Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RC21066
International Atomic Energy Agency
PubMed
35681629
PubMed Central
PMC9179543
DOI
10.3390/cancers14112649
PII: cancers14112649
Knihovny.cz E-zdroje
- Klíčová slova
- FDXR, PBMCs, biomarkers, ionizing radiation, radiation exposure, radiotherapy,
- Publikační typ
- časopisecké články MeSH
External beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in humans. In this study we monitored the messenger RNA transcript abundances of nine DNA damage-responsive genes (CDKN1A, GADD45, CCNG1, FDXR, DDB2, MDM2, PHPT1, SESN1, and PUMA), eight of them regulated by p53 in circulating blood leukocytes at different time points (2, 6-8, 16-18, and 24 h) in cancer patients (lung, neck, brain, and pelvis) undergoing radiotherapy. We discovered that, although the calculated mean physical dose to the blood was very low (0.038-0.169 Gy), an upregulation of Ferredoxin reductase (FDXR) gene transcription was detectable 2 h after exposure and was dose dependent from the lowest irradiated percentage of the body (3.5% whole brain) to the highest, (up to 19.4%, pelvic zone) reaching a peak at 6-8 h. The radiation response of the other genes was not strong enough after such low doses to provide meaningful information. Following multiple fractions, the expression level increased further and was still significantly up-regulated by the end of the treatment. Moreover, we compared FDXR transcriptional responses to ionizing radiation (IR) in vivo with healthy donors' blood cells exposed ex vivo and found a good correlation in the kinetics of expression from the 8-hours time-point onward, suggesting that a molecular transcriptional regulation mechanism yet to be identified is involved. To conclude, we provided the first in vivo human report of IR-induced gene transcription temporal response of a panel of p53-dependant genes. FDXR was demonstrated to be the most responsive gene, able to reliably inform on the low doses following partial body irradiation of the patients, and providing an expression pattern corresponding to the % of body exposed. An extended study would provide individual biological dosimetry information and may reveal inter-individual variability to predict radiotherapy-associated adverse health outcomes.
Zobrazit více v PubMed
Lawton S. Public Health England (PHE) Report. Public Health England; London, UK: 2017. Gateway number: 2017139.
Jaffray D.A., Gospodarowicz M.K. In: Radiation Therapy for Cancer. In Cancer: Disease Control Priorities. 3rd ed. Gelband H., Jha P., Sankaranarayanan R., Horton S., editors. Volume 3 The International Bank for Reconstruction and Development; Washington, DC, USA: 2015. PubMed
Behjati S., Gundem G., Wedge D.C., Roberts N.D., Tarpey P.S., Cooke S.L., Van Loo P., Alexandrov L.B., Ramakrishna M., Davies H., et al. Mutational signatures of ionizing radiation in second malignancies. Nat. Commun. 2016;7:12605. doi: 10.1038/ncomms12605. PubMed DOI PMC
Rothblum-Oviatt C., Wright J., Lefton-Greif M.A., McGrath-Morrow S.A., Crawford T.O., Lederman H.M. Ataxia telangiectasia: A review. Orphanet. J. Rare Dis. 2016;11:159. doi: 10.1186/s13023-016-0543-7. PubMed DOI PMC
Hart R.M., Kimler B.F., Evans R.G., Park C.H. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int. J. Radiat. Oncol. Biol. Phys. 1987;13:1237–1240. doi: 10.1016/0360-3016(87)90200-8. PubMed DOI
DeWire M.D., Beltran C., Boop F.A., Helton K.J., Ellison D.W., McKinnon P.J., Gajjar A., Pai Panandiker A.S. Radiation therapy and adjuvant chemotherapy in a patient with a malignant glioneuronal tumor and underlying ataxia telangiectasia: A case report and review of the literature. J. Clin. Oncol. 2013;31:12–14. doi: 10.1200/JCO.2011.40.1430. PubMed DOI PMC
Badie C., Goodhardt M., Waugh A., Doyen N., Foray N., Calsou P., Singleton B., Gell D., Salles B., Jeggo P., et al. A DNA double-strand break defective fibroblast cell line (180BR) derived from a radiosensitive patient represents a new mutant phenotype. Cancer Res. 1997;57:4600–4607. PubMed
Badie C., Iliakis G., Foray N., Alsbeih G., Pantellias G.E., Okayasu R., Cheong N., Russell N.S., Begg A.C., Arlett C.F., et al. Defective repair of DNA double-strand breaks and chromosome damage in fibroblasts from a radiosensitive leukemia patient. Cancer Res. 1995;55:1232–1234. PubMed
Ochi T., Blackford A.N., Coates J., Jhujh S., Mehmood S., Tamura N., Travers J., Wu Q., Draviam V.M., Robinson C.V., et al. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science. 2015;347:185–188. doi: 10.1126/science.1261971. PubMed DOI PMC
Chistiakov D.A., Voronova N.V., Chistiakov A.P. Ligase IV syndrome. Eur. J. Med. Genet. 2009;52:373–378. doi: 10.1016/j.ejmg.2009.05.009. PubMed DOI
Abbaszadeh F., Clingen P.H., Arlett C.F., Plowman P.N., Bourton E.C., Themis M., Makarov E.M., Newbold R.F., Green M.H.L., Parris C.N. A novel splice variant of the DNA-PKcs gene is associated with clinical and cellular radiosensitivity in a patient with xeroderma pigmentosum. J. Med. Genet. 2010;47:176. doi: 10.1136/jmg.2009.068866. PubMed DOI
Granzotto A., Benadjaoud M.A., Vogin G., Devic C., Ferlazzo M.L., Bodgi L., Pereira S., Sonzogni L., Forcheron F., Viau M., et al. Influence of Nucleoshuttling of the ATM Protein in the Healthy Tissues Response to Radiation Therapy: Toward a Molecular Classification of Human Radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 2016;94:450–460. doi: 10.1016/j.ijrobp.2015.11.013. PubMed DOI
Vinnikov V., Hande M.P., Wilkins R., Wojcik A., Zubizarreta E., Belyakov O. Prediction of the Acute or Late Radiation Toxicity Effects in Radiotherapy Patients Using Ex Vivo Induced Biodosimetric Markers: A Review. J. Pers. Med. 2020;10:285. doi: 10.3390/jpm10040285. PubMed DOI PMC
Hall J., Jeggo P.A., West C., Gomolka M., Quintens R., Badie C., Laurent O., Aerts A., Anastasov N., Azimzadeh O., et al. Ionizing radiation biomarkers in epidemiological studies–An update. Mutat. Res. Rev. Mutat. Res. 2017;771:59–84. doi: 10.1016/j.mrrev.2017.01.001. PubMed DOI
Gomolka M., Blyth B., Bourguignon M., Badie C., Schmitz A., Talbot C., Hoeschen C., Salomaa S. Potential screening assays for individual radiation sensitivity and susceptibility and their current validation state. Int. J. Radiat. Biol. 2020;96:280–296. doi: 10.1080/09553002.2019.1642544. PubMed DOI
Averbeck D., Candeias S., Chandna S., Foray N., Friedl A.A., Haghdoost S., Jeggo P.A., Lumniczky K., Paris F., Quintens R., et al. Establishing mechanisms affecting the individual response to ionizing radiation. Int. J. Radiat. Biol. 2020;96:297–323. doi: 10.1080/09553002.2019.1704908. PubMed DOI
Wang X., Wang P., Zhao Z., Mao Q., Yu J., Li M. A review of radiation-induced lymphopenia in patients with esophageal cancer: An immunological perspective for radiotherapy. Ther. Adv. Med. Oncol. 2020;12:6822. doi: 10.1177/1758835920926822. PubMed DOI PMC
Balázs K., Kis E., Badie C., Bogdándi E.N., Candéias S., Cruz Garcia L., Dominczyk I., Frey B., Gaipl U., Jurányi Z., et al. Radiotherapy-Induced Changes in the Systemic Immune and Inflammation Parameters of Head and Neck Cancer Patients. Cancers. 2019;11:1324. doi: 10.3390/cancers11091324. PubMed DOI PMC
Constanzo J., Faget J., Ursino C., Badie C., Pouget J.P. Radiation-Induced Immunity and Toxicities: The Versatility of the cGAS-STING Pathway. Front. Immunol. 2021;12:680503. doi: 10.3389/fimmu.2021.680503. PubMed DOI PMC
Smith J., Tho L.M., Xu N., Gillespie D.A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 2010;108:73–112. doi: 10.1016/B978-0-12-380888-2.00003-0. PubMed DOI
Lane D.P. Cancer. p53, guardian of the genome. Nature. 1992;358:15–16. doi: 10.1038/358015a0. PubMed DOI
Riley T., Sontag E., Chen P., Levine A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 2008;9:402. doi: 10.1038/nrm2395. PubMed DOI
Cruz-Garcia L., O’Brien G., Sipos B., Mayes S., Love M.I., Turner D.J., Badie C. Generation of a Transcriptional Radiation Exposure Signature in Human Blood Using Long-Read Nanopore Sequencing. Radiat. Res. 2020;193:143–154. doi: 10.1667/RR15476.1. PubMed DOI PMC
Kabacik S., Ortega-Molina A., Efeyan A., Finnon P., Bouffler S., Serrano M., Badie C. A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity. Cell Cycle. 2011;10:1152–1161. doi: 10.4161/cc.10.7.15231. PubMed DOI PMC
Jen K.Y., Cheung V.G. Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res. 2003;13:2092–2100. doi: 10.1101/gr.1240103. PubMed DOI PMC
Beer L., Seemann R., Ristl R., Ellinger A., Kasiri M.M., Mitterbauer A., Zimmermann M., Gabriel C., Gyongyosi M., Klepetko W., et al. High dose ionizing radiation regulates micro RNA and gene expression changes in human peripheral blood mononuclear cells. BMC Genom. 2014;15:814. doi: 10.1186/1471-2164-15-814. PubMed DOI PMC
Manning G., Kabacik S., Finnon P., Bouffler S., Badie C. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int. J. Radiat. Biol. 2013;89:512–522. doi: 10.3109/09553002.2013.769694. PubMed DOI
Manning G., Macaeva E., Majewski M., Kriehuber R., Brzoska K., Abend M., Doucha-Senf S., Oskamp D., Strunz S., Quintens R., et al. Comparable dose estimates of blinded whole blood samples are obtained independently of culture conditions and analytical approaches. Second RENEB gene expression study. Int. J. Radiat. Biol. 2017;93:87–98. doi: 10.1080/09553002.2016.1227105. PubMed DOI
Brzoska K., Kruszewski M. Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose. Radiat. Environ. Biophys. 2015;54:353–363. doi: 10.1007/s00411-015-0603-8. PubMed DOI PMC
Paul S., Barker C.A., Turner H.C., McLane A., Wolden S.L., Amundson S.A. Prediction of in vivo radiation dose status in radiotherapy patients using ex vivo and in vivo gene expression signatures. Radiat. Res. 2011;175:257–265. doi: 10.1667/RR2420.1. PubMed DOI PMC
Lucas J., Dressman H.K., Suchindran S., Nakamura M., Chao N.J., Himburg H., Minor K., Phillips G., Ross J., Abedi M., et al. A translatable predictor of human radiation exposure. PLoS ONE. 2014;9:e107897. doi: 10.1371/journal.pone.0107897. PubMed DOI PMC
Knops K., Boldt S., Wolkenhauer O., Kriehuber R. Gene Expression in Low- and High-Dose-Irradiated Human Peripheral Blood Lymphocytes: Possible Applications for Biodosimetry. Radiat. Res. 2012;178:304–312. doi: 10.1667/RR2913.1. PubMed DOI
Tucker J.D., Joiner M.C., Thomas R.A., Grever W.E., Bakhmutsky M.V., Chinkhota C.N., Smolinski J.M., Divine G.W., Auner G.W. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts. Int. J. Radiat. Oncol. Biol. Phys. 2014;88:933–939. doi: 10.1016/j.ijrobp.2013.11.248. PubMed DOI
Badie C., Kabacik S., Balagurunathan Y., Bernard N., Brengues M., Faggioni G., Greither R., Lista F., Peinnequin A., Poyot T., et al. NATO BIODOSIMETRY STUDY: Laboratory Intercomparison of Gene Expression Assays. Radiat. Res. 2013;180:138–148. doi: 10.1667/RR3236.1. PubMed DOI PMC
Correa C.R., Cheung V.G. Genetic variation in radiation-induced expression phenotypes. Am. J. Hum. Genet. 2004;75:885–890. doi: 10.1086/425221. PubMed DOI PMC
Rieger K.E., Chu G. Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res. 2004;32:4786–4803. doi: 10.1093/nar/gkh783. PubMed DOI PMC
Tichy A., Kabacik S., O’Brien G., Pejchal J., Sinkorova Z., Kmochova A., Sirak I., Malkova A., Beltran C.G., Gonzalez J.R., et al. The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood. PLoS ONE. 2018;13:e0193412. doi: 10.1371/journal.pone.0193412. PubMed DOI PMC
De Leve S., Wirsdörfer F., Jendrossek V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers. 2019;11:1578. doi: 10.3390/cancers11101578. PubMed DOI PMC
Wang Y., Deng W., Li N., Neri S., Sharma A., Jiang W., Lin S.H. Combining Immunotherapy and Radiotherapy for Cancer Treatment: Current Challenges and Future Directions. Front. Pharmacol. 2018;9:185. doi: 10.3389/fphar.2018.00185. PubMed DOI PMC
Grassberger C., Ellsworth S.G., Wilks M.Q., Keane F.K., Loeffler J.S. Assessing the interactions between radiotherapy and antitumour immunity. Nat. Rev. Clin. Oncol. 2019;16:729–745. doi: 10.1038/s41571-019-0238-9. PubMed DOI
O’Brien G., Cruz-Garcia L., Majewski M., Grepl J., Abend M., Port M., Tichý A., Sirak I., Malkova A., Donovan E., et al. FDXR is a biomarker of radiation exposure in vivo. Sci. Rep. 2018;8:684. doi: 10.1038/s41598-017-19043-w. PubMed DOI PMC
Amundson S.A., Grace M.B., McLeland C.B., Epperly M.W., Yeager A., Zhan Q. Human in vivo radiation-induced biomarkers: Gene expression changes in radiotherapy patients. Cancer Res. 2004;64:6368–6371. doi: 10.1158/0008-5472.CAN-04-1883. PubMed DOI
Cruz-Garcia L., O’Brien G., Donovan E., Gothard L., Boyle S., Laval A., Testard I., Ponge L., Wozniak G., Miszczyk L., et al. Influence of Confounding Factors on Radiation Dose Estimation Using In Vivo Validated Transcriptional Biomarkers. Health Phys. 2018;115:90–101. doi: 10.1097/HP.0000000000000844. PubMed DOI PMC
Polozov S., Cruz-Garcia L., Badie C. Rapid gene expression based dose estimation for radiological emergencies. Radiat. Prot. Dosim. 2019;186:24–30. doi: 10.1093/rpd/ncz053. PubMed DOI
Yovino S., Kleinberg L., Grossman S.A., Narayanan M., Ford E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: Modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Investig. 2013;31:140–144. doi: 10.3109/07357907.2012.762780. PubMed DOI PMC
Hammi A., Paganetti H., Grassberger C. 4D blood flow model for dose calculation to circulating blood and lymphocytes. Phys. Med. Biol. 2020;65:055008. doi: 10.1088/1361-6560/ab6c41. PubMed DOI PMC
Shin J., Xing S., McCullum L., Hammi A., Pursley J., Correa C.A., Withrow J., Domal S., Bolch W., Paganetti H., et al. HEDOS-a computational tool to assess radiation dose to circulating blood cells during external beam radiotherapy based on whole-body blood flow simulations. Phys. Med. Biol. 2021;66:164001. doi: 10.1088/1361-6560/ac16ea. PubMed DOI PMC
Elliott B., Jasin M. Double-strand breaks and translocations in cancer. Cell. Mol. Life Sci. 2002;59:373–385. doi: 10.1007/s00018-002-8429-3. PubMed DOI PMC
Diener A., Stephan G., Vogl T., Lissner J. The induction of chromosome aberrations during the course of radiation therapy for morbus Hodgkin. Radiat. Res. 1988;114:528–536. doi: 10.2307/3577123. PubMed DOI
Port M., Majewski M., Herodin F., Valente M., Drouet M., Forcheron F., Tichy A., Sirak I., Zavrelova A., Malkova A., et al. Validating Baboon Ex Vivo and In Vivo Radiation-Related Gene Expression with Corresponding Human Data. Radiat. Res. 2018;189:389–398. doi: 10.1667/RR14958.1. PubMed DOI
Blum K.S., Pabst R. Lymphocyte numbers and subsets in the human blood. Do they mirror the situation in all organs? Immunol. Lett. 2007;108:45–51. doi: 10.1016/j.imlet.2006.10.009. PubMed DOI
Wilson J.D., Hammond E.M., Higgins G.S., Petersson K. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold? Front. Oncol. 2019;9:1563. doi: 10.3389/fonc.2019.01563. PubMed DOI PMC
Lin B., Gao F., Yang Y., Wu D., Zhang Y., Feng G., Dai T., Du X. FLASH Radiotherapy: History and Future. Front. Oncol. 2021;11:644400. doi: 10.3389/fonc.2021.644400. PubMed DOI PMC
Kultova G., Tichy A., Rehulkova H., Myslivcova-Fucikova A. The hunt for radiation biomarkers: Current situation. Int. J. Radiat. Biol. 2020;96:370–382. doi: 10.1080/09553002.2020.1704909. PubMed DOI
Hwang P.M., Bunz F., Yu J., Rago C., Chan T.A., Murphy M.P., Kelso G.F., Smith R.A., Kinzler K.W., Vogelstein B. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat. Med. 2001;7:1111–1117. doi: 10.1038/nm1001-1111. PubMed DOI PMC
Liu G., Chen X. The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene. 2002;21:7195–7204. doi: 10.1038/sj.onc.1205862. PubMed DOI
Zhang Y., Qian Y., Zhang J., Yan W., Jung Y.S., Chen M., Huang E., Lloyd K., Duan Y., Wang J., et al. Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev. 2017;31:1243–1256. doi: 10.1101/gad.299388.117. PubMed DOI PMC
Yang C., Zhang Y., Li J., Song Z., Yi Z., Li F., Xue J., Zhang W., Wang C. Report of a case with ferredoxin reductase (FDXR) gene variants in a Chinese boy exhibiting hearing loss, visual impairment, and motor retardation. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 2021;81:364–369. doi: 10.1002/jdn.10104. PubMed DOI
Cruz-Garcia L., O’Brien G., Sipos B., Mayes S., Tichý A., Sirák I., Davídková M., Marková M., Turner D.J., Badie C. In Vivo Validation of Alternative FDXR Transcripts in Human Blood in Response to Ionizing Radiation. Int. J. Mol. Sci. 2020;21:7851. doi: 10.3390/ijms21217851. PubMed DOI PMC
Ostheim P., Coker O., Schule S., Hermann C., Combs S.E., Trott K.R., Atkinson M., Port M., Abend M. Identifying a Diagnostic Window for the Use of Gene Expression Profiling to Predict Acute Radiation Syndrome. Radiat Res. 2021;195:38–46. doi: 10.1667/RADE-20-00126.1. PubMed DOI
Raj A., van Oudenaarden A. Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell. 2008;135:216–226. doi: 10.1016/j.cell.2008.09.050. PubMed DOI PMC
Zhang Z., English B.P., Grimm J.B., Kazane S.A., Hu W., Tsai A., Inouye C., You C., Piehler J., Schultz P.G., et al. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis. Genes Dev. 2016;30:2106–2118. doi: 10.1101/gad.285395.116. PubMed DOI PMC
Kabacik S., Manning G., Raffy C., Bouffler S., Badie C. Time, Dose and Ataxia Telangiectasia Mutated (ATM) Status Dependency of Coding and Noncoding RNA Expression after Ionizing Radiation Exposure. Radiat. Res. 2015;183:325–337. doi: 10.1667/RR13876.1. PubMed DOI
Melanson B.D., Bose R., Hamill J.D., Marcellus K.A., Pan E.F., McKay B.C. The role of mRNA decay in p53-induced gene expression. RNA. 2011;17:2222–2234. doi: 10.1261/rna.030122.111. PubMed DOI PMC
Tamura H., Sugiyama Y., Sugahara T. Changes in the number of circulating lymphocytes with chromosomal aberrations following a single exposure of the pelvis to gamma-irradiation in cancer patients. Radiat. Res. 1974;59:653–657. doi: 10.2307/3574082. PubMed DOI
Watson G.E., Gillies N.E. Radiation-induced chromosomal aberrations in human lymphocytes after partial-body exposure to 60Co gamma-irradiation and in vitro exposure to 230 kV X-irradiation. Br. J. Radiol. 1975;48:487–493. doi: 10.1259/0007-1285-48-570-487. PubMed DOI
Stephan G., Diener A., Vogl T. Chromosome aberrations in peripheral lymphocytes of patients irradiated with 15-MeV-photons for Morbus Hodgkin. Strahlenther Onkol. 1990;166:460–465. PubMed
Fong L., Chen J.Y., Ting L.L., Lui L.T., Wang P.M., Chen W.L. Chromosome aberrations induced in human lymphocytes after partial-body irradiation. Radiat. Res. 1995;144:97–101. doi: 10.2307/3579241. PubMed DOI
Rothkamm K., Beinke C., Romm H., Badie C., Balagurunathan Y., Barnard S. Comparison of established and emerging biodosimetry assays. Radiat. Res. 2013;180:111–119. doi: 10.1667/RR3231.1. PubMed DOI PMC
Zahnreich S., Ebersberger A., Kaina B., Schmidberger H. Biodosimetry Based on gamma-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy. Radiat. Res. 2015;183:432–446. doi: 10.1667/RR13911.1. PubMed DOI
Field E.O., Sharpe H.B., Dawson K.B., Andersen V., Killmann S.A., Weeke E. Turnover rate of normal blood lymphocytes and exchangeable pool size in man, calculated from analysis of chromosomal aberrations sustained during extracorporeal irradiation of the blood. Blood. 1972;39:39–56. doi: 10.1182/blood.V39.1.39.39. PubMed DOI
Sharpe H., Dolphin G., Dawson K.B., Field E. Methods for computing lymphocyte kinetics in man by analysis of chromosomal aberrations sustained during extracorporeal irradiation of the blood. Cell Tissue Kinet. 1968;45:538–544. doi: 10.1111/j.1365-2184.1968.tb00323.x. DOI
Sharpe H.B., Dolphin G.W., Dawson K.B., Field E.O. Chromosomal aberration in lymphocytes from an extracorporeally irradiated patient. Lancet. 1967;2:1338–1339. doi: 10.1016/S0140-6736(67)90919-1. PubMed DOI
Boreham D.R., Gale K.L., Maves S.R., Walker J.A., Morrison D.P. Radiation-induced apoptosis in human lymphocytes: Potential as a biological dosimeter. Health Phys. 1996;71:685–691. doi: 10.1097/00004032-199611000-00007. PubMed DOI
Menz R., Andres R., Larsson B., Ozsahin M., Trott K., Crompton N.E. Biological dosimetry: The potential use of radiation-induced apoptosis in human T-lymphocytes. Radiat. Environ. Biophys. 1997;36:175–181. doi: 10.1007/s004110050069. PubMed DOI
Stahnke K., Fulda S., Friesen C., Strauss G., Debatin K.M. Activation of apoptosis pathways in peripheral blood lymphocytes by in vivo chemotherapy. Blood. 2001;98:3066–3073. doi: 10.1182/blood.V98.10.3066. PubMed DOI
Carloni M., Meschini R., Ovidi L., Palitti F. PHA-induced cell proliferation rescues human peripheral blood lymphocytes from X-ray-induced apoptosis. Mutagenesis. 2001;16:115–120. doi: 10.1093/mutage/16.2.115. PubMed DOI
Benderitter M., Durand V., Caux C., Voisin P. Clearance of radiation-induced apoptotic lymphocytes: Ex vivo studies and an in vitro co-culture model. Radiat. Res. 2002;158:464–474. doi: 10.1667/0033-7587(2002)158[0464:CORIAL]2.0.CO;2. PubMed DOI
Schmitz A., Bayer J., Dechamps N., Thomas G. Intrinsic susceptibility to radiation-induced apoptosis of human lymphocyte subpopulations. Int. J. Radiat. Oncol. Biol. Phys. 2003;57:769–778. doi: 10.1016/S0360-3016(03)00637-0. PubMed DOI
Bassi L., Carloni M., Meschini R., Fonti E., Palitti F. X-irradiated human lymphocytes with unstable aberrations and their preferential elimination by p53/survivin-dependent apoptosis. Int. J. Radiat. Biol. 2003;79:943–954. doi: 10.1080/09553000310001632930. PubMed DOI
Torudd J., Protopopova M., Sarimov R., Nygren J., Eriksson S., Markova E., Chovanec M., Selivanova G., Belyaev I.Y. Dose-response for radiation-induced apoptosis, residual 53BP1 foci and DNA-loop relaxation in human lymphocytes. Int. J. Radiat. Biol. 2005;81:125–138. doi: 10.1080/09553000500077211. PubMed DOI
Belloni P., Meschini R., Czene S., Harms-Ringdahl M., Palitti F. Studies on radiation-induced apoptosis in G0 human lymphocytes. Int. J. Radiat. Biol. 2005;81:587–599. doi: 10.1080/09553000500303690. PubMed DOI
Vokurková D., Sinkora J., Vávrová J., Rezácová M., Knízek J., Ostereicher J. CD8+ natural killer cells have a potential of a sensitive and reliable biodosimetric marker in vitro. Physiol. Res. 2006;55:689–698. doi: 10.33549/physiolres.930991. PubMed DOI
Vilasova Z., Rezacova M., Vavrova J., Tichy A., Vokurkova D., Zoelzer F., Rehakova Z., Osterreicher J., Lukasova E. Changes in phosphorylation of histone H2A.X and p53 in response of peripheral blood lymphocytes to gamma irradiation. Acta Biochim. Pol. 2008;55:381–390. doi: 10.18388/abp.2008_3086. PubMed DOI
Bordon E., Henriquez Hernandez L.A., Lara P.C., Pinar B., Fontes F., Rodriguez Gallego C., Lloret M. Prediction of clinical toxicity in localized cervical carcinoma by radio-induced apoptosis study in peripheral blood lymphocytes (PBLs) Radiat. Oncol. 2009;4:58. doi: 10.1186/1748-717X-4-58. PubMed DOI PMC
Ghardi M., Moreels M., Chatelain B., Chatelain C., Baatout S. Radiation-induced double strand breaks and subsequent apoptotic DNA fragmentation in human peripheral blood mononuclear cells. Int. J. Mol. Med. 2012;29:769–780. doi: 10.3892/ijmm.2012.907. PubMed DOI
Falcke S.E., Ruhle P.F., Deloch L., Fietkau R., Frey B., Gaipl U.S. Clinically Relevant Radiation Exposure Differentially Impacts Forms of Cell Death in Human Cells of the Innate and Adaptive Immune System. Int. J. Mol. Sci. 2018;19:3574. doi: 10.3390/ijms19113574. PubMed DOI PMC
Nasser F., Cruz-Garcia L., O’Brien G., Badie C. Role of blood derived cell fractions, temperature and sample transport on gene expression-based biological dosimetry. Int. J. Radiat. Biol. 2021;97:675–686. doi: 10.1080/09553002.2021.1906464. PubMed DOI
Durante M., Yamada S., Ando K., Furusawa Y., Kawata T., Majima H., Nakano T., Tsujii H. Measurements of the equivalent whole-body dose during radiation therapy by cytogenetic methods. Phys. Med. Biol. 1999;44:1289–1298. doi: 10.1088/0031-9155/44/5/314. PubMed DOI
Yamada S., Durante M., Ando K., Furusawa Y., Kawata T., Majima H., Tsujii H. Complex-type chromosomal exchanges in blood lymphocytes during radiation therapy correlate with acute toxicity. Cancer Lett. 2000;150:215–221. doi: 10.1016/S0304-3835(99)00405-X. PubMed DOI
Lee R., Yamada S., Yamamoto N., Miyamoto T., Ando K., Durante M., Tsujii H. Chromosomal aberrations in lymphocytes of lung cancer patients treated with carbon ions. J. Radiat. Res. 2004;45:195–199. doi: 10.1269/jrr.45.195. PubMed DOI
Xuncla M., Barquinero J.F., Caballin M.R., Craven-Bartle J., Ribas M., de Vega J.M., Barrios L. Cytogenetic damage induced by radiotherapy. Evaluation of protection by amifostine and analysis of chromosome aberrations persistence. Int. J. Radiat. Biol. 2008;84:243–251. doi: 10.1080/09553000801902141. PubMed DOI
D’Alesio V., Pacelli R., Durante M., Canale Cama G., Cella L., Gialanella G., Grossi G., Pugliese M., Punzo G., Sardi I., et al. Lymph nodes in the irradiated field influence the yield of radiation-induced chromosomal aberrations in lymphocytes from breast cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2003;57:732–738. doi: 10.1016/S0360-3016(03)00664-3. PubMed DOI
Drexler H.L., Choquet K., Churchman L.S. Splicing Kinetics and Coordination Revealed by Direct Nascent RNA Sequencing through Nanopores. Mol. Cell. 2020;77:985–998. doi: 10.1016/j.molcel.2019.11.017. PubMed DOI PMC
Herzel L., Ottoz D.S.M., Alpert T., Neugebauer K.M. Splicing and transcription touch base: Co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 2017;18:637–650. doi: 10.1038/nrm.2017.63. PubMed DOI PMC
Galganski L., Urbanek M.O., Krzyzosiak W.J. Nuclear speckles: Molecular organization, biological function and role in disease. Nucleic Acids Res. 2017;45:10350–10368. doi: 10.1093/nar/gkx759. PubMed DOI PMC
Alexander K.A., Cote A., Nguyen S.C., Zhang L., Gholamalamdari O., Agudelo-Garcia P., Lin-Shiao E., Tanim K.M.A., Lim J., Biddle N., et al. p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol. Cell. 2021;81:1666–1681. doi: 10.1016/j.molcel.2021.03.006. PubMed DOI PMC
Hafner A., Bulyk M.L., Jambhekar A., Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 2019;20:199–210. doi: 10.1038/s41580-019-0110-x. PubMed DOI
Khanna K.K., Lavin M.F., Jackson S.P., Mulhern T.D. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ. 2001;8:1052–1065. doi: 10.1038/sj.cdd.4400874. PubMed DOI
Shiloh Y. ATM and related protein kinases: Safeguarding genome integrity. Nat. Rev. Cancer. 2003;3:155–168. doi: 10.1038/nrc1011. PubMed DOI
Weeks D.E., Paterson M.C., Lange K., Andrais B., Davis R.C., Yoder F., Gatti R.A. Assessment of chronic gamma radiosensitivity as an in vitro assay for heterozygote identification of ataxia-telangiectasia. Radiat. Res. 1991;128:90–99. doi: 10.2307/3578071. PubMed DOI
Wiencke J.K., Wara D.W., Little J.B., Kelsey K.T. Heterogeneity in the clastogenic response to X-rays in lymphocytes from ataxia-telangiectasia heterozygotes and controls. Cancer Causes Control CCC. 1992;3:237–245. doi: 10.1007/BF00124257. PubMed DOI
Lu S., Shen K., Wang Y., Santner S.J., Chen J., Brooks S.C., Wang Y.A. Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors. Carcinogenesis. 2006;27:848–855. doi: 10.1093/carcin/bgi302. PubMed DOI
RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays