Light quality, oxygenic photosynthesis and more
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39648998
PubMed Central
PMC11559484
DOI
10.32615/ps.2021.055
PII: PS60025
Knihovny.cz E-zdroje
- Klíčová slova
- Chl fluorescence induction, chromatic acclimation of cyanobacteria, photoreceptors, photosynthetic pigments, photosystems I and II, stomatal and chloroplast photoinduced movements,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Anne Burras Lane Newport News 23606 Virginia USA
Department of Biology Molecular Cell Biology Lund University Sölvegatan 35 SE 22462 Lund Sweden
Zobrazit více v PubMed
Aasamaa K., Aphalo P.J.: The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components. – Tree Physiol. 37: 209-219, 2016. https://academic.oup.com/treephys/article/37/2/209/2548380 PubMed
Acuña A.M., Lemaire C., van Grondelle R. et al.: Energy transfer and trapping in Synechococcus WH 7803. – Photosynth. Res. 135: 115-124, 2018b. https://link.springer.com/article/10.1007/s11120-017-0451-2 PubMed DOI PMC
Acuña A.M., van Alphen P., van Grondelle R., van Stokkum I.H.M.: The phycobilisome terminal emitter transfers its energy with a rate of (20 ps)−1 to photosystem II. – Photosynthetica 56: 265-274, 2018a. https://ps.ueb.cas.cz/artkey/phs-201801-0025_the-phycobilisome-terminal-emitter-transfers-its-energy-with-a-rate-of-20-ps-1-to-photosystem-ii.php
Agati G., Fusi F., Mazzinghi P., di Paola M.L.: A simple approach to the evaluation of the reabsorption of chlorophyll fluorescence spectra in intact leaves. – J. Photoch. Photobio. B 17: 163-171, 1993. https://www.sciencedirect.com/science/article/pii/101113449380009X#!
Alami M., Lazar D., Green B.R.: The harmful alga Aureococcus anophagefferens utilizes 19'-butanoyloxyfucoxanthin as well as xanthophyll cycle carotenoids in acclimating to higher light intensities. – BBA-Bioenergetics 1817: 1557-1564, 2012. https://www.sciencedirect.com/science/article/pii/S0005272812001569?via%3Dihub PubMed
Alboresi A., Gerotto C., Cazzaniga S. et al.: A red-shifted antenna protein associated with photosystem II in Physcomitrella patens. – J. Biol. Chem. 286: 28978-28987, 2011. https://www.sciencedirect.com/science/article/pii/S0021925820574425 PubMed PMC
Allakhverdiev S.I., Tomo T., Stamatakis K., Govindjee G.: International conference on 'Photosysnthesis Research for sustainibility-2015 in honor of George C. Papageorgiou', September 21–26, 2015, Crete, Greece. – Photosynth. Res. 130: 1-10, 2016. https://link.springer.com/article/10.1007%2Fs11120-015-0207-9 PubMed
Anderson J.M., Andersson B.: The dynamic photosynthetic membrane and regulation of solar-energy conversion. – Trends Biochem. Sci. 13: 351-355, 1988. https://www.sciencedirect.com/science/article/pii/0968000488901065?via%3Dihub PubMed
Anderson J.M., Aro E.-M.: Grana stacking and protection of Photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: A hypothesis. – Photosynth. Res. 41: 315-326, 1994. https://link.springer.com/article/10.1007/BF00019409 PubMed DOI
Andrés Z., Pérez-Hormaeche J., Leidi E.O. et al.: Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. – P. Natl. Acad. Sci. USA 111: E1806-E1814, 2014. https://www.pnas.org/content/111/17/E1806 PubMed PMC
Arp T.B., Barlas Y., Aji V., Gabor N.M.: Natural regulation of energy flow in a green quantum photocell. – Nano Lett. 16: 7461-7466, 2016. https://pubs.acs.org/doi/10.1021/acs.nanolett.6b03136 PubMed DOI
Arp T.B., Kistner-Morris J., Aji V. et al.: Quieting a noisy antenna reproduces photosynthetic light-harvesting spectra. – Science 368: 1490-1495, 2020. https://www.science.org/lookup/doi/10.1126/science.aba6630 PubMed DOI
Assmann S.M., Simoncini L., Schroeder J.I.: Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba L. – Nature 318: 285-287, 1985. https://www.nature.com/articles/318285a0
Bąba W., Kompała-Bąba A., Zabochnicka-Świątek M. et al.: Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence. – Photosynthetica 57: 668-679, 2019. https://ps.ueb.cas.cz/artkey/phs-201902-0038_discovering-trends-in-photosynthesis-using-modern-analytical-tools-more-than-100-reasons-to-use-chlorophyll-flu.php
Bae G., Choi G.: Decoding of light signals by plant phytochromes and their interacting proteins. – Annu. Rev. Plant Biol. 59: 281-311, 2008. https://www.annualreviews.org/doi/10.1146/annurev.arplant.59.032607.092859 PubMed DOI
Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. – Annu. Rev. Plant Biol. 59: 89-113, 2008. https://www.annualreviews.org/doi/10.1146/annurev.arplant.59.032607.092759 PubMed DOI
Ballottari M., Dall'Osto L., Morosinotto T., Bassi R.: Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. – J. Biol. Chem. 282: 8947-8958, 2007. https://www.sciencedirect.com/science/article/pii/S0021925819834798?via%3Dihub PubMed
Bantis F., Smirnakou S., Ouzounis T. et al.: Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). – Sci. Hortic.-Amsterdam 235: 437-451, 2018. https://www.sciencedirect.com/science/article/pii/S0304423818301420?via%3Dihub
Baránková B., Lazár D., Nauš J.: Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves. – Remote Sens. Environ. 174: 181-196, 2016. https://www.sciencedirect.com/science/article/pii/S0034425715302327?via%3Dihub
Belyaeva N.E., Schmitt F.-J., Paschenko V.Z. et al.: Model based analysis of transient fluorescence yield induced by actinic laser flashes in spinach leaves and cells of green alga Chlorella pyrenoidosa Chick. – Plant Physiol. Bioch. 77: 49-59, 2014. https://www.sciencedirect.com/science/article/abs/pii/S098194281400031X PubMed
Belyaeva O.B.: Studies of chlorophyll biosynthesis in Russia. – Photosynth. Res. 76: 405-411, 2003. https://link.springer.com/article/10.1023%2FA%3A1024951212053 PubMed
Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I. – Nature 426: 630-635, 2003. https://www.nature.com/articles/nature02200 PubMed
Bernacchi C.J., Kimball B.A., Quarles D.R. et al.: Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. – Plant Physiol. 143: 134-144, 2007. https://academic.oup.com/plphys/article/143/1/134/6106572 PubMed PMC
Bertolino L.T., Caine R.S., Gray J.E.: Impact of stomatal density and morphology on water use efficiency in a changing world. – Front. Plant Sci. 10: 225, 2019. https://www.frontiersin.org/articles/10.3389/fpls.2019.00225/full PubMed DOI PMC
Bhaya D.: In the limelight: Photoreceptors in cyanobacteria. – mBio 7: e00741-16, 2016. https://journals.asm.org/doi/10.1128/mBio.00741-16 PubMed DOI PMC
Bielczynski L.W., Schansker G., Croce R.: Consequences of the reduction of the Photosystem II antenna size on the light acclimation capacity of Arabidopsis thaliana. – Plant Cell Environ. 43: 866-879, 2020. https://onlinelibrary.wiley.com/doi/10.1111/pce.13701 PubMed DOI PMC
Bína D., Gardian Z., Herbstová M. et al.: Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. II. Biochemistry and spectroscopy. – BBA-Bioenergetics 1837: 802-810, 2014. https://www.sciencedirect.com/science/article/pii/S0005272814000139?via%3Dihub PubMed
Björkman O., Demmig B.: Photon yield of O2 evolution of chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. – Planta 170: 489-504, 1987. https://link.springer.com/article/10.1007%2FBF00402983 PubMed
Björn L.O.: Why are plants green? Relationships between pigment absorption and photosynthetic efficiency. – Photosynthetica 10: 121-129, 1976.
Björn L.O., Ghiradella H.: Spectral tuning in biology I: Pigments. – In: Björn L.O. (ed.): Photobiology. Pp. 97-117. Springer, New York: 2015. https://link.springer.com/chapter/10.1007/978-1-4939-1468-5_9 DOI
Björn L.O., Govindjee G.: The evolution of photosynthesis and chloroplasts. – Curr. Sci. India 96: 1466-1474, 2009. http://hoffman.cm.utexas.edu/courses/bjorn_govindjee.pdf
Björn L.O., Papageorgiou G.C., Blankenship R.E., Govindjee G.: A viewpoint: Why chlorophyll a? – Photosynth. Res. 99: 85-98, 2009. https://link.springer.com/article/10.1007/s11120-008-9395-x PubMed DOI
Blain-Hartung M., Rockwell N.C., Moreno M.V. et al.: Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. – J. Biol. Chem. 293: 8473-8483, 2018. https://www.sciencedirect.com/science/article/pii/S0021925820390918?via%3Dihub PubMed PMC
Blankenship R.E.: Molecular Mechanisms of Photosynthesis. 3rd Edition. Pp. 320. Wiley-Blackwell, Oxford: 2021.
Boichenko V.A., Klimov V.V., Miyashita H., Miyachi S.: Functional characteristics of chlorophyll d-predominating photosynthetic apparatus in intact cells of Acaryochloris marina. – Photosynth. Res. 65: 269-277, 2000. https://link.springer.com/article/10.1023%2FA%3A1010637631417 PubMed
Brecht M., Hussels M., Schlodder E., Karapetyan N.V.: Red antenna states of photosystem I trimers from Arthrospira platensis revealed by single-molecule spectroscopy. – BBA-Bioenergetics 1817: 445-452, 2012. https://www.sciencedirect.com/science/article/pii/S0005272811002842?via%3Dihub PubMed
Briantais J.-M., Vernotte C., Picaud M., Krause G.H.: A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. – BBA-Bioenergetics 548: 128-138, 1979. https://www.sciencedirect.com/science/article/pii/0005272879901932?via%3Dihub PubMed
Briggs W.R.: Phototropism: some history, some puzzles, and a look ahead. – Plant Physiol. 164: 13-23, 2014. https://academic.oup.com/plphys/article/164/1/13/6112777 PubMed PMC
Briggs W.R., Christie J.M.: Phototropins 1 and 2: versatile plant blue-light receptors. – Trends Plant Sci. 7: 204-210, 2002. https://www.sciencedirect.com/science/article/pii/S1360138502022458?via%3Dihub PubMed
Brodersen C.R., Vogelmann T.C.: Do changes in light direction affect absorption profiles in leaves? – Funct. Plant Biol. 37: 403-412, 2010. https://www.publish.csiro.au/fp/FP09262
Brody S.S.: New excited state of chlorophyll. – Science 128: 838-839, 1958. https://www.science.org/doi/10.1126/science.128.3328.838 PubMed DOI
Brugnoli E., Björkman O.: Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. – Photosynth. Res. 32: 23-35, 1992. https://link.springer.com/article/10.1007/BF00028795 PubMed DOI
Büchel C.: Light harvesting complexes in chlorophyll c- containing algae. – BBA-Bioenergetics 1861: 148027, 2020. https://www.sciencedirect.com/science/article/pii/S0005272819300519?via%3Dihub PubMed
Campbell D., Hurry V., Clarke A.K. et al.: Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. – Microbiol. Mol. Biol. Rev. 62: 667-683, 1998. https://journals.asm.org/doi/10.1128/MMBR.62.3.667-683.1998 PubMed DOI PMC
Castillon A., Shen H., Huq E.: Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. – Trends Plant Sci. 12: 514-521, 2007. https://www.sciencedirect.com/science/article/pii/S1360138507002464?via%3Dihub PubMed
Chater C.C.C., Caine R.S., Fleming A.J., Gray J.E.: Origins and evolution of stomatal development. – Plant Physiol. 174: 624-638, 2017. https://academic.oup.com/plphys/article/174/2/624/6117400 PubMed PMC
Chaves I., Pokorny R., Byrdin M. et al.: The cryptochromes: blue light photoreceptors in plants and animals. – Annu. Rev. Plant Biol. 62: 335-364, 2011. https://www.annualreviews.org/doi/10.1146/annurev-arplant-042110-103759 PubMed DOI
Chen M., Blankenship R.E.: Expanding the solar spectrum used by photosynthesis. – Trends Plant Sci. 16: 427-431, 2011. https://www.sciencedirect.com/science/article/pii/S1360138511000598?via%3Dihub PubMed
Chen M., Floetenmeyer M., Bibby T.S.: Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. – FEBS Lett. 583: 2535-2539, 2009. https://febs.onlinelibrary.wiley.com/doi/full/10.1016/j.febslet.2009.07.012 PubMed DOI
Chen M., Schliep M., Willows R.D. et al.: A red-shifted chlorophyll. – Science 329: 1318-1319, 2010. https://www.science.org/doi/abs/10.1126/science.1191127 PubMed DOI
Chow W.S.: Photoprotection and photoinhibition damage. – In: Barber J. (ed.): Advances in Molecular and Cell Biology. Vol. 10. Pp. 151-196. JAI Press Inc., Stamford: 1994. https://www.sciencedirect.com/science/article/pii/S1569255808603975
Christie J.M.: Phototropin blue-light receptors. – Annu. Rev. Plant Biol. 58: 21-45, 2007. https://www.annualreviews.org/doi/10.1146/annurev.arplant.58.032806.103951 PubMed DOI
Christie J.M., Blackwood L., Petersen J., Sullivan S.: Plant flavoprotein photoreceptors. – Plant Cell Physiol. 56: 401-413, 2015. https://academic.oup.com/pcp/article/56/3/401/2461097 PubMed PMC
Christie J.M., Briggs W.R.: Blue light sensing in higher plants. – J. Biol. Chem. 276: 11457-11460, 2001. https://www.sciencedirect.com/science/article/pii/S0021925819460067?via%3Dihub PubMed
Chukhutsina V.U., Liu X., Xu P., Croce R.: Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. – Nat. Plants 6: 860-868, 2020. https://www.nature.com/articles/s41477-020-0693-4 PubMed
Croce R.: Beyond ‘seeing is believing’: the antenna size of the photosystems in vivo. – New Phytol. 228: 1214-1218, 2020. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16758 PubMed DOI PMC
Croce R., Chojnicka A., Morosinotto T. et al.: The low-energy forms of photosystem I light-harvesting complexes: Spectroscopic properties and pigment-pigment interaction characteristics. – Biophys J. 93: 2418-2428, 2007. https://www.sciencedirect.com/science/article/pii/S0006349507714972?via%3Dihub PubMed PMC
Croce R., van Amerongen H.: Light-harvesting in photosystem I. – Photosynth. Res. 116: 153-166, 2013a. https://link.springer.com/article/10.1007%2Fs11120-013-9838-x PubMed PMC
Croce R., van Amerongen H.: Light harvesting in photosystem II. – Photosynth. Res. 116: 251-263, 2013b. https://link.springer.com/article/10.1007/s11120-013-9824-3 PubMed DOI PMC
Croce R., van Amerongen H.: Natural strategies for photosynthetic light harvesting. – Nat. Chem. Biol. 10: 492-501, 2014. https://www.nature.com/articles/nchembio.1555 PubMed
Croce R., van Amerongen H.: Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. – Science 369: eaay2058, 2020. https://www.science.org/lookup/doi/10.1126/science.aay2058 PubMed DOI
Croce R., van Grondelle R., van Amerongen H., van Stokkum I.H.M. (ed.): Light Harvesting in Photosynthesis. Foundations of Biochemistry and Biophysics. Pp. 625. CRC Press, Taylor & Francis Group, London: 2018.
Cui M., Vogelmann T.C., Smith W.K.: Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea. – Plant Cell Environ. 14: 493-500, 1991. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01519.x DOI
D'Amico-Damião V., Carvalho R.F.: Cryptochrome-related abiotic stress responses in plants. – Front. Plant Sci. 9: 1897, 2018. https://www.frontiersin.org/articles/10.3389/fpls.2018.01897/full PubMed DOI PMC
Darko E., Heydarizadeh P., Schoefs B., Sabzalian M.R.: Photosynthesis under artificial light: the shift in primary and secondary metabolism. – Philos. T. Roy. Soc. B 369: 20130243, 2014. https://royalsocietypublishing.org/doi/10.1098/rstb.2013.0243 PubMed DOI PMC
Das M., Rabinowitch E., Szalay L., Papageorgiou G.: The “sieve effect” in Chlorella suspensions. – J. Phys. Chem. 71: 3543-3549, 1967. https://pubs.acs.org/doi/pdf/10.1021/j100870a031?casa_token=4uMfu5mSZdUAAAAA%3AZ-t1NqRTC9dpSrVq28ktY_Wwsez6Ez4VxJVjXTxLkFQY7fArxOM6hLu_vTg5q5dhFoO9xsDf4Z5Y4DQ& DOI
Daszkowska-Golec A., Szarejko I.: Open or close the gate – stomata action under the control of phytohormones in drought stress conditions. – Front Plant Sci. 4: 138, 2013. https://www.frontiersin.org/articles/10.3389/fpls.2013.00138/full PubMed DOI PMC
Dau H.: Molecular mechanisms and quantitative models of variable photosystem II fluorescence. – Photochem. Photobiol. 60: 1-23, 1994. https://onlinelibrary.wiley.com/doi/10.1111/j.1751-1097.1994.tb03937.x DOI
Davis P.A., Caylor S., Whippo C.W., Hangarter R.P.: Changes in leaf optical properties associated with light-dependent chloroplast movements. – Plant Cell Environ. 34: 2047-2059, 2011. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2011.02402.x PubMed DOI
Demmig-Adams B., Garab G., Adams W.W. III, Govindjee G. (ed.): Nonphotochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Vol. 40. Pp. 649. Springer, Dordrecht: 2014. https://link.springer.com/book/10.1007/978-94-017-9032-1 DOI
Demotes-Mainard S., Péron T., Corot A. et al.: Plant responses to red and far-red lights, applications in horticulture. – Environ. Exp. Bot. 121: 4-21, 2016. https://www.sciencedirect.com/science/article/abs/pii/S0098847215000933?via%3Dihub
Dismukes G.C., Klimov V.V., Baranov S.V. et al.: The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. – P. Natl. Acad. Sci. USA 98: 2170-2175, 2001. https://www.pnas.org/content/98/5/2170 PubMed PMC
Drake P.L., de Boer H.J., Schymanski S.J., Veneklaas E.J.: Two sides to every leaf: water and CO2 transport in hypostomatous and amphistomatous leaves. – New Phytol. 222: 1179-1187, 2019. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.15652 PubMed DOI
Driesen E., Van den Ende W., De Proft M., Saeys W.: Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. – Agronomy 10: 1975, 2020. https://www.mdpi.com/2073-4395/10/12/1975
Dueck T., Ieperen W., Taulavuori K.: Light perception, signalling and plant responses to spectral quality and photoperiod in natural and horticultural environments. – Environ. Exp. Bot. 121: 1-3, 2016. https://www.sciencedirect.com/science/article/abs/pii/S0098847215001215
Dutta S., Cruz J.A., Imran S.M. et al.: Variations in chloroplast movement and chlorophyll fluorescence among chloroplast division mutants under light stress. – J. Exp. Bot. 68: 3541-3555, 2017. https://academic.oup.com/jxb/article/68/13/3541/3883924 PubMed PMC
Duxbury Z., Schliep M., Ritchie R.J. et al.: Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. – Photosynth. Res. 101: 69-75, 2009. https://link.springer.com/article/10.1007/s11120-009-9466-7 PubMed DOI
Duysens L.N.M.: The flattening of the absorption spectrum of suspension as compared to that of solutions. – Biochim. Biophys. Acta 19: 1-12, 1956. https://www.sciencedirect.com/science/article/abs/pii/0006300256903808?via%3Dihub PubMed
Duysens L.N.M.: Transfer and trapping of excitation energy in photosystem II. – In: Wolstenholme G.E.W., Fitzsimons D.W. (ed.): Chlorophyll Organization and Energy Transfer in Photosynthesis. Ciba Foundation Symposium 61 (New Series). Pp. 323-340. Excerpta Medica, Amsterdam-Oxford-New York: 1979. https://onlinelibrary.wiley.com/doi/10.1002/9780470720431.ch17 PubMed DOI
Duysens L.N.M., Sweers H.E.: Mechanisms of two photochemical reactions in algae as studied by means of fluorescence. – In: Japanese Society of Plant Physiologists (ed.): Studies on microalgae and photosynthetic bacteria. Pp. 353-372. University of Tokyo Press, Tokyo: 1963.
Emerson R., Chalmers R., Cederstrand C.: Some factors influencing the long-wave limit of photosynthesis. – P. Natl. Acad. Sci. USA 43: 133-143, 1957. https://www.pnas.org/content/43/1/133 PubMed PMC
Emerson R., Lewis C.M.: The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. – Am. J. Bot. 30: 165-178, 1943. https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1943.tb14744.x DOI
Emerson R., Rabinowitch E.: Red drop and the role of auxiliary pigments in photosynthesis. – Plant Physiol. 35: 477-485, 1960. https://academic.oup.com/plphys/article/35/4/477/6089550 PubMed PMC
Engelmann E., Zucchelli G.., Casazza A.P. et al.: Influence of the photosystem I-light harvesting complex I antenna domains on fluorescence decay. – Biochemistry 45: 6947-6955, 2006. https://pubs.acs.org/doi/10.1021/bi060243p PubMed DOI
Evans J.R.: The dependence of quantum yield on wavelength and growth irradiance. – Aust. J. Plant Physiol. 14: 69-79, 1987. https://www.publish.csiro.au/fp/PP9870069
Evans J.R.: Leaf anatomy enables more equal access to light and CO2 between chloroplasts. – New Phytol. 143: 93-104, 1999. https://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.1999.00440.x DOI
Evans J.R.: Potential errors in electron transport rates calculated from chlorophyll fluorescence as revealed by a multilayer leaf model. – Plant Cell Physiol. 50: 698-706, 2009. https://academic.oup.com/pcp/article/50/4/698/1909490 PubMed
Evans J.R., Morgan P.B., von Caemmerer S.: Light quality affects chloroplast electron transport rates estimated from Chl fluorescence measurements. – Plant Cell Physiol. 58: 1652-1660, 2017. https://academic.oup.com/pcp/article/58/10/1652/4056559 PubMed
Evans J.R., Vogelmann T.C.: Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. – Plant Cell Environ. 26: 547-560, 2003. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2003.00985.x DOI
Everroad C., Six C., Partensky F. et al.: Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. – J. Bacteriol. 188: 3345-3356, 2006. https://journals.asm.org/doi/10.1128/JB.188.9.3345-3356.2006 PubMed DOI PMC
Flexas J., Escalona J.M., Evain S. et al.: Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. – Physiol. Plantarum 114: 231-240, 2002. https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.2002.1140209.x PubMed DOI
Franklin K.A., Quail P.H.: Phytochrome functions in Arabidopsis development. – J. Exp. Bot. 61: 11-24, 2010. https://academic.oup.com/jxb/article/61/1/11/570607 PubMed PMC
Frechilla S., Talbott L.D., Bogomolni R.A., Zeiger E.: Reversal of blue light-stimulated stomatal opening by green light. – Plant Cell Physiol. 41: 171-176, 2000. https://academic.oup.com/pcp/article/41/2/171/1853516 PubMed
French C.S.: The distribution and action in photosynthesis of several forms of chlorophyll. – P. Natl. Acad. Sci. USA 68: 2893-2897, 1971. https://www.pnas.org/content/68/11/2893 PubMed PMC
French C.S., Brown J.S., Lawrence M.C.: Four universal forms of chlorophyll a. – Plant Physiol. 49: 421-429, 1972. https://academic.oup.com/plphys/article/49/3/421/6094267 PubMed PMC
Fuente D., Keller J, Conejero J.A. et al.: Light distribution and spectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors. – Algal Res. 23: 166-177, 2017. https://www.sciencedirect.com/science/article/abs/pii/S2211926417300371?via%3Dihub
Fujita Y., Ohki K.: On the 710 nm fluorescence emitted by the diatom Phaeodactylum tricornutum at room temperature. – Plant Cell Physiol. 45: 392-397, 2004. https://academic.oup.com/pcp/article/45/4/392/1921974 PubMed
Fushimi K., Hasegawa M., Ito T. et al.: Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. – P. Natl. Acad. Sci. USA 117: 15573-15580, 2020. https://www.pnas.org/content/117/27/15573 PubMed PMC
Fushimi K., Narikawa R.: Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. – Curr. Opin. Struct. Biol. 57: 39-46, 2019. https://www.sciencedirect.com/science/article/abs/pii/S0959440X18301283?via%3Dihub PubMed
Fushimi K., Narikawa R.: Phytochromes and cyanobacteriochromes: Photoreceptor molecules incorporating a linear tetrapyrrole chromophore. – In: Yawo H., Kandori H., Koizumi A., Kageyama R. (ed.): Optogenetics. Advances in Experimental Medicine and Biology. Vol. 1293. Pp. 167-187. Springer, Singapore: 2021. https://link.springer.com/chapter/10.1007%2F978-981-15-8763-4_10 PubMed
Gaidukov N.: Die Farbervänderung bei den Prozessen der Komplementären chromatischen Adaptation. [The color change in the processes of complementary chromatic adaptation.] – Ber. Deutsch. Bot. Ges 21: 517-522, 1903. [In German]
Gan F., Zhang S., Rockwell N.C. et al.: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. – Science 345: 1312-1317, 2014. https://www.science.org/doi/abs/10.1126/science.1256963 PubMed DOI
Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – BBA-Gen. Subjects 990: 87-92, 1989. https://www.sciencedirect.com/science/article/abs/pii/S0304416589800169?via%3Dihub
Giera W., Szewczyk S., McConnel M.D. et al.: Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K. – Photosynth. Res. 137: 321-335, 2018. https://link.springer.com/article/10.1007%2Fs11120-018-0506-z PubMed
Gisriel C., Shen G., Kurashov V. et al.: The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. – Sci. Adv. 6: eaay6415, 2020a. https://www.science.org/doi/10.1126/sciadv.aay6415 PubMed DOI PMC
Gisriel C.J., Wang J., Brudvig G.W., Bryant D.A.: Opportunities and challenges for assigning cofactors in cryo-EM density maps of chlorophyll-containing proteins. – Commun. Biol. 3: 408, 2020b. https://www.nature.com/articles/s42003-020-01139-1 PubMed PMC
Gitelson A.A., Buschmann C., Lichtenthaler H.K.: Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. – J. Plant Physiol. 152: 283-296, 1998. https://www.sciencedirect.com/science/article/abs/pii/S0176161798801430?via%3Dihub
Gobets B., van Grondelle R.: Energy transfer and trapping in photosystem I. – BBA-Bioenergetics 1507: 80-99, 2001. https://www.sciencedirect.com/science/article/pii/S0005272801002031?via%3Dihub PubMed
Goh C.-H.: Phototropins and chloroplast activity in plant blue light signaling. – Plant Signal. Behav. 4: 693-695, 2009. https://www.tandfonline.com/doi/full/10.4161/psb.4.8.8981 PubMed DOI PMC
Golbeck J.H.: Structure, function and organization of the photosystem I reaction center complex. – BBA-Rev. Bioenergetics 895: 167-204, 1987. https://www.sciencedirect.com/science/article/pii/S0304417387800022?via%3Dihub PubMed
Gotoh E., Suetsugu N., Higa T. et al.: Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis. – Sci. Rep.-UK 8: 1472, 2018b. https://www.nature.com/articles/s41598-018-19896-9 PubMed PMC
Gotoh E., Suetsugu N., Yamori W. et al.: Chloroplast accumulation response enhances leaf photosynthesis and plant biomass production. – Plant Physiol. 178: 1358-1369, 2018a. https://academic.oup.com/plphys/article/178/3/1358/6116734 PubMed PMC
Govindjee G.: Observations on P750A from Anacystis nidulans. – Naturwissenschaften 50: 720-721, 1963. https://link.springer.com/article/10.1007/BF00637218 DOI
Govindjee G.: Sixty-three years since Kautsky: Chlorophyll a fluorescence. – Aust. J. Plant Physiol. 22: 131-160, 1995. https://www.life.illinois.edu/govindjee/63yrsKautsky.PDF
Govindjee G.: Chlorophyll a fluorescence: a bit of basics and history. – In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 1-41. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_1 DOI
Govindjee G., Braun B.Z.: Light absorption, emission and photosynthesis. – In: Stewart W.D.P. (ed.): Algal Physiology and Biochemistry, Pp. 346-390. Blackwell Scientific Publication Ltd., Oxford: 1974.
Govindjee G., Papageorgiou G.C.: Chlorophyll fluorescence and photosynthesis: fluorescence transients. – In: Giese A.C. (ed.): Photophysiology: Current Topics in Photobiology and Photochemistry. Vol. 6. Pp. 1-46. Academic Press, New York: 1971. https://www.sciencedirect.com/science/article/pii/B9780122826061500076?via%3Dihub
Govindjee G., Papageorgiou G.C., Govindjee R.: Eugene I. Rabinowitch: A prophet of photosynthesis and of peace in the world. – Photosynth. Res. 141: 143-150, 2019. https://link.springer.com/article/10.1007%2Fs11120-019-00641-w PubMed
Govindjee G., Shevela D., Björn L.O.: Evolution of the Z-scheme of photosynthesis: a perspective. – Photosynth. Res. 133: 5-15, 2017. https://link.springer.com/article/10.1007%2Fs11120-016-0333-z PubMed
Greenbaum N.L., Mauzerall D.: Effect of irradiance level on distribution of chlorophylls between PS II and PS I as determined from optical cross-sections. – BBA-Bioenergetics 1057: 195-207, 1991. https://www.sciencedirect.com/science/article/pii/S0005272805801021?via%3Dihub
Grossman A.R.: A molecular understanding of complementary chromatic adaptation. – Photosynth. Res. 76: 207-215, 2003. https://link.springer.com/article/10.1023/A:1024907330878 PubMed DOI
Guruprasad K., Bhattacharjee S., Kataria S. et al.: Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves. – Photosynth. Res. 94: 299-306, 2007. https://link.springer.com/article/10.1007%2Fs11120-007-9190-0 PubMed
Hák R., Lichtenthaler H.K., Rinderle U.: Decrease of the fluorescence ratio F690/F730 during greening and development of leaves. – Radiat. Environ. Bioph. 29: 329-336, 1990. https://link.springer.com/article/10.1007/BF01210413 PubMed DOI
Hall J., Renger T., Müh F. et al.: The lowest-energy chlorophyll of photosystem II is adjacent to the peripheral antenna: Emitting states of CP47 assigned via circularly polarized luminescence. – BBA-Bioenergetics 1857: 1580-1593, 2016. https://www.sciencedirect.com/science/article/pii/S0005272816305655?via%3Dihub PubMed
Hamaguchi T., Kawakami K., Shinzawa-Itoh K. et al.: Structure of the far-red light utilizing photosystem I of Acaryochloris marina. – Nat. Commun. 12: 2333, 2021. https://www.nature.com/articles/s41467-021-22502-8 PubMed PMC
Hamdani S., Khan N., Perveen S. et al.: Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. – Photosynth. Res. 139: 107-121, 2019. https://link.springer.com/article/10.1007%2Fs11120-018-0589-6 PubMed
Harper S.M., Neil L.C., Gardner K.H.: Structural basis of a phototropin light switch. – Science 301: 1541-1544, 2003. https://www.science.org/doi/abs/10.1126/science.1086810 PubMed DOI
Harris D., Bar-Zvi S., Lahav A. et al.: The structural basis for the extraordinary energy-transfer capabilities of the phycobilisome. – In: Harris J.R., Boekema E.J. (ed.): Membrane Protein Complexes: Structure and Function, Subcellular Biochemistry. Vol. 87. Pp. 57-82. Springer, Singapore: 2018. https://link.springer.com/chapter/10.1007%2F978-981-10-7757-9_3 PubMed
Harris D., Tal O., Jallet D. et al.: Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. – P. Natl. Acad. Sci. USA 113: E1655-E1662, 2016. https://www.pnas.org/content/113/12/E1655 PubMed PMC
Hasan M.M., Bashir T., Ghosh R. et al.: An overview of LEDs' effects on the production of bioactive compounds and crop quality. – Molecules 22: 1420, 2017. https://www.mdpi.com/1420-3049/22/9/1420 PubMed PMC
Haupt W., Scheuerlein R.: Chloroplast movement. – Plant Cell Environ. 13: 595-614, 1990. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01078.x DOI
Hayes S.: Location, location, location: phototropin 2 action at the chloroplast membrane. – Plant Physiol. 183: 27-28, 2020. https://academic.oup.com/plphys/article/183/1/27/6116348 PubMed PMC
He D., Kozai T., Niu G., Zhang X.: Light-emitting diodes for horticulture. – In: Li J., Zhang G.Q. (ed.): Light-Emitting Diodes. Solid State Lighting Technology and Application Series. Vol. 4. Pp. 513-547. Springer, Cham: 2019. https://link.springer.com/chapter/10.1007%2F978-3-319-99211-2_14
Herbstová M., Bína D., Kaňa R. et al.: Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. – Sci. Rep.-UK 7: 11976, 2017. https://www.nature.com/articles/s41598-017-12247-0 PubMed PMC
Hernández R., Kubota C.: Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. – Sci. Hortic.-Amsterdam 173: 92-99, 2014. https://www.sciencedirect.com/science/article/abs/pii/S0304423814002404?via%3Dihub
Hirose Y., Rockwell N.C., Nishiyama K. et al.: Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. – P. Natl. Acad. Sci. USA 110: 4974-4979, 2013. https://www.pnas.org/content/110/13/4974 PubMed PMC
Hirose Y., Song C., Watanabe M. et al.: Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. – Mol. Plant 12: 715-725, 2019. https://www.sciencedirect.com/science/article/pii/S1674205219300644#! PubMed
Ho M.Y., Niedzwiedzki D.M., MacGregor-Chatwin C. et al.: Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. – BBA-Bioenergetics 1861: 148064, 2020. https://www.sciencedirect.com/science/article/pii/S0005272819301033 PubMed
Ho M.Y., Shen G., Canniffe D.P. et al.: Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. – Science 353: 213-227, 2016. https://www.science.org/lookup/doi/10.1126/science.aaf9178 PubMed DOI
Hoang Q.T.N., Han Y.J., Kim J.I.: Plant phytochromes and their phosphorylation. – Int. J. Mol. Sci. 20: 3450, 2019. https://www.mdpi.com/1422-0067/20/14/3450 PubMed PMC
Hogewoning S.W., Douwstra P., Trouwborst G. et al.: An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. – J. Exp. Bot. 61: 1267-1276, 2010. https://academic.oup.com/jxb/article/61/5/1267/441174 PubMed
Hogewoning S.W., Trouwborst G., Engbers G.J. et al.: Plant physiological acclimation to irradiation by light-emitting diodes (LEDs). – Acta Hortic. 761: 183-191, 2007. https://www.actahort.org/books/761/761_23.htm
Hogewoning S.W., Wientjes E., Douwstra P. et al.: Photosynthetic quantum yield dynamics: from photosystems to leaves. – Plant Cell 24: 1921-1935, 2012. https://academic.oup.com/plcell/article/24/5/1921/6097455 PubMed PMC
Hohmann-Marriott M.F., Blankenship R.E.: Evolution of photosynthesis. – Annu. Rev. Plant Biol. 62: 515-548, 2011. https://www.annualreviews.org/doi/10.1146/annurev-arplant-042110-103811 PubMed DOI
Howard M.M., Bae A., Königer M.: The importance of chloroplast movement, nonphotochemical quenching, and electron transport rates in light acclimation and tolerance to high light in Arabidopsis thaliana. – Am. J. Bot. 106: 1444-1453, 2019. https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/ajb2.1378 PubMed DOI
Hu K., Govindjee G., Tan J. et al.: Co-author and co-cited reference network analysis for chlorophyll fluorescence research from 1991 to 2018. – Photosynthetica 58: 110-124, 2020. https://ps.ueb.cas.cz/artkey/phs-202001-0013_co-author-and-co-cited-reference-network-analysis-for-chlorophyll-fluorescence-research-from-1991-to-2018.php
Hu Q., Miyashita H., Iwasaki I. et al.: A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. – P. Natl. Acad. Sci. USA 95: 13319-13323, 1998. https://www.pnas.org/content/95/22/13319 PubMed PMC
Huché-Thélier L., Crespel L., Le Gourrierec J. et al.: Light signaling and plant responses to blue and UV radiations – Perspectives for applications in horticulture. – Environ. Exp. Bot. 121: 22-38, 2016. https://www.sciencedirect.com/science/article/abs/pii/S0098847215001185?via%3Dihub
Iino M., Ogawa T., Zeiger E.: Kinetic properties of the blue-light response of stomata. – P. Natl. Acad. Sci. USA 82: 8019-8023, 1985. https://www.pnas.org/content/82/23/8019 PubMed PMC
Ikeuchi M., Ishizuka T.: Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. – Photoch. Photobio. Sci. 7: 1159-1167, 2008. https://pubs.rsc.org/en/content/articlelanding/2008/PP/b802660m PubMed
Inada K.: Action spectra for photosynthesis in higher plants. – Plant Cell Physiol. 17: 355-365, 1976. https://academic.oup.com/pcp/article-abstract/17/2/355/1907877
Inoue S.I., Kinoshita T: Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. – Plant Physiol. 174: 531-538, 2017. https://academic.oup.com/plphys/article/174/2/531/6117432 PubMed PMC
Ishishita K., Higa T., Tanaka H. et al.: Phototropin2 contributes to the chloroplast avoidance response at the chloroplast-plasma membrane interface. – Plant Physiol. 183: 304-316, 2020. https://academic.oup.com/plphys/article/183/1/304/6116383 PubMed PMC
Jarillo J.A., Gabrys H., Capel J. et al.: Phototropin-related NPL1 controls chloroplast relocation induced by blue light. – Nature 410: 952-954, 2001. https://www.nature.com/articles/35073622 PubMed
Jávorfi T., Erostyák J., Gál J. et al.: Quantitative spectrophotometry using integrating cavities. – J. Photoch. Photobio. B 82: 127-131, 2006. https://www.sciencedirect.com/science/article/pii/S1011134405001946?via%3Dihub PubMed
Jennings R.C., Zuccerelli G., Croce R., Garlaschi F.M.: The photochemical trapping rate from red spectral states in PSI-LHCI is determined by thermal activation of energy transfer to bulk chlorophylls. – BBA-Bioenergetics 1557: 91-98, 2003. https://www.sciencedirect.com/science/article/pii/S0005272802003997?via%3Dihub PubMed
Johnson D.M., Smith W.K., Vogelmann T.C., Brodersen C.R.: Leaf architecture and direction of incident light influence mesophyll fluorescence profiles. – Am. J. Bot. 92: 1425-1431, 2005. https://bsapubs.onlinelibrary.wiley.com/doi/10.3732/ajb.92.9.1425 PubMed DOI
Joliot P., Joliot A.: Compartaive study of the fluorescence yield and of the C550 absorption change at room temperature. – BBA-Bioenergetics 546: 93-105, 1979. https://www.sciencedirect.com/science/article/pii/0005272879901737?via%3Dihub PubMed
Jordan P., Fromme P., Witt H.T. et al.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. – Nature 411: 909-917, 2001. https://www.nature.com/articles/35082000 PubMed
Kadota A., Yamada N., Suetsugu N. et al.: Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. – P. Natl. Acad. Sci. USA 106: 13106-13111, 2009. https://www.pnas.org/content/106/31/13106 PubMed PMC
Kalaitzoglou P., van Ieperen W., Harbinson J. et al.: Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. – Front. Plant Sci. 10: 322, 2019. https://www.frontiersin.org/articles/10.3389/fpls.2019.00322/full PubMed DOI PMC
Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. – Photosynth. Res. 132: 13-66, 2017. https://link.springer.com/article/10.1007%2Fs11120-016-0318-y PubMed PMC
Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about chlorophyll fluorescence: practical issues. – Photosynth. Res. 122: 121-158, 2014. https://link.springer.com/article/10.1007/s11120-014-0024-6 PubMed DOI PMC
Kale R., Hebert A.E., Frankel L.K. et al.: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of photosystem II. – P. Natl. Acad. Sci. USA 114: 2988-2993, 2017. https://www.pnas.org/content/114/11/2988 PubMed PMC
Kami C., Lorrain S., Hornitschek P., Fankhauser C.: Light-regulated plant growth and development. – Curr. Top. Dev. Biol. 91: 29-66, 2010. https://www.sciencedirect.com/science/article/abs/pii/S0070215310910028?via%3Dihub PubMed
Kaňa R., Kotabová E., Komárek O. et al.: The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. – BBA-Bioenergetics 1817: 1237-1247, 2012. https://www.sciencedirect.com/science/article/pii/S0005272812000606?via%3Dihub PubMed
Kaňa R., Prášil O., Komárek O. et al.: Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942). – BBA-Bioenergetics 1787: 1170-1178, 2009. https://www.sciencedirect.com/science/article/pii/S0005272809001376?via%3Dihub PubMed
Karapetyan N.V., Bolychevtseva Yu.V., Yurina N.P. et al.: Long-wavelength chlorophylls in PSI of cyanobacteria: Origin, localization, and functions. – Biochemistry-Moscow 79: 213-220, 2014. https://link.springer.com/article/10.1134%2FS0006297914030067 PubMed
Karapetyan N.V., Schlodder E., van Grondelle R., Dekker J.P.: The long wavelength chlorophylls of photosystem I. – In: Golbeck J.H., Govindjee G., Sharkey T. (ed.): The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase. Advances in Photosynthesis and Respiration. Vol. 24. Pp. 177-192. Springer, Dordrecht: 2006. https://link.springer.com/chapter/10.1007/978-1-4020-4256-0_13 DOI
Karlsson P.E.: Blue light regulation of stomata in wheat seedlings. I. Influence of red background illumination and initial conductance level. – Physiol. Plantarum 66: 202-206, 1986. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1986.tb02409.x DOI
Kasajima I., Suetsugu N., Wada M., Takahara K: Collective calculation of actual values of non-photochemical quenching from their apparent values after chloroplast movement and photoinhibition. – Am. J. Plant Sci. 6: 1792-1805, 2015. https://www.scirp.org/journal/paperinformation.aspx?paperid=58347
Kato K., Shinoda T., Nagao R. et al.: Structural basis for the adaptation and function of chlorophyll f in photosystem I. – Nat. Commun. 11: 238, 2020. https://www.nature.com/articles/s41467-019-13898-5 PubMed PMC
Katz J.J., Norris J.R.: Chlorophyll and light energy transduction in photosynthesis. – In: Sanadi D.R., Packer L. (ed.): Current Topics in Bioenergetics. Vol. 5. Pp. 41-75. Academic Press, New York: 1973. https://www.sciencedirect.com/science/article/abs/pii/B9780121525057500090
Kautsky H., Hirsch A.: Neue Versuche zur Kohlensäureassimilation. [New attempts on carbon dioxide assimilation.] – Naturwissenschaften 19: 964, 1931. [In German] https://link.springer.com/article/10.1007/BF01516164 DOI
Keenan T.F., Hollinger D.Y., Bohrer G. et al.: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. – Nature 499: 324-327, 2013. https://www.nature.com/articles/nature12291 PubMed
Kehoe D.M., Gutu A.: Responding to color: The regulation of complementary chromatic adaptation. – Annu. Rev. Plant Biol. 57: 127-150, 2006. https://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.57.032905.105215?journalCode=arplant PubMed DOI
Khanna R., Li J., Tseng T.-S. et al.: COP1 jointly modulates cytoskeletal processes and electrophysiological responses required for stomatal closure. – Mol. Plant 7: 1441-1454, 2014. https://www.cell.com/molecular-plant/fulltext/S1674-2052(14)60947-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1674205214609473%3Fshowall%3Dtrue PubMed PMC
Kiang N.Y., Segura A., Tinetti G. et al.: Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar worlds. – Astrobiology 7: 252-274, 2007b. https://www.liebertpub.com/doi/10.1089/ast.2006.0108 PubMed DOI
Kiang N.Y., Siefert J., Govindjee G., Blankenship R.E.: Spectral signatures of photosynthesis. I. Review of Earth organisms. – Astrobiology 7: 222-251, 2007a. https://www.liebertpub.com/doi/10.1089/ast.2006.0105 PubMed DOI
Kinoshita T., Shimazaki K.: Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H+-ATPase by blue light. – Plant Cell Physiol. 43: 1359-1365, 2002. https://academic.oup.com/pcp/article/43/11/1359/1934953 PubMed
Kirilovsky D., Kerfeld C.A.: Cyanobacterial photoprotection by the orange carotenoid protein. – Nat. Plants 2: 16180, 2016. https://www.nature.com/articles/nplants2016180 PubMed
Kitajima M., Butler W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. – BBA-Bioenergetics 376: 105-115, 1975. https://www.sciencedirect.com/science/article/abs/pii/0005272875902091?via%3Dihub PubMed
Knox R.S.: Thermodynamics and the primary processes of photosynthesis. – Biophys. J. 9: 1351-1362, 1969. https://www.sciencedirect.com/science/article/pii/S000634956986457X PubMed PMC
Kodru S., Malavath T., Devadasu E. et al.: The slow S to M rise of chlorophyll a fluorescence induction reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. – Photosynth. Res. 125: 219-231, 2015. https://link.springer.com/article/10.1007%2Fs11120-015-0084-2 PubMed
Koizumi M., Takahashi K., Mineuchi K. et al.: Light gradients and the transverse distribution of chlorophyll fluorescence in mangrove and Camellia leaves. – Ann. Bot.-London 81: 527-533, 1998. https://academic.oup.com/aob/article/81/4/527/2587777
Kok B.: A critical consideration of the quantum yield of Chlorella photosynthesis. – Enzymologia 13: 1-56, 1948.
Kolber Z.S., Prášil O., Falkowski P.G.: Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: Defining methodology and experimental protocols. – BBA-Bioenergetics 1367: 88-106, 1998. https://www.sciencedirect.com/science/article/pii/S0005272898001352?via%3Dihub PubMed
Kollist H., Nuhkat M., Roelfsema M.R.G.: Closing gaps: linking elements that control stomatal movement. – New Phytol. 203: 44-62, 2014. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.12832 PubMed DOI
Kong S.G., Okajima K.: Diverse photoreceptors and light responses in plants. – J. Plant Res. 129: 111-114, 2016. https://link.springer.com/article/10.1007%2Fs10265-016-0792-5 PubMed
Kong S.G., Wada M.: Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. – BBA-Bioenergetics 1837: 522-530, 2014. https://www.sciencedirect.com/science/article/pii/S0005272813002181?via%3Dihub PubMed
Kosugi M., Ozawa S.I., Takahashi Y. et al.: Red-shifted chlorophyll a bands allow uphill energy transfer to photosystem II reaction centers in an aerial green alga, Prasiola crispa, harvested in Antarctica. – BBA-Bioenergetics 1861: 148139, 2020. https://www.sciencedirect.com/science/article/pii/S0005272819301938?via%3Dihub PubMed
Kotabová E., Jarešová J., Kaňa R. et al.: Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. – BBA-Bioenergetics 1837: 734-743, 2014. https://www.sciencedirect.com/science/article/pii/S0005272814000140?via%3Dihub PubMed
Kouřil R., Nosek L., Opatíková M. et al.: Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. – Plant J. 104: 215-225, 2020. https://onlinelibrary.wiley.com/doi/10.1111/tpj.14918 PubMed DOI PMC
Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: The basics. – Annu. Rev. Plant Phys. 42: 313-349, 1991. https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.42.060191.001525 DOI
Kubota-Kawai H., Burton-Smith R.N., Tokutsu R. et al.: Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii. – J. Biol. Chem. 294: 4304-4314, 2019. https://www.jbc.org/article/S0021-9258(20)39006-2/fulltext PubMed PMC
Kumazaki S., Abiko K., Ikegami I. et al.: Energy equilibration and primary charge separation in chlorophyll d-based photosystem I reaction center isolated from Acaryochloris marina. – FEBS Lett. 530: 153-157, 2002. https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/S0014-5793%2802%2903446-4 PubMed DOI
Laisk A., Oja V.: Variable fluorescence of closed photochemical reaction centers. – Photosynth. Res. 143: 335-346, 2020. https://link.springer.com/article/10.1007%2Fs11120-020-00712-3 PubMed
Langsdorf G., Buschmann C., Sowinska M. et al.: Multicolour fluorescence imaging of sugar beet leaves with different N-status by flash lamp UV-excitation. – Photosynthetica 38: 539-551, 2000. https://ps.ueb.cas.cz/artkey/phs-200004-0014_multicolour-fluorescence-imaging-of-sugar-beet-leaves-with-different-nitrogen-status-by-flash-lamp-uv-excitatio.php
Larkum A.W.D.: The evolution of chlorophylls and photosynthesis. – In: Grimm B., Porra R.J., Rüdiger W., Scheer H. (ed.): Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. Pp. 261-282. Springer, Dordrecht: 2006. https://link.springer.com/chapter/10.1007%2F1-4020-4516-6_18
Larkum A.W.D., Kühl M.: Chlorophyll d: the puzzle resolved. – Trends Plant Sci. 10: 355-357, 2005. https://www.cell.com/trends/plant-science/fulltext/S1360-1385(05)00149-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138505001494%3Fshowall%3Dtrue PubMed
Latouche G., Cerovic Z.G., Montagnini F., Moya I.: Light-induced changes of NADPH fluorescence in isolated chloroplasts: a spectral and fluorescence lifetime study. – BBA-Bioenergetics 1460: 311-329, 2000. https://www.sciencedirect.com/science/article/pii/S0005272800001985?via%3Dihub PubMed
Lawson T., Blatt M.R.: Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. – Plant Physiol. 164: 1556-1570, 2014. https://academic.oup.com/plphys/article/164/4/1556/6112797 PubMed PMC
Lawson T., Terashima I., Fujita T., Wang Y.: Coordination between photosynthesis and stomatal behavior. – In: Adams W.W. III, Terashima I. (ed.): The Leaf: A Platform for Performing Photosynthesis. Pp. 141-161. Springer, Cham: 2018. https://link.springer.com/chapter/10.1007/978-3-319-93594-2_6 DOI
Lawson T., Vialet-Chabrand S.: Speedy stomata, photosynthesis and plant water use efficiency. – New Phytol. 221: 93-98, 2019. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.15330 PubMed DOI
Lazár D.: Chlorophyll a fluorescence induction. – BBA-Bioenergetics 1412: 1-28, 1999. https://www.sciencedirect.com/science/article/pii/S000527289900047X?via%3Dihub PubMed
Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. – Funct. Plant Biol. 33: 9-30, 2006. https://www.publish.csiro.au/fp/FP05095 PubMed
Lazár D.: Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise. – J. Theor. Biol. 335: 249-264, 2013. https://www.sciencedirect.com/science/article/abs/pii/S0022519313003007?via%3Dihub PubMed
Lazár D.: Parameters of photosynthetic energy partitioning. – J. Plant Physiol. 175: 131-147, 2015. https://www.sciencedirect.com/science/article/abs/pii/S0176161714003332?via%3Dihub PubMed
Lazár D., Nauš J.: Statistical properties of chlorophyll fluorescence parameters. – Photosynthetica 35: 121-127, 1998. https://ps.ueb.cas.cz/artkey/phs-199801-0017_statistical-properties-of-chlorophyll-fluorescence-induction-parameters.php
Lee Y., Kim Y.W., Jeon B.W. et al.: Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening. – Plant J. 52: 803-816, 2007. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2007.03277.x PubMed DOI
Lehmer O.R., Catling D.C., Parenteau M.N. et al.: The peak absorbance wavelength of photosynthetic pigments around other stars from spectral optimization. – Front. Astron. Space Sci. 8: 689441, 2021. https://www.frontiersin.org/articles/10.3389/fspas.2021.689441/full DOI
Levitan O., Chen M., Kuang X. et al.: Structural and functional analyses of photosystem II in the marine diatom Phaeodactylum tricornutum. – P. Natl. Acad. Sci. USA 116: 17316-17322, 2019. https://www.pnas.org/content/116/35/17316 PubMed PMC
Li J., Li G., Wang H., Deng X.W.: Phytochrome signaling mechanisms. – The Arabidopsis Book 2011: e0148, 2011. https://bioone.org/journals/the-arabidopsis-book/volume-2011/issue-9/tab.0148/Phytochrome-Signaling-Mechanisms/10.1199/tab.0148.full PubMed DOI PMC
Li T., Podola B., Melkonian M.: Investigating dynamic processes in a porous substrate biofilm photobioreactor – A modeling approach. – Algal Res. 13: 30-40, 2016. https://www.sciencedirect.com/science/article/abs/pii/S2211926415300965?via%3Dihub
Li X.-P., Björkman O., Shih C. et al.: A pigment-binding protein essential for regulation of photosynthetic light harvesting. – Nature 403: 391-395, 2000. https://www.nature.com/articles/35000131 PubMed
Lichtenberg M., Kühl M.: Pronounced gradients of light, photosynthesis and O2 consumption in the tissue of the brown alga Fucus serratus. – New Phytol. 207: 559-569, 2015. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.13396 PubMed DOI
Lichtenberg M., Trampe E.C.L., Vogelmann T.C., Kühl M.: Light sheet microscopy imaging of light absorption and photosynthesis distribution in plant tissue. – Plant Physiol. 175: 721-733, 2017. https://academic.oup.com/plphys/article/175/2/721/6116762 PubMed PMC
Lichtenthaler H.K.: Multi-colour fluorescence imaging of photosynthetic activity and plant stress. – Photosynthetica 59: 364-380, 2021. https://ps.ueb.cas.cz/artkey/phs-202103-0002_multi-colour-fluorescence-imaging-of-photosynthetic-activityand-plant-stress.php
Lichtenthaler H.K., Babani F.: Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. – Plant Physiol. Bioch. 38: 889-895, 2000. https://www.sciencedirect.com/science/article/abs/pii/S0981942800011992?via%3Dihub
Lichtenthaler H.K., Buschmann C., Rahmsdorf U.: The importance of blue light for the development of sun-type chloroplasts. – In: Senger H. (ed.): The Blue Light Syndrome. Proceedings in Life Sciences. Pp. 485-494. Springer, Berlin-Heidelberg: 1980. https://link.springer.com/chapter/10.1007%2F978-3-642-67648-2_45
Lichtenthaler H.K., Lang M., Sowinska M. et al.: Detection of vegetation stress via a new high resolution fluorescence imaging system. – J. Plant Physiol. 148: 599-612, 1996. https://www.sciencedirect.com/science/article/abs/pii/S0176161796800812?via%3Dihub
Lin C.: Blue light receptors and signal transduction. – Plant Cell 14: S207-S225, 2002. https://academic.oup.com/plcell/article/14/suppl_1/S207/6009900 PubMed PMC
Liscum E., Nittler P., Koskie K.: The continuing arc toward phototropic enlightenment. – J. Exp. Bot. 71: 1652-1658, 2020. https://academic.oup.com/jxb/article/71/5/1652/5697446 PubMed PMC
Litvin F.F., Krasnovsky A.A.: Investigation of intermediate stages of chlorophyll formation. – Doklady Akademii Nauk SSSR 117: 106-109, 1957.
Liu H., Blankenship R.E.: On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. – BBA-Bioenergetics 1860: 148079, 2019. https://www.sciencedirect.com/science/article/pii/S0005272819301264?via%3Dihub PubMed
Liu H., Liu B., Zhao C. et al.: The action mechanisms of plant cryptochromes. – Trends Plant Sci. 16: 684-691, 2011. https://www.cell.com/trends/plant-science/fulltext/S1360-1385(11)00193-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138511001932%3Fshowall%3Dtrue PubMed PMC
Lüttge U.: CO2-concentrating: consequences in crassulacean acid metabolism. – J. Exp. Bot. 53: 2131-2142, 2002. https://academic.oup.com/jxb/article/53/378/2131/426549 PubMed
Lysenko V., Lazár D., Verduny T.: A method of a bicolor fast-Fourier pulse-amplitude modulation chlorophyll fluorometry. – Photosynthetica 56: 1447-1452, 2018. https://ps.ueb.cas.cz/artkey/phs-201804-0051_a-method-of-a-bicolor-fast-fourier-pulse-amplitude-modulation-chlorophyll-fluorometry.php
Magdaong N.C.M., Blankenship R.E.: Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. – J. Biol. Chem. 293: 5018-5025, 2018. https://www.jbc.org/article/S0021-9258(20)40975-5/fulltext PubMed PMC
Magyar M., Sipka G., Kovács L. et al.: Rate-limiting steps in the dark-to-light transition of Photosystem II – revealed by chlorophyll-a fluorescence induction. – Sci. Rep.-UK 8: 2755, 2018. https://www.nature.com/articles/s41598-018-21195-2 PubMed PMC
Mamedov M., Govindjee G., Nadtochenko V., Semenov A.: Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. – Photosynth. Res. 125: 51-63, 2015. https://link.springer.com/article/10.1007/s11120-015-0088-y PubMed DOI
Mao J., Zhang Y.C., Sang Y. et al.: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. – P. Natl. Acad. Sci. USA 102: 12270-12275, 2005. https://www.pnas.org/content/102/34/12270 PubMed PMC
Marosvölgyi M.A., van Gorkom H.J.: Cost of color of photosynthesis. – Photosynth. Res. 103: 105-109, 2010. https://link.springer.com/article/10.1007%2Fs11120-009-9522-3 PubMed PMC
Marrs J.K., Reblin J.S., Logan B.A. et al.: Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. – Geophys. Res. Lett. 47: e2020GL087956, 2020. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL087956 DOI
Mascoli V., Bersanini L., Croce R.: Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis. – Nat. Plants 6: 1044-1053, 2020. https://www.nature.com/articles/s41477-020-0718-z PubMed
Matsubara S., Morosinotto T., Osmond C.B., Bassi R.: Short- and long-term operation of the lutein-epoxide cycle in light-harvesting antenna complexes. – Plant Physiol. 144: 926-941, 2007. https://academic.oup.com/plphys/article/144/2/926/6106962 PubMed PMC
Matsuda R., Ohashi-Kaneko K., Fujiwara K., Kurata K.: Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. – Soil Sci. Plant Nutr. 53: 459-465, 2007. https://www.tandfonline.com/doi/full/10.1111/j.1747-0765.2007.00150.x DOI
Matthews J.S.A., Lawson T.: Climate change and stomatal physiology. – Annu. Plant Rev. Online 2: apr0667, 2019. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119312994.apr0667 DOI
Matthews J.S.A., Vialet-Chabrand S., Lawson T.: Acclimation to fluctuating light impacts the rapidity of response and diurnal rhythm of stomatal conductance. – Plant Physiol. 176: 1939-1951, 2018. https://academic.oup.com/plphys/article/176/3/1939/6116880 PubMed PMC
Matthews J.S.A., Vialet-Chabrand S., Lawson T.: Role of blue and red light in stomatal dynamic behaviour. – J. Exp. Bot. 71: 2253-2269, 2020. PubMed PMC
Mauzerall D.: Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen. – P. Natl. Acad. Sci. USA 69: 1358-1362, 1972. https://www.pnas.org/content/69/6/1358 PubMed PMC
Mauzerall D.: Why chlorophyll? – Ann. N. Y. Acad. Sci. 206: 483-494, 1973. https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1973.tb43231.x PubMed DOI
Mauzerall D.: Chlorophyll and photosynthesis. – Philos. T. Roy. Soc. B 273: 287-294, 1976. https://royalsocietypublishing.org/doi/10.1098/rstb.1976.0014 DOI
Mawson B.T., Franklin A., Filion W.G., Cummins W.R.: Comparative studies of fluorescence from mesophyll and guard cell chloroplasts in Saxifraga cernua 1: Analysis of fluorescence kinetics as a function of excitation intensity. – Plant Physiol. 74: 481-486, 1984. https://academic.oup.com/plphys/article/74/3/481/6079551 PubMed PMC
McKown A.D., Guy R.D., Quamme L. et al.: Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. – Mol. Ecol. 23: 5771-5790, 2014. https://onlinelibrary.wiley.com/doi/10.1111/mec.12969 PubMed DOI
Merzlyak M.N., Chivkunova O.B., Zhigalova T.V., Naqvi K.R.: Light absorption by isolated chloroplasts and leaves: effects of scattering and ‘packing’. – Photosynth. Res. 102: 31-41, 2009. https://link.springer.com/article/10.1007%2Fs11120-009-9481-8 PubMed
Mi H., Klughammer C., Schreiber U.: Light-induced dynamic changes of NADPH fluorescence in Synechocystis PCC 6803 and its ndhB-defective mutant M55. – Plant Cell Physiol. 41: 1129-1135, 2000. https://academic.oup.com/pcp/article/41/10/1129/1859423 PubMed
Mimuro M.: Photon capture, exciton migration and trapping and fluorescence emission in cyanobacteria and red algae. – In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 173-195. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007%2F978-1-4020-3218-9_7
Mirkovic T., Ostroumov E.E., Anna J.M. et al.: Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. – Chem. Rev. 117: 249-293, 2017. https://pubs.acs.org/doi/10.1021/acs.chemrev.6b00002 PubMed DOI
Miyashita H., Ikemoto H., Kurano N. et al.: Chlorophyll d as a major pigment. – Nature 383: 402, 1996. https://www.nature.com/articles/383402a0?foxtrotcallback=true&error=cookies_not_supported&code=01eada92-d044-4a31-a16c-5383adfe0d94
Möglich A., Yang X., Ayers R.A., Moffat K.: Structure and function of plant photoreceptors. – Annu. Rev. Plant Biol. 61: 21-47, 2010. https://www.annualreviews.org/doi/10.1146/annurev-arplant-042809-112259 PubMed DOI
Montgomery B.L.: Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. – J. Exp. Bot. 67: 4079-4090, 2016. https://academic.oup.com/jxb/article/67/14/4079/2197747 PubMed
Montgomery B.L.: Lessons from Plants. Pp. 240. Harvard University Press, Cambridge: 2021.
Moreno M.V., Rockwell N.C., Mora M. et al.: A far-red cyanobacteriochrome lineage specific for verdins. – P. Natl. Acad. Sci. USA 117: 27962-27970, 2020. https://www.pnas.org/content/117/45/27962 PubMed PMC
Muir C.D.: Making pore choices: repeated regime shifts in stomatal ratio. – P. Roy. Soc. Lond. B Bio. 282: 20151498, 2015. https://royalsocietypublishing.org/doi/10.1098/rspb.2015.1498 PubMed DOI PMC
Myers J., Graham J.R.: Enhancement in Chlorella. – Plant Physiol. 38: 105-116, 1963. https://academic.oup.com/plphys/article/38/1/105/6088451 PubMed PMC
Natali A., Croce R.: Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii. – PLoS ONE 10: e0119211, 2015. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119211 PubMed PMC
Nauš J., Klinkovský T., Ilík P., Cikánek D.: Model studies of chlorophyll fluorescence reabsorption at chloroplast level under different exciting conditions. – Photosynth. Res. 40: 67-74, 1994. https://link.springer.com/article/10.1007%2FBF00019046 PubMed
Nauš J., Lazár D., Baránková B., Arnoštová B.: On the source of non-linear light absorbance in photosynthetic samples. – Photosynth. Res. 136: 345-355, 2018. https://link.springer.com/article/10.1007%2Fs11120-017-0468-6 PubMed
Nauš J., Prokopová J., Řebíček J., Špundová M.: SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement. – Photosynth. Res. 105: 265-271, 2010. https://link.springer.com/article/10.1007%2Fs11120-010-9587-z PubMed
Nedbal L., Trtílek M., Kaftan D.: Flash fluorescence induction: A novel method to study regulation of photosystem II. – J. Photoch. Photobio. B 48: 154-157, 1999. https://www.sciencedirect.com/science/article/pii/S1011134499000329?via%3Dihub
Negi S., Perrine Z., Friedland N. et al.: Light regulation of light harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. – Plant J. 103: 584-603, 2020. https://onlinelibrary.wiley.com/doi/10.1111/tpj.14751 PubMed DOI
Nelson N., Junge W.: Structure and energy transfer in photosystems of oxygenic photosynthesis. – Annu. Rev. Biochem. 84: 659-683, 2015. https://www.annualreviews.org/doi/10.1146/annurev-biochem-092914-041942 PubMed DOI
Nishio J.N.: Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. – Plant Cell Environ. 23: 539-548, 2000. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.2000.00563.x DOI
Nishio J.N., Sun J., Vogelmann T.C.: Carbon fixation gradients across spinach leaves do not follow internal light gradients. – Plant Cell 5: 953-961, 1993. https://academic.oup.com/plcell/article/5/8/953/5984586 PubMed PMC
Nobel P.S.: Photochemistry of photosynthesis. – In: Nobel P.S.: Photochemical and Environmental Plant Physiology. 4th Edition. Pp. 228-275. Academic Press, Amsterdam: 2009. https://www.sciencedirect.com/science/article/pii/B9780123741431000053?via%3Dihub
Nürnberg D.J., Morton J., Santabarbara S. et al.: Photochemistry beyond the red limit in chlorophyll f-containing photo-systems. – Science 360: 1210-1213, 2018. https://www.science.org/lookup/doi/10.1126/science.aar8313 PubMed DOI
Ogawa T., Grantz D., Boyer J., Govindjee G.: Effects of cations and abscisic acid on chlorophyll a fluorescence in guard cells of Vicia faba. – Plant Physiol. 69: 1140-1144, 1982. https://academic.oup.com/plphys/article/69/5/1140/6078317 PubMed PMC
Ogawa T., Misumi M., Sonoike K.: Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. – Photosynth. Res. 133: 63-73, 2017. https://link.springer.com/article/10.1007%2Fs11120-017-0367-x PubMed
Oguchi R., Douwstra P., Fujita T. et al.: Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. – New Phytol. 191: 146-159, 2011. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03669.x PubMed DOI
Oguchi R., Terashima I., Chow W.S.: The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. plants. – Plant Cell Physiol. 50: 1815-1825, 2009. https://academic.oup.com/pcp/article/50/10/1815/1851165 PubMed
Oh S., Montgomery B.L.: Phytochromes: Where to start? – Cell 171: 1254-1256, 2017. https://www.sciencedirect.com/science/article/pii/S0092867417313673?via%3Dihub PubMed
Ohkubo S., Miyashita H.: A niche for cyanobacteria producing chlorophyll f within a microbial mat. – ISME J. 11: 2368-2378, 2017. https://www.nature.com/articles/ismej201798 PubMed PMC
Oka K., Ueno Y., Yokono M. et al.: Adaptation of light harvesting and energy transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. – Photosynth. Res. 146: 227-234, 2020. https://link.springer.com/article/10.1007/s11120-020-00714-1 PubMed DOI
Olson J.M., Blankenship R.E.: Thinking about the evolution of photosynthesis. – Photosynth. Res. 80: 373-386, 2004. https://link.springer.com/article/10.1023/B:PRES.0000030457.06495.83 PubMed DOI
Ort D.R., Merchant S.S., Alric J. et al.: Redesigning photosynthesis to sustainably meet global food and bioenergy demand. – P. Natl. Acad. Sci. USA 112: 8529-8536, 2015. https://www.pnas.org/content/112/28/8529 PubMed PMC
Osmond B., Chow W.S., Wyber R. et al.: Relative functional and optical absorption cross-sections of PSII and other photosynthetic parameters monitored in situ, at a distance with a time resolution of a few seconds, using a prototype light induced fluorescence transient (LIFT) device. – Funct. Plant Biol. 44: 985-1006, 2017. https://www.publish.csiro.au/fp/FP17024 PubMed
Ostroumov E.E., Khan Y.R., Scholes G.D., Govindjee G.: Photophysics of photosynthetic pigment-protein complexes. – In: Demmig-Adams B., Garab G., Adams W.W. III, Govindjee G. (ed.): Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in Photosynthesis and Respiration. Vol. 40. Pp. 97-128. Springer, Dordrecht: 2014. https://link.springer.com/chapter/10.1007/978-94-017-9032-1_4 DOI
Ouzounis T., Rosenqvist E., Ottosen C.-O.: Spectral effects of artificial light on plant physiology and secondary metabolism: A review. – HortScience 50: 1128-1135, 2015. https://journals.ashs.org/hortsci/view/journals/hortsci/50/8/article-p1128.xml
Padhi B., Chauhan G., Kandoi D. et al.: A comparison of chlorophyll fluorescence transient measurements, using Handy PEA and FluorPen fluorometers. – Photosynthetica 59: 399-408, 2021. https://ps.ueb.cas.cz/artkey/phs-202103-0004_a-comparison-of-chlorophyll-fluorescence-transient-measurements-using-handy-pea-and-fluorpen-fluorometers.php
Paik I., Huq E.: Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. – Semin. Cell Dev. Biol. 92: 114-121, 2019. https://www.sciencedirect.com/science/article/abs/pii/S1084952117305748?via%3Dihub PubMed PMC
Palenik B.: Chromatic adaptation in marine Synechococcus strains. – Appl. Environ. Microb. 67: 991-994, 2001. https://journals.asm.org/doi/10.1128/AEM.67.2.991-994.2001 PubMed DOI PMC
Palmitessa O.D., Pantaleo M.A., Santamaria P.: Applications and development of LEDs as supplementary lighting for tomato at different latitudes. – Agronomy 11: 835, 2021. https://www.mdpi.com/2073-4395/11/5/835
Pan X., Cao P., Su X. et al.: Structural analysis and comparison of light-harvesting complexes I and II. – BBA-Bioenergetics 1861: 148038, 2020. https://www.sciencedirect.com/science/article/pii/S0005272819300623?via%3Dihub PubMed
Pan X., Ma J., Su X. et al.: Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. – Science 360: 1109-1113, 2018. https://www.science.org/lookup/doi/10.1126/science.aat1156 PubMed DOI
Papageorgiou G.C.: Chlorophyll fluorescence: an intrinsic probe of photosynthesis. – In: Govindjee G. (ed.): Bioenergetics of Photosynthesis. Pp. 319-371. Academic Press, New York: 1975. https://www.sciencedirect.com/science/article/pii/B9780122943508500118?via%3Dihub
Papageorgiou G.C.: The photosynthesis of cyanobacteria (blue bacteria) from the perspective of signal analysis of chlorophyll a fluorescence. – J. Sci. Ind. Res. India 155: 596-617, 1996.
Papageorgiou G.C., Govindjee G.: Changes in intensity and spectral distribution of fluorescence. Effect of light treatment on normal and DCMU-poisoned Anacystis nidulans. – Biophys. J. 7: 375-389, 1967. https://www.cell.com/biophysj/pdf/S0006-3495(67)86595-0.pdf PubMed PMC
Papageorgiou G.C., Govindjee G.: Light-induced changes in the fluorescence yield of chlorophyll a in vivo. I. Anacystis nidulans. – Biophys. J. 8: 1299-1315, 1968a. https://www.cell.com/biophysj/pdf/S0006-3495(68)86557-9.pdf PubMed PMC
Papageorgiou G.C., Govindjee G.: Light induced changes in the fluorescence yield of chlorophyll a in vivo. II. Chlorella pyrenoidosa. – Biophys. J. 8: 1316-1328, 1968b. https://www.cell.com/biophysj/pdf/S0006-3495(68)86558-0.pdf PubMed PMC
Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 818. Springer, Dordrecht: 2004. https://www.springer.com/gp/book/9781402032172
Papageorgiou G.C., Govindjee G.: Photosystem II fluorescence: slow changes – scaling from the past. – J. Photoch. Photobio. B 104: 258-270, 2011. https://www.sciencedirect.com/science/article/abs/pii/S1011134411000844?via%3Dihub PubMed
Papageorgiou G.C., Govindjee G.: The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: definitions, timelines, viewpoints, open questions. – In: Demmig-Adams B., Garab G., Adams W.W. III, Govindjee G. (ed.): Nonphotochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Pp. 1-44. Advances in Photosynthesis and Respiration. Vol. 40. Springer, Dordrecht: 2014. https://link.springer.com/chapter/10.1007/978-94-017-9032-1_1 DOI
Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K.: The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. – Photosynth. Res. 94: 275-290, 2007. https://link.springer.com/article/10.1007/s11120-007-9193-x PubMed DOI
Paradiso R., Proietti S.: Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. – J. Plant Growth Regul., 2021. (In press) https://link.springer.com/article/10.1007/s00344-021-10337-y DOI
Pattison P.M., Tsao J.Y., Brainard G.C., Bugbee B.: LEDs for photons, physiology and food. – Nature 563: 493-500, 2018. https://www.nature.com/articles/s41586-018-0706-x/ PubMed
Peers G., Truong T.B., Ostendorf E. et al.: An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. – Nature 462: 518-521, 2009. https://www.nature.com/articles/nature08587 PubMed
Pérez-Bueno M.K., Pineda M., Díaz-Casado E., Barón M.: Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. – Physiol. Plantarum 153: 161-174, 2015. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12237 PubMed DOI
Pettai H., Oja V., Freiberg A., Laisk A.: Photosynthetic activity of far-red light in green plants. – BBA-Bioenergetics 1708: 311-321, 2005a. https://www.sciencedirect.com/science/article/pii/S0005272805001192?via%3Dihub PubMed
Pettai H., Oja V., Freiberg A., Laisk A.: The long-wavelength limit of plant photosynthesis. – FEBS Lett. 579: 4017-4019, 2005b. https://febs.onlinelibrary.wiley.com/doi/full/10.1016/j.febslet.2005.04.088 PubMed DOI
Pfündel E.E.: Deriving room temperature excitation spectra for photosystem I and photosystem II fluorescence in intact leaves from the dependence of FV/FM on excitation wavelength. – Photosynth. Res. 100: 163-177, 2009. https://link.springer.com/article/10.1007/s11120-009-9453-z PubMed DOI
Pfündel E.E.: Simultaneously measuring pulse amplitude modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. – Photosynth. Res. 147: 345-358, 2021. https://link.springer.com/article/10.1007%2Fs11120-021-00821-7 PubMed
Pfündel E.E., Latouche G., Meister A., Cerovic Z.G.: Linking chloroplast relocation to different responses of photosynthesis to blue and red radiation in low and high light-acclimated leaves of Arabidopsis thaliana (L.). – Photosynth. Res. 137: 105-128, 2018. https://link.springer.com/article/10.1007%2Fs11120-018-0482-3 PubMed
Pi X., Zhao S., Wang W. et al.: The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. – Science 365: eaaax4406, 2019. https://www.science.org/doi/10.1126/science.aax4406 PubMed DOI
Prášil O., Kolber Z.S., Falkowski P.G.: Control of the maximal chlorophyll fluorescence yield by the QB binding site. – Photosynthetica 56: 150-162, 2018. https://ps.ueb.cas.cz/artkey/phs-201801-0013_control-of-the-maximal-chlorophyll-fluorescence-yield-by-the-qb-binding-site.php
Ptushenko O.S., Ptushenko V.V., Solovchenko A.E.: Spectrum of light as a determinant of plant functioning: A historical perspective. – Life 10: 25, 2020. https://www.mdpi.com/2075-1729/10/3/25 PubMed PMC
Qin X., Suga M., Kuang T., Shen J.R.: Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. – Science 348: 989-995, 2015. https://www.science.org/lookup/doi/10.1126/science.aab0214 PubMed DOI
Rappaport F., Béal D., Joliot A., Joliot P.: On the advantages of using green light to study fluorescence yield changes in leaves. – BBA-Bioenergetics 1767: 56-65, 2007. https://www.sciencedirect.com/science/article/pii/S0005272806003094?via%3Dihub PubMed
Raven J.A.: Functional evolution of photochemical energy transformations in oxygen-producing organisms. – Funct. Plant Biol. 36: 505-515, 2009. https://www.publish.csiro.au/fp/FP09087 PubMed
Razzak M.A., Ranade S.S., Strand Å., García-Gil M.: Environment: Differential response of Scots pine seedlings to variable intensity and ratio of R and FR light. – Plant Cell Environ. 40: 1332-1340, 2017. https://onlinelibrary.wiley.com/doi/10.1111/pce.12921 PubMed DOI
Remelli W., Santabarbara S.: Excitation and emission wavelength dependence of fluorescence spectra in whole cells of the cyanobacterium Synechocystis sp. PPC6803: Influence on the estimation of photosystem II maximal quantum efficiency. – BBA-Bioenergetics 1859: 1207-1222, 2018. https://www.sciencedirect.com/science/article/pii/S000527281830642X?via%3Dihub PubMed
Ritchie R.J., Larkum A.W.D., Ribas I.: Could photosynthesis function on Proxima Centauri b? – Int. J. Astrobiol. 17: 147-176, 2018. https://www.cambridge.org/core/journals/international-journal-of-astrobiology/article/could-photosynthesis-function-on-proxima-centauri-b/4418B56656F8EE751FAF7D3304851836
Rivadossi A., Zucchelli G., Garlaschi F.M., Jennings R.C.: The importance of PS I chlorophyll red forms in light-harvesting by leaves. – Photosynth. Res. 60: 209-215, 1999. https://link.springer.com/article/10.1023/A:1006236829711 DOI
Rockwell N.C., Duanmu D., Martin S.S. et al.: Eukaryotic algal phytochromes span the visible spectrum. – P. Natl. Acad. Sci. USA 111: 3871-3876, 2014. https://www.pnas.org/content/111/10/3871 PubMed PMC
Rockwell N.C., Lagarias J.C.: A brief history of phytochromes. – ChemPhysChem 11: 1172-1180, 2010. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.200900894 PubMed DOI PMC
Rockwell N.C., Lagarias J.C.: Phytochrome diversification in cyanobacteria and eukaryotic algae. – Curr. Opin. Plant Biol. 37: 87-93, 2017. https://www.sciencedirect.com/science/article/abs/pii/S136952661630200X?via%3Dihub PubMed PMC
Rockwell N.C., Su Y.S., Lagarias J.C.: Phytochrome structure and signaling mechanisms. – Annu. Rev. Plant Biol. 57: 837-858, 2006. https://www.annualreviews.org/doi/10.1146/annurev.arplant.56.032604.144208 PubMed DOI PMC
Roelfsema M.R.G., Hedrich R.: In the light of stomatal opening: new insights into 'the Watergate'. New Phytol. 167: 665-691, 2005. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2005.01460.x PubMed DOI
Romero J.M., Cordon G.B., Lagorio M.G.: Modeling re-absorption of fluorescence from the leaf to the canopy level. – Remote Sens. Environ. 204: 138-146, 2018. https://www.sciencedirect.com/science/article/abs/pii/S0034425717304984?via%3Dihub
Ronald J., Davis S.J.: Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. – Plant Cell Environ. 42: 2871-2884, 2019. https://onlinelibrary.wiley.com/doi/10.1111/pce.13634 PubMed DOI
Ross R.T., Calvin M.: Thermodynamics of light emission and free-energy storage in photosynthesis. – Biophys. J. 7: 595-614, 1967. https://www.cell.com/biophysj/pdf/S0006-3495(67)86609-8.pdf PubMed PMC
Ruberti I., Sessa G., Ciolfi A. et al.: Plant adaptation to dynamically changing environment: the shade avoidance response. – Biotechnol. Adv. 30: 1047-1058, 2012. https://www.sciencedirect.com/science/article/abs/pii/S0734975011001467?via%3Dihub PubMed
Rudall P.J., Hilton J., Bateman R.M.: Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants. – New Phytol. 200: 598-614, 2013. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.12406 PubMed DOI
Russo M., Casazza A.P., Cerullo G. et al.: Direct evidence for excitation energy transfer limitations imposed by low-energy chlorophylls in photosystem I – Light harvesting complex I of land plants. – J. Phys. Chem. B 125: 3566-3573, 2021. https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01498 PubMed DOI PMC
Sanfilippo J.E, Garczarek L., Partensky F., Kehoe D.M.: Chromatic acclimation in cyanobacteria: A diverse and widespread process for optimizing photosynthesis. – Annu. Rev. Microbiol. 73: 407-433, 2019. https://www.annualreviews.org/doi/10.1146/annurev-micro-020518-115738 PubMed DOI
Sanfilippo J.E., Nguyen A.A.., Karty J.A. et al.: Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus. – P. Natl. Acad. Sci. USA 113: 6077-6082, 2016. https://www.pnas.org/content/113/21/6077 PubMed PMC
Santabarbara S., Casazza A.P., Belgio E. et al.: Light harvesting by long-wavelength chlorophyll forms (red forms) in algae: Focus on their presence, distribution and function. – In: Larkum A.W.D., Grossman A.R., Raven J.R. (ed.): Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration. Vol. 45. Pp. 261-297. Springer, Cham: 2020. https://link.springer.com/chapter/10.1007/978-3-030-33397-3_11 DOI
Santabarbara S., Monteleone F.V., Remellia W. et al.: Comparative excitation-emission dependence of the FV/FM ratio in model green algae and cyanobacterial strains. – Physiol. Plantarum 166: 351-364, 2019. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12931 PubMed DOI
Schansker G., Tóth Z.S., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. – BBA-Bioenergetics 1807: 1032-1043, 2011. https://www.sciencedirect.com/science/article/pii/S000527281100140X?via%3Dihub PubMed
Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. – In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 279-319. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007%2F978-1-4020-3218-9_11
Schreiber U., Klughammer C.: New NADPH/9-AA module for the DUAL-PAM-100: Description, operation and examples of application. – PAM Appl. Notes 2: 1-13, 2009. https://www.walz.com/downloads/pan/PAN09001_Rev04.pdf
Schreiber U., Klughammer C.: Evidence for variable chlorophyll fluorescence of photosystem I in vivo. – Photosynth. Res. 149: 213-231, 2021. https://link.springer.com/article/10.1007/s11120-020-00814-y PubMed DOI PMC
Schreiber U., Klughammer C., Koblowski J.: High-end chlorophyll fluorescence analysis with the MULTI-COLOR-PAM. I. Various light qualities and their applications. – PAM Appl. Notes 1: 1-21, 2011. https://www.walz.com/downloads/pan/PAN11001.pdf
Schreiber U., Klughammer C., Kolbowski J.: Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. – Photosynth. Res. 113: 127-144, 2012. https://link.springer.com/article/10.1007/s11120-012-9758-1 PubMed DOI PMC
Schreiber U., Kühl M., Klimant I., Reising H.: Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. – Photosynth. Res. 47: 103-109, 1996. https://link.springer.com/article/10.1007/BF00017758 PubMed DOI
Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. – Photosynth. Res. 10: 51-62, 1986. https://link.springer.com/article/10.1007%2FBF00024185 PubMed
Segečová A., Pérez-Bueno M.L., Barón M. et al.: Non-invasive determination of toxic stress biomarkers by high-throughput screening of photoautotrophic cell suspension cultures with multi-colour fluorescence imaging. – Plant Methods 15: 100, 2019. https://0-plantmethods-biomedcentral-com.brum.beds.ac.uk/articles/10.1186/s13007-019-0484-y PubMed DOI PMC
Semchonok D.A., Li M., Bruce B.D. et al.: Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. – BBA-Bioenergetics 1857: 1619-1626, 2016. https://www.sciencedirect.com/science/article/pii/S0005272816305722?via%3Dihub PubMed
Semer J., Navrátil M., Špunda V., Štroch M.: Chlorophyll fluorescence parameters to assess utilization of excitation energy in photosystem II independently of changes in leaf absorption. – J. Photoch. Photobio. B 197: 111535, 2019. https://www.sciencedirect.com/science/article/abs/pii/S1011134419304592?via%3Dihub PubMed
Sheng X., Watanabe A., Li A. et al.: Structural insight into light harvesting for photosystem II in green algae. – Nat. Plants 5: 1320-1330, 2019. https://www.nature.com/articles/s41477-019-0543-4 PubMed
Shevela D., Kern J.F., Govindjee G. et al.: Photosystem II. – eLS 2: 1-20, 2021. https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0029372 DOI
Shibata Y., Nishi S., Kawakami K. et al.: Photosystem II does not possess a simple excitation energy funnel: Time-resolved fluorescence spectroscopy meets theory. – J. Am. Chem. Soc. 135: 6903-6914, 2013. https://pubs.acs.org/doi/10.1021/ja312586p PubMed DOI PMC
Shimazaki K., Doi M., Assmann S.M., Kinoshita T.: Light regulation of stomatal movement. – Annu. Rev. Plant Biol. 58: 219-247, 2007. https://www.annualreviews.org/doi/10.1146/annurev.arplant.57.032905.105434 PubMed DOI
Shtein I., Popper Z.A., Harpaz-Saad S.: Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns. – Plant Signal. Behav. 12: e1339858, 2017. https://www.tandfonline.com/doi/full/10.1080/15592324.2017.1339858 PubMed DOI PMC
Shukla A., Biswas A., Blot N. et al.: Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus. – P. Natl. Acad. Sci. USA 109: 20136-20141, 2012. https://www.pnas.org/content/109/49/20136 PubMed PMC
Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. – Plant Cell 33: 1286-1302, 2021. https://academic.oup.com/plcell/article-abstract/33/4/1286/6119330?redirectedFrom=fulltext PubMed PMC
Sipka H., Müller P., Brettel K. et al.: Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus. – Physiol. Plantarum 166: 22-32, 2019. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12945 PubMed DOI
Slattery R.A., Grennan A.K., Sivaguru M. et al.: Light sheet microscopy reveals more gradual light attenuation in light-green versus dark-green soybean leaves. – J. Exp. Bot. 67: 4697-4709, 2016. https://academic.oup.com/jxb/article/67/15/4697/1749899 PubMed PMC
Slattery R.A., Ort D.R.: Perspectives on improving light distribution and light use efficiency in crop canopies. – Plant Physiol. 185: 34-48, 2021. https://academic.oup.com/plphys/article/185/1/34/6149974 PubMed PMC
Smith H., Whitelam G.C.: The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. – Plant Cell Environ. 20: 840-844, 1997. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.1997.d01-104.x DOI
Somers D.E., Devlin P.F., Kay S.A.: Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. – Science 282: 1488-1490, 1998. https://www.science.org/doi/abs/10.1126/science.282.5393.1488 PubMed DOI
Sonoike K., Hihara Y., Ikeuchi M.: Physiological significance of the regulation of photosystem stoichiometry upon high light acclimation of Synechocystis sp. PCC 6803. – Plant Cell Physiol. 42: 379-384, 2001. https://academic.oup.com/pcp/article/42/4/379/1873262 PubMed
Srivastava A., Zeiger E.: Fast fluorescence quenching from isolated guard cell chloroplasts of Vicia faba is induced by blue light and not by red light. – Plant Physiol. 100: 1562-1566, 1992. https://academic.oup.com/plphys/article/100/3/1562/6085841 PubMed PMC
Stamatakis Κ., Papageorgiou G.C., Govindjee G.: Effects of exogenous β-carotene, a chemical scavenger of singlet oxygen, on the millisecond rise of chlorophyll a fluorescence of cyanobacterium Synechococcus sp. PCC 7942. – Photosynth. Res. 130: 317-324, 2016. https://link.springer.com/article/10.1007%2Fs11120-016-0255-9 PubMed
Stamatakis K., Tsimilli-Michael M., Papageorgiou G.C.: Fluorescence induction in the phycobilisome-containing cyanobacterium Synechococcus sp PCC 7942: Analysis of the slow fluorescence transient. – BBA-Bioenergetics 1767: 766-772, 2007. https://www.sciencedirect.com/science/article/pii/S0005272807000369?via%3Dihub PubMed
Stirbet A., Govindjee G.: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. – J. Photoch. Photobio. B 104: 236-257, 2011. https://www.sciencedirect.com/science/article/abs/pii/S1011134410002812?via%3Dihub PubMed
Stirbet A., Govindjee G.: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. – Photosynth. Res. 113: 15-61, 2012. https://link.springer.com/article/10.1007%2Fs11120-012-9754-5 PubMed
Stirbet A., Lazár D., Guo Y., Govindjee G.: Photosynthesis: basics, history and modelling. – Ann. Bot.-London 126: 511-537, 2020. https://academic.oup.com/aob/article/126/4/511/5602694 PubMed PMC
Stirbet A., Lazár D., Kromdijk J., Govindjee G.: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? – Photosynthetica 56: 86-104, 2018. https://ps.ueb.cas.cz/artkey/phs-201801-0008_chlorophyll-a-fluorescence-induction-can-just-a-one-second-measurement-be-used-to-quantify-abiotic-stress-resp.php
Stirbet A., Lazár D., Papageorgiou G.C., Govindjee G.: Chlorophyll a fluorescence in cyanobacteria: relation to photosynthesis. – In: Mishra A.K., Tiwari D.N., Rai A.N. (ed.): Cyanobacteria – From Basic Science to Applications. Pp. 79-130. Academic Press, London: 2019. https://www.sciencedirect.com/science/article/pii/B9780128146675000052
Stomp M., Huisman J., de Jongh F. et al.: Adaptive divergence in pigment composition promotes phytoplankton biodiversity. – Nature 432: 104-107, 2004. https://www.nature.com/articles/nature03044 PubMed
Stomp M., Huisman J., Stal L.J., Matthijs H.C.P.: Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. – ISME J. 1: 271-282, 2007a. https://www.nature.com/articles/ismej200759/tables/ PubMed
Stomp M., Huisman J., Vörös L. et al.: Colourful coexistence of red and green picocyanobacteria in lakes and seas. – Ecol. Lett. 10: 290-298, 2007b. https://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2007.01026.x PubMed DOI
Stomp M., van Dijk M.A., van Overzee H.M.J. et al.: The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. – Am. Nat. 172: 169-185, 2008. https://www.journals.uchicago.edu/doi/10.1086/591680 PubMed DOI
Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP test. – In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic, Dordrecht: 1995. https://www.researchgate.net/publication/284763350_Measuring_Fast_Fluorescence_Transients_to_Address_Environmental_Questions_The_JIP-Test
Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll fluorescence transient. – In: Papageorgiou G.C., Govindjee G. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 321-362. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_12 DOI
Suetsugu N., Dolja V.V., Wada M.: Why have chloroplasts developed a unique motility system? – Plant Signal. Behav. 5: 1190-1196, 2010. https://www.tandfonline.com/doi/full/10.4161/psb.5.10.12802 PubMed DOI PMC
Suetsugu N., Higa T., Gotoh E., Wada M.: Light-induced movements of chloroplasts and nuclei are regulated in both cp-actin-filament-dependent and -independent manners in Arabidopsis thaliana. – PLoS ONE 11: e0157429, 2016. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157429 PubMed PMC
Suetsugu N., Takami T., Ebisu Y. et al.: Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis. – PLoS ONE 9: e108374, 2014. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108374 PubMed PMC
Suetsugu N., Wada M.: Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. – Biol. Chem. 388: 927-935, 2007. https://www.degruyter.com/document/doi/10.1515/BC.2007.118/html PubMed DOI
Suetsugu N., Wada M.: Chloroplast photorelocation movement. – In: Sandelius A.S., Aronsson H. (ed.): The Chloroplasts. Plant Cell Monographs Series. Pp. 335-366. Springer, Berlin-Heidelberg: 2009. https://link.springer.com/chapter/10.1007%2F978-3-540-68696-5_8
Suga M., Ozawa S.I., Yoshida-Motomura K. et al.: Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. – Nat. Plants 5: 626-636, 2019. https://www.nature.com/articles/s41477-019-0438-4 PubMed
Sun J., Nishio J.N., Vogelmann T.C.: Green light drives CO2 fixation deep within leaves. – Plant Cell Physiol. 39: 1020-1026, 1998. https://academic.oup.com/pcp/article/39/10/1020/1844911
Sušila P., Lazár D., Ilík P. et al.: The gradient of exciting radiation within a sample affects the relative height of steps in the fast chlorophyll a fluorescence rise. – Photosynthetica 42: 161-172, 2004. https://ps.ueb.cas.cz/artkey/phs-200402-0001_the-gradient-of-exciting-radiation-within-a-sample-affects-the-relative-height-of-steps-in-the-fast-chlorophyll.php
Takahashi K., Mineuchi K., Nakamura T. et al.: A system for imaging transverse distribution of scattered light and chlorophyll fluorescence in intact rice leaves. – Plant Cell Environ. 17: 105-110, 1994. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00271.x DOI
Takemiya A., Sugiyama N., Fujimoto H. et al.: Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. – Nat. Commun. 4: 2094, 2013. https://www.nature.com/articles/ncomms3094 PubMed
Talbott L.D., Hammad J.W., Harn L.C. et al.: Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement. – Plant Cell Physiol. 47: 332-339, 2006. https://academic.oup.com/pcp/article/47/3/332/1922980 PubMed
Talbott L.D., Nikolova G., Ortiz A. et al.: Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. – Am. J. Bot. 89: 366-368, 2002. https://bsapubs.onlinelibrary.wiley.com/doi/10.3732/ajb.89.2.366 PubMed DOI
Tandeau de Marsac N.: Occurrence and nature of chromatic adaptation in cyanobacteria. – J. Bacteriol. 130: 82-91, 1977. https://journals.asm.org/doi/10.1128/jb.130.1.82-91.1977 PubMed DOI PMC
Terashima I., Fujita T., Inoue T. et al.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. – Plant Cell Physiol. 50: 684-697, 2009. https://academic.oup.com/pcp/article/50/4/684/1908367 PubMed
Terashima I., Inoue Y.: Palisade tissue chloroplasts and spongy tissue chloroplasts in spinach: biochemical and ultrastructural differences. – Plant Cell Physiol. 26: 63-75, 1985a. https://academic.oup.com/pcp/article-abstract/26/1/63/1861243?redirectedFrom=fulltext
Terashima I., Inoue Y.: Vertical gradient in photosynthetic properties of spinach chloroplasts dependent on intra-leaf light environment. – Plant Cell Physiol. 26: 781-785, 1985b. https://academic.oup.com/pcp/article-abstract/26/4/781/1902986?redirectedFrom=fulltext
Terashima I., Saeki T.: Light environment within a leaf. I. Optical properties of paradermal sections of Camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. – Plant Cell Physiol. 24: 1493-1501, 1983. https://academic.oup.com/pcp/article-abstract/24/8/1493/1841455?redirectedFrom=fulltext
Thapper A., Mamedov F., Mokvist F. et al.: Defining the far-red limit of photosystem II in spinach. – Plant Cell 21: 2391-2401, 2009. https://academic.oup.com/plcell/article/21/8/2391/6095504 PubMed PMC
Trissl H.-W., Gao Y., Wulf K.: Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. – Biophys. J. 64: 974-988, 1993. https://www.cell.com/biophysj/pdf/S0006-3495(93)81463-2.pdf PubMed PMC
Tros M., Mascoli V., Shen G. et al.: Breaking the red limit: Efficient trapping of long-wavelength excitations in chlorophyll-f-containing photosystem I. – Chem. 7: 155-173, 2021. https://www.sciencedirect.com/science/article/abs/pii/S2451929420305453
Tsimilli-Michael M.: Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. – Photosynthetica 58: 275-292, 2020. https://ps.ueb.cas.cz/artkey/phs-202002-0010_special-issue-in-honour-of-prof-reto-j-strasser-8211-revisiting-jip-test-an-educative-review-on-concepts.php
Tsimilli-Michael M., Stamatakis K., Papageorgiou G.C.: Dark-to-light transition in Synechococcus sp. PCC 7942 cells studied by fluorescence kinetics assesses plastoquinone redox poise in the dark and photosystem II fluorescence component and dynamics during state 2 to state 1 transition. – Photosynth. Res. 99: 243-255, 2009. https://link.springer.com/article/10.1007/s11120-009-9405-7 PubMed DOI
van Amerongen H., Valkunas L., van Grondelle R.: Photosynthetic excitons. Pp. 604. World Scientific Publishing, Singapore: 2000. https://www.worldscientific.com/worldscibooks/10.1142/3609 DOI
Vavilin D.V., Tyystjärvi E., Aro E.-M.: Model for the fluorescence induction curve of photoinhibited thylakoids. – Biophys. J. 75: 503-512, 1998. https://www.cell.com/fulltext/S0006-3495(98)77539-3 PubMed PMC
Vialet-Chabrand S., Matthews J.S.A., Simkin A.J. et al.: Importance of fluctuations in light on plant photosynthetic acclimation of Arabidopsis thaliana. – Plant Physiol. 173: 2163-2179, 2017. https://academic.oup.com/plphys/article/173/4/2163/6116047 PubMed PMC
Villafani Y., Yang H.W., Park Y.I.: Color sensing and signal transmission diversity of cyanobacterial phytochromes and cyanobacteriochromes. – Mol. Cells 43: 509-516, 2020. http://www.molcells.org/journal/view.html?doi=10.14348/molcells.2020.0077 PubMed PMC
Vogelmann T.C., Björn L.O.: Measurement of light gradients and spectral regime in plant tissue with a fiber-optic probe. – Physiol. Plantarum 60: 361-368, 1984. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1984.tb06076.x DOI
Vogelmann T.C., Bornman J.F., Josserand S.: Photosynthetic light gradients and spectral regime within leaves of Medicago sativa. – Philos. T. Roy. Soc. B 323: 411-421, 1989. https://royalsocietypublishing.org/doi/10.1098/rstb.1989.0020 DOI
Vogelmann T.C., Evans J.R.: Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. – Plant Cell Environ. 25: 1313-1323, 2002. https://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2002.00910.x DOI
Vogelmann T.C., Han T.: Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. – Plant Cell Environ. 23: 1303-1311, 2000. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.2000.00649.x DOI
Wada M.: Chloroplast and nuclear photorelocation movements. – P. Jpn. Acad. B-Phys. 92: 387-411, 2016. https://www.jstage.jst.go.jp/article/pjab/92/9/92_PJA9209B-01/_article PubMed PMC
Wallner T., Pedroza L., Voigt K. et al.: The cyanobacterial phytochrome 2 regulates the expression of motility-related genes through the second messenger cyclic di-GMP. – Photoch. Photobio. Sci. 19: 631-643, 2020. https://pubs.rsc.org/en/content/articlelanding/2020/PP/C9PP00489K PubMed
Wang F., Robson T.M., Casal J.J. et al.: Contributions of cryptochromes and phototropins to stomatal opening through the day. – Funct. Plant Biol. 47: 226-238, 2020. https://www.publish.csiro.au/fp/FP19053 PubMed
Wang J., Lu W., Tong Y., Yang Q.: Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. – Front. Plant Sci. 7: 250, 2016. https://www.frontiersin.org/articles/10.3389/fpls.2016.00250/full PubMed DOI PMC
Wang Q., Lin C.: Mechanisms of cryptochrome-mediated photoresponses in plants. – Annu. Rev. Plant Biol. 71: 103-129, 2020. https://www.annualreviews.org/doi/10.1146/annurev-arplant-050718-100300 PubMed DOI PMC
Wang W., Yu L.J., Xu C. et al.: Structural basis for blue-green light harvesting and energy dissipation in diatoms. – Science 363: eaav0365, 2019. https://www.science.org/lookup/doi/10.1126/science.aav0365 PubMed DOI
Wang X.Q., Wu W.H., Assmann S.M.: Differential responses of abaxial and adaxial guard cells of broad bean to abscisic acid and calcium. – Plant Physiol. 118: 1421-1429, 1998. https://academic.oup.com/plphys/article/118/4/1421/6081218 PubMed PMC
Wang X.Y., Xu X.M., Cui J.: The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. – Photosynthetica 53: 213-222, 2015. https://ps.ueb.cas.cz/artkey/phs-201502-0008_the-importance-of-blue-light-for-leaf-area-expansion-development-of-photosynthetic-apparatus-and-chloroplast.php
White S., Anandraj A., Trois C.: NADPH fluorescence as an indicator of hydrogen production in the green algae Chlamydomonas reinhardtii. – Int. J. Hydrogen Energ. 39: 1640-1647, 2014. https://www.sciencedirect.com/science/article/abs/pii/S0360319913027419?via%3Dihub
Wientjes E., Croce R.: PMS: photosystem I electron donor or fluorescence quencher. – Photosynth. Res. 111: 185-191, 2012. https://link.springer.com/article/10.1007/s11120-011-9671-z PubMed DOI PMC
Wientjes E., Philippi J., Borst J.W., van Amerongen H.: Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf. – BBA-Bioenergetics 1858: 259-265, 2017. https://www.sciencedirect.com/science/article/pii/S0005272817300099?via%3Dihub PubMed
Wientjes E., van Amerongen H., Croce R.: LHCII is an antenna of both photosystems after long-term acclimation. – BBA-Bioenergetics 1827: 420-426, 2013b. https://www.sciencedirect.com/science/article/pii/S0005272813000029?via%3Dihub PubMed
Wientjes E., van Amerongen H., Croce R.: Quantum yield of charge separation in photosystem II: Functional effect of changes in the antenna size upon light acclimation. – J. Phys. Chem. B 117: 11200-11208, 2013a. https://pubs.acs.org/doi/abs/10.1021/jp401663w PubMed DOI
Wientjes E., van Stokkum I.H.M., van Amerongen H., Croce R.: The role of the individual Lhcas in photosystem I excitation energy trapping. – Biophys J. 101: 745-754, 2011. https://www.sciencedirect.com/science/article/pii/S0006349511007752?via%3Dihub PubMed PMC
Wilson A., Ajlani G., Verbavatz J.-M. et al.: A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. – Plant Cell 18: 992-1007, 2006. https://academic.oup.com/plcell/article/18/4/992/6114881 PubMed PMC
Wiltbank L.B., Kehoe D.M.: Two cyanobacterial photoreceptors regulate photosynthetic light harvesting by sensing teal, green, yellow, and red light. – mBio 7: e02130-15, 2016. https://journals.asm.org/doi/10.1128/mBio.02130-15 PubMed DOI PMC
Wiltbank L.B., Kehoe D.M.: Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. – Nat. Rev. Microbiol. 17: 37-50, 2019. https://www.nature.com/articles/s41579-018-0110-4 PubMed
Wong S.C., Cowan I.R., Farquhar G.D.: Stomatal conductance correlates with photosynthetic capacity. – Nature 282: 424-426, 1979. https://www.nature.com/articles/282424a0
Wraight C.A., Crofts A.R.: Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts. – Eur. J. Biochem. 17: 319-327, 1970. https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1432-1033.1970.tb01169.x PubMed DOI
Wu T., Lin Y., Zheng L. et al.: Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities. – Opt. Express 26: 4135-4147, 2018. https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-26-4-4135&id=381508 PubMed
Xiong J.: Photosynthesis: what color was its origin? – Genome Biol. 7: 245, 2006. https://genomebiology.biomedcentral.com/articles/10.1186/gb-2006-7-12-245 PubMed DOI PMC
Xiong D., Flexas J.: From one side to two sides: the effects of stomatal distribution on photosynthesis. – New Phytol. 228: 1754-1766, 2020. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16801 PubMed DOI
Xiong J., Fischer W.M., Inoue K. et al.: Molecular evidence for the early evolution of photosynthesis. – Science 289: 1724-1730, 2000. https://www.science.org/lookup/doi/10.1126/science.289.5485.1724 PubMed DOI
Xu B., Long Y., Feng X. et al.: GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. – Nat. Commun. 12: 1952, 2021. https://www.nature.com/articles/s41467-021-21694-3 PubMed PMC
Xu C., Pi X., Huang Y. et al.: Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex. – Nat. Commun. 11: 5081, 2020b. https://www.nature.com/articles/s41467-020-18867-x PubMed PMC
Xu P., Chukhutsina V.U., Nawrocki W.J. et al.: Photosynthesis without β-carotene. – eLife 9: e58984, 2020a. https://elifesciences.org/articles/58984 PubMed PMC
Yamamoto H.Y., Higashi R.M.: Violaxanthin deepoxidase: Lipid composition and substrate specificity. – Arch. Biochem. Biophys. 190: 514-522, 1978. https://www.sciencedirect.com/science/article/abs/pii/0003986178903053?via%3Dihub PubMed
Yamamoto H.Y., Nakayama T., Chichester C.: Studies on the light and dark interconversions of leaf xanthophylls. – Arch. Biochem. Biophys. 97: 168-173, 1962. https://www.sciencedirect.com/science/article/abs/pii/0003986162900607?via%3Dihub PubMed
Yamauchi S., Takemiya A., Sakamoto T. et al.: The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. – Plant Physiol. 171: 2731-2743, 2016. https://academic.oup.com/plphys/article/171/4/2731/6115531 PubMed PMC
Yang F., Liu Q., Cheng Y. et al.: Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. – BMC Plant Biol. 20: 148, 2020. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-020-02352-0 PubMed DOI PMC
Yeh K.C., Wu S.H., Murphy J.T., Lagarias J.C.: A cyanobacterial phytochrome two-component light sensory system. – Science 277: 1505-1508, 1997. https://www.science.org/doi/abs/10.1126/science.277.5331.1505 PubMed DOI
Yu X., Liu H., Klejnot J., Lin C.: The cryptochrome blue light receptors. – The Arabidopsis Book 8: e0135, 2010. https://bioone.org/journals/the-arabidopsis-book/volume-2010/issue-8/tab.0135/The-Cryptochrome-Blue-Light-Receptors/10.1199/tab.0135.full PubMed DOI PMC
Zamzam N., Rakowski R., Kaucikas M. et al.: Femtosecond visible transient absorption spectroscopy of chlorophyll-f-containing photosystem II. – P. Natl. Acad. Sci. USA 117: 23158-23164, 2020. https://www.pnas.org/content/117/37/23158 PubMed PMC
Zeiger E., Armond P., Melis A.: Fluorescence properties of guard cell chloroplasts. Evidence for linear electron transport and light-harvesting pigments of photosystem I and II. – Plant Physiol. 67: 17-20, 1980. https://academic.oup.com/plphys/article/67/1/17/6080123 PubMed PMC
Zhang Y., Kaiser E., Zhang Y. et al.: Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum). – Physiol. Plantarum 167: 144-158, 2019. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12876 PubMed DOI
Zhao C., Gan F., Shen G., Bryant D.A.: RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP). – Front. Microbiol. 6: 1303, 2015. https://www.frontiersin.org/articles/10.3389/fmicb.2015.01303/full PubMed DOI PMC
Zheng L., He H., Song W.: Application of light-emitting diodes and the effect of light quality on horticultural crops: a review. – HortScience 54: 1656-1661, 2019. https://journals.ashs.org/hortsci/view/journals/hortsci/54/10/article-p1656.xml
Zheng L., Van Labeke M.-C.: Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. – Front. Plant Sci. 8: 917, 2017. https://www.frontiersin.org/articles/10.3389/fpls.2017.00917/full PubMed DOI PMC
Zouni A., Witt H.T., Kern J. et al.: Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. – Nature 409: 739-743, 2001. https://www.nature.com/articles/35055589 PubMed