pcp/article/50/4/684/1908367 PubMed

Terashima I., Inoue Y.: Palisade tissue chloroplasts and spongy tissue chloroplasts in spinach: biochemical and ultrastructural differences. – Plant Cell Physiol. 26: 63-75, 1985a. https://academic.oup.com/pcp/article-abstract/26/1/63/1861243?redirectedFrom=fulltext

Terashima I., Inoue Y.: Vertical gradient in photosynthetic properties of spinach chloroplasts dependent on intra-leaf light environment. – Plant Cell Physiol. 26: 781-785, 1985b. https://academic.oup.com/pcp/article-abstract/26/4/781/1902986?redirectedFrom=fulltext

Terashima I., Saeki T.: Light environment within a leaf. I. Optical properties of paradermal sections of Camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. – Plant Cell Physiol. 24: 1493-1501, 1983. https://academic.oup.com/pcp/article-abstract/24/8/1493/1841455?redirectedFrom=fulltext

Thapper A., Mamedov F., Mokvist F. et al.: Defining the far-red limit of photosystem II in spinach. – Plant Cell 21: 2391-2401, 2009. https://academic.oup.com/plcell/article/21/8/2391/6095504 PubMed PMC

Trissl H.-W., Gao Y., Wulf K.: Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. – Biophys. J. 64: 974-988, 1993. https://www.cell.com/biophysj/pdf/S0006-3495(93)81463-2.pdf PubMed PMC

Tros M., Mascoli V., Shen G. et al.: Breaking the red limit: Efficient trapping of long-wavelength excitations in chlorophyll-f-containing photosystem I. – Chem. 7: 155-173, 2021. https://www.sciencedirect.com/science/article/abs/pii/S2451929420305453

Tsimilli-Michael M.: Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. – Photosynthetica 58: 275-292, 2020. https://ps.ueb.cas.cz/artkey/phs-202002-0010_special-issue-in-honour-of-prof-reto-j-strasser-8211-revisiting-jip-test-an-educative-review-on-concepts.php

Tsimilli-Michael M., Stamatakis K., Papageorgiou G.C.: Dark-to-light transition in Synechococcus sp. PCC 7942 cells studied by fluorescence kinetics assesses plastoquinone redox poise in the dark and photosystem II fluorescence component and dynamics during state 2 to state 1 transition. – Photosynth. Res. 99: 243-255, 2009. https://link.springer.com/article/10.1007/s11120-009-9405-7 PubMed DOI

van Amerongen H., Valkunas L., van Grondelle R.: Photosynthetic excitons. Pp. 604. World Scientific Publishing, Singapore: 2000. https://www.worldscientific.com/worldscibooks/10.1142/3609 DOI

Vavilin D.V., Tyystjärvi E., Aro E.-M.: Model for the fluorescence induction curve of photoinhibited thylakoids. – Biophys. J. 75: 503-512, 1998. https://www.cell.com/fulltext/S0006-3495(98)77539-3 PubMed PMC

Vialet-Chabrand S., Matthews J.S.A., Simkin A.J. et al.: Importance of fluctuations in light on plant photosynthetic acclimation of Arabidopsis thaliana. – Plant Physiol. 173: 2163-2179, 2017. https://academic.oup.com/plphys/article/173/4/2163/6116047 PubMed PMC

Villafani Y., Yang H.W., Park Y.I.: Color sensing and signal transmission diversity of cyanobacterial phytochromes and cyanobacteriochromes. – Mol. Cells 43: 509-516, 2020. http://www.molcells.org/journal/view.html?doi=10.14348/molcells.2020.0077 PubMed PMC

Vogelmann T.C., Björn L.O.: Measurement of light gradients and spectral regime in plant tissue with a fiber-optic probe. – Physiol. Plantarum 60: 361-368, 1984. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1984.tb06076.x DOI

Vogelmann T.C., Bornman J.F., Josserand S.: Photosynthetic light gradients and spectral regime within leaves of Medicago sativa. – Philos. T. Roy. Soc. B 323: 411-421, 1989. https://royalsocietypublishing.org/doi/10.1098/rstb.1989.0020 DOI

Vogelmann T.C., Evans J.R.: Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. – Plant Cell Environ. 25: 1313-1323, 2002. https://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2002.00910.x DOI

Vogelmann T.C., Han T.: Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. – Plant Cell Environ. 23: 1303-1311, 2000. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.2000.00649.x DOI

Wada M.: Chloroplast and nuclear photorelocation movements. – P. Jpn. Acad. B-Phys. 92: 387-411, 2016. https://www.jstage.jst.go.jp/article/pjab/92/9/92_PJA9209B-01/_article PubMed PMC

Wallner T., Pedroza L., Voigt K. et al.: The cyanobacterial phytochrome 2 regulates the expression of motility-related genes through the second messenger cyclic di-GMP. – Photoch. Photobio. Sci. 19: 631-643, 2020. https://pubs.rsc.org/en/content/articlelanding/2020/PP/C9PP00489K PubMed

Wang F., Robson T.M., Casal J.J. et al.: Contributions of cryptochromes and phototropins to stomatal opening through the day. – Funct. Plant Biol. 47: 226-238, 2020. https://www.publish.csiro.au/fp/FP19053 PubMed

Wang J., Lu W., Tong Y., Yang Q.: Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. – Front. Plant Sci. 7: 250, 2016. https://www.frontiersin.org/articles/10.3389/fpls.2016.00250/full PubMed DOI PMC

Wang Q., Lin C.: Mechanisms of cryptochrome-mediated photoresponses in plants. – Annu. Rev. Plant Biol. 71: 103-129, 2020. https://www.annualreviews.org/doi/10.1146/annurev-arplant-050718-100300 PubMed DOI PMC

Wang W., Yu L.J., Xu C. et al.: Structural basis for blue-green light harvesting and energy dissipation in diatoms. – Science 363: eaav0365, 2019. https://www.science.org/lookup/doi/10.1126/science.aav0365 PubMed DOI

Wang X.Q., Wu W.H., Assmann S.M.: Differential responses of abaxial and adaxial guard cells of broad bean to abscisic acid and calcium. – Plant Physiol. 118: 1421-1429, 1998. https://academic.oup.com/plphys/article/118/4/1421/6081218 PubMed PMC

Wang X.Y., Xu X.M., Cui J.: The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. – Photosynthetica 53: 213-222, 2015. https://ps.ueb.cas.cz/artkey/phs-201502-0008_the-importance-of-blue-light-for-leaf-area-expansion-development-of-photosynthetic-apparatus-and-chloroplast.php

White S., Anandraj A., Trois C.: NADPH fluorescence as an indicator of hydrogen production in the green algae Chlamydomonas reinhardtii. – Int. J. Hydrogen Energ. 39: 1640-1647, 2014. https://www.sciencedirect.com/science/article/abs/pii/S0360319913027419?via%3Dihub

Wientjes E., Croce R.: PMS: photosystem I electron donor or fluorescence quencher. – Photosynth. Res. 111: 185-191, 2012. https://link.springer.com/article/10.1007/s11120-011-9671-z PubMed DOI PMC

Wientjes E., Philippi J., Borst J.W., van Amerongen H.: Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf. – BBA-Bioenergetics 1858: 259-265, 2017. https://www.sciencedirect.com/science/article/pii/S0005272817300099?via%3Dihub PubMed

Wientjes E., van Amerongen H., Croce R.: LHCII is an antenna of both photosystems after long-term acclimation. – BBA-Bioenergetics 1827: 420-426, 2013b. https://www.sciencedirect.com/science/article/pii/S0005272813000029?via%3Dihub PubMed

Wientjes E., van Amerongen H., Croce R.: Quantum yield of charge separation in photosystem II: Functional effect of changes in the antenna size upon light acclimation. – J. Phys. Chem. B 117: 11200-11208, 2013a. https://pubs.acs.org/doi/abs/10.1021/jp401663w PubMed DOI

Wientjes E., van Stokkum I.H.M., van Amerongen H., Croce R.: The role of the individual Lhcas in photosystem I excitation energy trapping. – Biophys J. 101: 745-754, 2011. https://www.sciencedirect.com/science/article/pii/S0006349511007752?via%3Dihub PubMed PMC

Wilson A., Ajlani G., Verbavatz J.-M. et al.: A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. – Plant Cell 18: 992-1007, 2006. https://academic.oup.com/plcell/article/18/4/992/6114881 PubMed PMC

Wiltbank L.B., Kehoe D.M.: Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light. – mBio 7: e02130-15, 2016. https://journals.asm.org/doi/10.1128/mBio.02130-15 PubMed DOI PMC

Wiltbank L.B., Kehoe D.M.: Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. – Nat. Rev. Microbiol. 17: 37-50, 2019. https://www.nature.com/articles/s41579-018-0110-4 PubMed

Wong S.C., Cowan I.R., Farquhar G.D.: Stomatal conductance correlates with photosynthetic capacity. – Nature 282: 424-426, 1979. https://www.nature.com/articles/282424a0

Wraight C.A., Crofts A.R.: Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts. – Eur. J. Biochem. 17: 319-327, 1970. https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1432-1033.1970.tb01169.x PubMed DOI

Wu T., Lin Y., Zheng L. et al.: Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities. – Opt. Express 26: 4135-4147, 2018. https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-26-4-4135&id=381508 PubMed

Xiong J.: Photosynthesis: what color was its origin? – Genome Biol. 7: 245, 2006. https://genomebiology.biomedcentral.com/articles/10.1186/gb-2006-7-12-245 PubMed DOI PMC

Xiong D., Flexas J.: From one side to two sides: the effects of stomatal distribution on photosynthesis. – New Phytol. 228: 1754-1766, 2020. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16801 PubMed DOI

Xiong J., Fischer W.M., Inoue K. et al.: Molecular evidence for the early evolution of photosynthesis. – Science 289: 1724-1730, 2000. https://www.science.org/lookup/doi/10.1126/science.289.5485.1724 PubMed DOI

Xu B., Long Y., Feng X. et al.: GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. – Nat. Commun. 12: 1952, 2021. https://www.nature.com/articles/s41467-021-21694-3 PubMed PMC

Xu C., Pi X., Huang Y. et al.: Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex. – Nat. Commun. 11: 5081, 2020b. https://www.nature.com/articles/s41467-020-18867-x PubMed PMC

Xu P., Chukhutsina V.U., Nawrocki W.J. et al.: Photosynthesis without β-carotene. – eLife 9: e58984, 2020a. https://elifesciences.org/articles/58984 PubMed PMC

Yamamoto H.Y., Higashi R.M.: Violaxanthin deepoxidase: Lipid composition and substrate specificity. – Arch. Biochem. Biophys. 190: 514-522, 1978. https://www.sciencedirect.com/science/article/abs/pii/0003986178903053?via%3Dihub PubMed

Yamamoto H.Y., Nakayama T., Chichester C.: Studies on the light and dark interconversions of leaf xanthophylls. – Arch. Biochem. Biophys. 97: 168-173, 1962. https://www.sciencedirect.com/science/article/abs/pii/0003986162900607?via%3Dihub PubMed

Yamauchi S., Takemiya A., Sakamoto T. et al.: The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. – Plant Physiol. 171: 2731-2743, 2016. https://academic.oup.com/plphys/article/171/4/2731/6115531 PubMed PMC

Yang F., Liu Q., Cheng Y. et al.: Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. – BMC Plant Biol. 20: 148, 2020. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-020-02352-0 PubMed DOI PMC

Yeh K.C., Wu S.H., Murphy J.T., Lagarias J.C.: A cyanobacterial phytochrome two-component light sensory system. – Science 277: 1505-1508, 1997. https://www.science.org/doi/abs/10.1126/science.277.5331.1505 PubMed DOI

Yu X., Liu H., Klejnot J., Lin C.: The cryptochrome blue light receptors. – The Arabidopsis Book 8: e0135, 2010. https://bioone.org/journals/the-arabidopsis-book/volume-2010/issue-8/tab.0135/The-Cryptochrome-Blue-Light-Receptors/10.1199/tab.0135.full PubMed DOI PMC

Zamzam N., Rakowski R., Kaucikas M. et al.: Femtosecond visible transient absorption spectroscopy of chlorophyll-f-containing photosystem II. – P. Natl. Acad. Sci. USA 117: 23158-23164, 2020. https://www.pnas.org/content/117/37/23158 PubMed PMC

Zeiger E., Armond P., Melis A.: Fluorescence properties of guard cell chloroplasts. Evidence for linear electron transport and light-harvesting pigments of photosystem I and II. – Plant Physiol. 67: 17-20, 1980. https://academic.oup.com/plphys/article/67/1/17/6080123 PubMed PMC

Zhang Y., Kaiser E., Zhang Y. et al.: Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum). – Physiol. Plantarum 167: 144-158, 2019. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12876 PubMed DOI

Zhao C., Gan F., Shen G., Bryant D.A.: RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP). – Front. Microbiol. 6: 1303, 2015. https://www.frontiersin.org/articles/10.3389/fmicb.2015.01303/full PubMed DOI PMC

Zheng L., He H., Song W.: Application of light-emitting diodes and the effect of light quality on horticultural crops: a review. – HortScience 54: 1656-1661, 2019. https://journals.ashs.org/hortsci/view/journals/hortsci/54/10/article-p1656.xml

Zheng L., Van Labeke M.-C.: Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. – Front. Plant Sci. 8: 917, 2017. https://www.frontiersin.org/articles/10.3389/fpls.2017.00917/full PubMed DOI PMC

Zouni A., Witt H.T., Kern J. et al.: Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. – Nature 409: 739-743, 2001. https://www.nature.com/articles/35055589 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...